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Abstract

In organic displays, developing molecules that produce a broad color gamut with exceptional color
purity is of critical importance. AI-assisted molecular screening can expedite the design process of
emission molecules. However, the efficiency of current methodologies is constrained by their limited
candidate pools and poor hit rates. Here we present MEMOS, a cutting-edge molecular generation
framework that, through Markov molecular sampling techniques, facilitates the targeted inverse
design of molecules across a nearly boundless chemical space, tailored to emit the narrow spectral
bands associated with desired colors. Notably, by employing a self-improving iterative process,
MEMOS achieves an impressive hit rate of up to 80%. Our method showcases the pioneering
capability to rapidly navigate through millions of molecular possibilities, efficiently pinpointing
thousands of high-potential candidates within a 24-hour period. This breakthrough accelerates the
design of novel organic luminescent materials, setting the stage for the advancement of the next
generation of high-quality organic displays.

Introduction

Organic light-emitting diodes (OLEDs) have emerged as highly promising light-emitting devices for
applications in lighting and displays, owing to their rapid response, wide viewing angles, and flexibility.
Color purity is a critical attribute for emitters, as it directly influences color deviation and the realism
of the display. Typically, the color purity of an emitter is assessed by the full width at half-maximum
(FWHM) of its emission spectrum. Minimizing the FWHM is essential for achieving color coordinates
that are closer to the outer boundary of the color space, thereby ensuring a more accurate color
representation.

Recently, a novel class of emitter molecules with narrowband emission, known as multiple resonance
thermally activated delayed fluorescent (MR-TADF) materials, has been introduced [1]. These mate-
rials leverage resonance effects to confine frontier orbitals to specific atoms by incorporating elements
with complementary electronegativity, such as boron and nitrogen, at the ortho- or para-positions of
rigid conjugated rings. This approach not only effectively separates the HOMO and LUMO orbitals,
endowing the molecule with excellent thermally activated delayed fluorescence properties, but also
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Fig. 1 (a) Schematic overview of MEMOS: a self-improving OLED molecule design system utilizing Markov Chain
Monte Carlo (MCMC) sampling. (b) Schematic diagram of all molecular editing operations. (c) Schematic diagram of
the scorer used in MCMC sampling.

curtails the deformation of the excited state and reduces electron-vibrational coupling, leading to a
narrowed emission profile [2, 3]. To date, multiple resonance strategies have yielded narrowband emit-
ters with the narrowest reported emission peak exhibiting an FWHM of just 13 nm in the blue, 14 nm
in the green and 21 nm in the red spectral regions. [4–10]. However, the rarity of molecules that exhibit
narrowband emissions in the long-wavelength regions poses a significant challenge. Most molecules,
especially those emitting in the green and red spectra, still display emission peaks with an FWHM
exceeding 20 nm. This scarcity of high-performance red and green emitters has become a critical
bottleneck in the advancement of OLED materials discovery.

Traditionally, designing ideal luminescent molecules involves a laborious cycle of extensive syn-
thesis and validation, which often incurs significant costs due to the trial-and-error nature of the
approach. High-throughput virtual screening (HTVS) complemented by theoretical calculations is con-
sidered a more cost-effective approach for material discovery [11]. Nevertheless, accurately predicting
the emission peaks and FWHM for a vast array of molecular spectra remains challenging due to the
computationally intensive task of calculating Hessian matrices for excited states. Machine learning
(ML) methods, which establish structure-property relationships to enable rapid property prediction
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without the need for extensive theoretical calculations, have substantially expedited the HTVS pro-
cess [12–17]. These methods have been applied to screen for organic emitters that offer high PLQY, a
wide color gamut, or high color purity [18–20].

Despite these advancements, the efficiency of ML-accelerated HTVS is still bounded by several
inherent limitations. First, it relies on a limited set of pre-designed candidate molecules, which only
represent a small fraction of the vast molecular space. Second, the processes of molecule generation and
screening are separate, leading to a low hit rate and necessitating more time investment. As a result,
these approaches hinder the comprehensive and efficient exploration of the chemical space. Therefore,
there is an urgent call for a more integrated methodology capable of freely navigating the vast chemical
space and optimizing molecules in real-time through feedback on the molecules generated.

In this study, we presentMarkov EmissionMOlecular Sampling (MEMOS), a framework designed
for efficient multi-objective inverse design of luminescent molecules. Inspired by the success of Markov
chain Monte Carlo (MCMC) sampling method in generating text [21] and drug-like molecules [22],
MEMOS adapts MCMC sampling for the organic light-emitting context by integrating specialized
molecular editing operations and scoring functions.

In the MEMOS framework, candidate molecules are generated at each time step through one editing
operation applied to the molecules from the preceding step. This approach enables the exploration of
an almost limitless chemical space, free from the constraints of limited candidate pools. The acceptance
of the generated molecules is determined by their property scores, such as emission wavelength and
FWHM. This design procedure allows the properties of the sampled molecules to be guided toward
the target values. Leveraging a self-improving discovery cycle, the accuracy of our proxy models can
be significantly enhanced, achieving a high hit rate of up to 70% for emission wavelength and 80% for
FWHM. This, in turn, facilitates the efficient inverse design of MR fluorescent molecules.

Utilizing MEMOS to design molecules for red, green, and blue light emission, we have successfully
created a diverse array of molecules with finely tunable colors and FWHM reaching 13 nm in the
blue, 15.5 nm in the green and 20 nm in the red spectral regions. The CIE color coordinates of these
molecules closely align with the Rec. 2020 [23] standard, holding great promise for expanding the color
gamut and achieving ultra-high-definition displays. Our approach can markedly improve the efficiency
of molecule design and demonstrates the potential of AI in venturing into the realm of cutting-edge
narrow-emission molecules.

Results and Discussion

Overview of MEMOS

Discovering molecules that display the desired color and high color purity is a formidable challenge
due to the immense molecular space. Current ML-accelerated HTVS methods [18, 20] have endeav-
ored to explore the molecular space by empirically modifying existing molecules and systematically
enumerating candidate molecules, a process that is both inefficient and computationally demanding.

In contrast, we have developed a novel framework, MEMOS, grounded in MCMC sampling to
design molecules with targeted optical properties. Figure 1 (a) depicts the workflow of MEMOS:
First, the MCMC sampling process continuously generates candidate molecules from a seed molecule
by modifying those from preceding steps with five molecular graph editing operations (Figure 1 (b)):
fragment Adding and Deleting, ring Fusing and Defusing, and atom Substitution. Proposals for these
operations are represented by message-passing neural networks (MPNNs) [24], which are adaptively
trained throughout the sampling. Subsequently, proxy models predict the emission wavelength and
FWHM of the sampled molecules. The acceptance of the newly generated molecule is determined based
on its score on the objective function,(Figure 1 (c)) which encompasses structural and representational
rationality, wavelength, and color purity. Density functional theory (DFT) is then applied to ascertain
the precise optical properties of the top-k generated molecules. Lastly, these data are used to iteratively
refine the proxy model, creating a self-improving loop for the design of target molecules.

As the cornerstone of our framework, the MCMC sampling method with a simulated annealing
[25] scheme is employed to navigate the chemical space in search of molecules with desired properties.
Specifically, it constructs a Markov Chain within the chemical space where each state corresponds to a
molecule, and the Markov Chain’s equilibrium distribution is aligned with the target distribution [26,
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Fig. 2 Mean absolute error (MAE) and distribution of labels on test set against the prediction of initial proxy models
for (a) emission peak wavelengths, (b) the FWHM of the emission spectrum, and prediction of adapted proxy models
in the last iteration for (c) emission peak wavelengths, (d) the FWHM of the emission spectrum. Data from the initial
experiment dataset are marked in red, while newly added DFT-calculated data are highlighted in blue.

27]. Therefore, with an increasing number of sampling steps, the initial molecule can progressively
enhance its objective function score, ultimately achieving the desired properties.

To transform between molecules, the original MARS approach [22] considers fragment Adding
and Deleting. However, relying solely on these operations is insufficient for effectively exploring the
molecular space, since organic light-emitting molecules typically feature multiple fused ring struc-
tures. Moreover, simply adding single bonds through the Adding operation may lead to significant
long-range charge transfer, which is not conducive to the sampling of narrow emission molecules. To
address this limitation, MEMOS expands the operation set to include ring Fusing and Defusing, as
well as heteroatom Substitution. With these additional operations, MEMOS can explore more than
100 novel molecules per step. Furthermore, up to 300 Markov chains, each undergoing 1500 steps, can
be established and evolved on a single NVIDIA RTX 3090 Graph Processing Unit (GPU) within a
day. Consequently, MEMOS can uncover ∼45,000,000 molecules in a single day, thereby facilitating a
more efficient exploration of a broader, almost infinite chemical space compared to traditional HTVS
approaches. This enables the generation of a more diverse set of candidate molecules and facilitates
the efficient inverse design of narrowband emitters.

Proxy model performance in optical property prediction

The accurate prediction of molecular properties is essential in machine-learning applications. Uni-
Mol [28] as a pre-training model in particular, has demonstrated remarkable proficiency in forecasting
the optical properties of organic molecules [18]. Based on the Transformer [29] architecture, Uni-Mol
takes 3D molecular conformations as input and leverages its pre-training on a vast array of molecular
conformations to generate high-quality molecular representations. Upon fine-tuning, Uni-Mol exhibits
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exceptional performance across a range of downstream tasks. Consequently, we utilize Uni-Mol as the
proxy model to predict the emission peaks wavelengths and spectral FWHM of molecules. We have
developed separate models for each property, each comprising a Uni-Mol backbone complemented by a
multilayer perceptron (MLP). The MLP transforms the vector output from Uni-Mol into a scalar value,
which represents the final prediction for each property. Figure 2 (a-b) illustrated the performance of
our models on the initially collected dataset.(see Methods) These results are based on the models’
predictions on a predefined test set, which is distinct from the training set. Overall, both models have
been successfully trained using our meticulously curated dataset. The correlation coefficient (R) and
mean absolute error (MAE) are 0.79 and 32.16 nm for the emission peak wavelength, and 0.86 and
0.05 eV for the FWHM, respectively. These metrics indicate that the models are capable of accurately
estimating these two molecular properties, which in turn enables their use in informing the subsequent
molecular sampling process.

Iteratively adapting to the MEMOS-explored chemical space

One challenge in material design arises when proxy models, used in designing algorithms, encounter
novel chemical spaces that differ from the training data [30, 31], leading to a degradation of the
quality of the generated molecules, known as out-of-distribution (OOD) problems [32, 33]. To address
this issue, Fannjiang and Listgarten [34] propose iterative retraining of proxy models by focusing on
previously high-scoring molecules. Similarly, we suggest iteratively updating the proxy models with
newly generated molecules, allowing the models to adapt to the novel chemical space explored by
MEMOS.

As illustrated in Figure 1, the top-k molecules are selected as the final sampled candidates and
labeled based on the results from DFT calculations. These labeled molecules are then integrated
into the dataset to enhance the training of the proxy models. The updated models are employed in
the subsequent sampling phase, thus creating a self-improving loop. With each iteration, the proxy
models become capable of predicting the properties of a broader range of molecules. Figure 2 (c-
d) demonstrate that the refined models achieve superior accuracy in predictions on test datasets
that include the initial test data and the sampled molecules. Consequently, the hit rate of MEMOS
has notably increased during the self-improving loop. Figure 3 (a-b) shows the shift in property
distributions of the sampled molecules over successive iterations. Here, we are targeting green light
molecules. The iterative process of the model has resulted in an increasing number of sampled molecules
emitting within the 525 ± 25 nm range and with FWHM below 0.125 eV. By the fifth iteration,
approximately 70% of sampled molecules emit colors that align with the target expectation (525 ±
25 nm), and nearly 80% meet the target criterion for FWHM values (<0.125 eV). These findings
demonstrate that MEMOS efficiently samples molecules for narrowband green light emission.

The rising hit rate indicates that the proxy model is progressively adapting to the novel chemical
space explored by MEMOS. We employ t-SNE [35] to visualize the distribution of sampled molecules
in chemical space across iterations. As depicted in Figure 3 (c), initially, the sampled molecules
cluster at the outskirts of the distribution of experimental molecules. Due to the scarcity of data
in this area, the reliability of the predicted properties is relatively low, leading to a low hit rate of
MEMOS. As the iterations progress, MEMOS gradually extends its exploration to a wider chemical
space. The incorporation of this data into the dataset enhances the representation of the chemical
space, thereby improving the model’s generalization capability. Consequently, the predictions become
more trustworthy, and the sampling hit rate steadily increases. After five iterations, almost all newly
sampled molecules are situated within the chemical space covered by the dataset. This suggests that,
after several iterations, our model effectively samples from a sufficiently expansive space to thoroughly
explore the structures of MR molecules emitting green light.

In addition to optical properties, synthesis accessibility is a critical metric for evaluating the practi-
cal applicability of organic light-emitting molecules. The synthesis accessibility of green light-emitting
molecules sampled from different iterations was evaluated using fragment spatial and stereoselective-
based synthesis accessibility scores (SAscore) [36], which are integrated into the rdkit package [37]. As
shown in Figure 3 (d), there is a trend of decreasing synthesis accessibility sGcores over each iter-
ation. This trend may suggest that the structures of sampled molecules are evolving towards greater
rationality and simplicity, with a reduction in the presence of unconventional structural elements. After
five iterations, around 50% of the molecules have synthesis accessibility scores below 3.5, suggesting
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Fig. 3 (a) Distribution of emission peak wavelengths for sampled molecules across different iterative batches. (b)
Distribution of emission FWHM for sampled molecules across different iterative batches. (c) Distribution of sampled
molecules from different iterative batches within chemical space. (d) Boxplot of synthetic accessibility scores for sampled
molecules across different iterative batches. The upper and lower boundaries of the boxes represent the first and third
quartiles, respectively; the whiskers indicate 1.5 times the standard deviation, and the median is denoted by a center
line. (e) Distribution of emission peak wavelengths for sampled molecules intended for RGB light emission in the fifth
iteration. (f) Distribution of emission FWHM for sampled molecules targeting RGB light emission in the fifth iteration.
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that these candidate molecules could be more readily synthesized and are promising candidates for use
in OLEDs.

Candidate molecules discovery

Using the iteratively adapted proxy models, we have successfully sampled narrowband molecules across
the blue, green, and red light spectra, thereby facilitating the efficient inverse design of narrowband
molecules for any targeted light color (Figure 3 e-f). During the sampling process, several well-known
emitters such as CzBN, CzBO, γ-Cb-B, Phenanthrene, Py-Cz, and InBN [5, 38–41], were recovered from
basic fragments that could not be further divided by deleting or defusing, using our designed action.
using our approach. Among these, CzBN, CzBO, γ-Cb-B, and InBN are blue-emitting MR molecules,
with emission peak positions at 477 nm, 445 nm, 460 nm, and 475 nm. The FWHM for these emitters
is 25 nm, 26 nm, 23 nm, and 23 nm, respectively. This demonstrates that the vocabulary and actions
within MEMOS are sufficient for constructing potential high-performance molecules. Structures similar
to more complex molecules, such as BN-ICZ,[42] which has an emission peak at 521 nm and FWHM of
23 nm, or BTC-BNCz[43] which has an emission peak at 488 nm and FWHM of 23 nm can be recovered
during the sampling process, differing by only one substituent. However, achieving complete consistency
in recovery still requires the addition of extra constraints, such as symmetry and reactivity. The hit
rate for sampling red light-emitting molecules is somewhat lower, and the wavelength distributions
are broader compared to those of blue and green light-emitting molecules. This discrepancy is likely
attributable to the smaller number of reported red light-emitting molecules in the dataset.

Employing MEMOS, we can sample thousands of candidate molecules daily that meet our criteria
for color and FWHM, thereby efficiently expanding the array of known MR materials. Those sampled
molecules fall into distinct categories including boron-nitrogen based, boron-oxygen based,carbonyl-
nitrogen based, and indolo[3,2,1-jk]carbazole (ICZ) based types, each exhibiting a variety of novel and
unique structures. These new structures provide valuable insights for the exploration and design of
advanced materials. Typical structures of the sampled red, green, and blue light-emitting molecules
with outstanding performance are illustrated in Figure 4.

Beyond exhibiting innovative structures, the sampled molecules also demonstrate excellent perfor-
mance. Our approach precisely tunes the emission wavelength of the molecules to the target values
through peripheral substituent modifications and heteroatom incorporation. Meanwhile, the sampled
molecules exhibit high oscillator strengths, which favor enhanced luminous efficiency. Figure 3 (b,f)
and Figure 2 (d) both show that the FWHM of the majority of the sampled molecules falls within
the range of 0.075-0.125 eV, with a scarcity of molecules exhibiting FWHM values below 0.075 eV. As
illustrated in Figure 4, the narrowest FWHM among these sampled molecules can reach 20 nm/76.7
meV for red, 15.5 nm/74.1 meV for green, and 13 nm/74.4 meV for blue emissions, respectively, which
rival the narrowest FWHM observed in existing molecular entities. These results suggest a lower bound
for the FWHM of current-type MR molecules and demonstrate the ability of our method to define the
limits of molecular properties.

To precisely tune the optical properties of the molecules to meet our target specifications, our model
has progressively adopted molecular design strategies from the dataset during the MEMOS sampling
process, without preset manual adjustments. For instance, the model implemented the double boron
embedded strategies [8, 45], which strategically incorporate additional boron(B) or nitrogen(N) atom
at the meta/para positions of the existing boron atom. This incorporation effectively modulates the
strengths of intramolecular charge transfer and enhances the multi resonance effect on the central ring,
thereby fine-tuning the spectral color output and narrowing the emission peak. For example, compared
to molecules fused to benzene rings without additional B/N incorporation, the spectra of the highlighted
double boron embedded molecules in Figure 4 exhibit a pronounced blue shift over 100 nm, changing
from red emission to our desired green emission while the FWHM narrows to nearly 10 nm.(Figure
S8) This indicates that the model has learned underlying patterns from the training data, strategically
incorporating heteroatoms to precisely tune molecular properties and meet our requirements.

Electron-hole analysis [46] reveals that the sampled molecules display pronounced short-range
charge transfer (SR-CT) characteristics(Figure 5 a-c), effectively mitigating electron vibtational
coupling and consequently narrows the emission peak. By systematic modular charge transfer char-
acteristics, these model-designed molecules have achieved a narrowed emission profile along with a
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Fig. 4 Typical structures of the sampled candidate molecules for (a) blue, (b) green, and (c) red emissions, with the
corresponding emission wavelengths, FWHM, and oscillator strengths listed. The narrowest FWHM in each emission
color are indicated by red underlines. Molecules exemplifying the application of double boron embedded design strategy
is highlighted.
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Fig. 5 Isosurfaces of hole and electron distribution for the screened-out candidate molecules of(a) blue (b) green (c)
red emissions. Blue and green isosurfaces represent hole and electron distributions respectively. Electron-hole analyses
were performed utilizing the Multiwfn software [44]. (d) The color space constructed using the three candidate molecules
demarcated by solid lines, compared to the standard sRGB color space demarcated by dashed lines, with the CIE
coordinates of candidates listed. (e) Theoretical calculated emission spectra for the three candidates, including the
emission wavelength and FWHM values.

spectrum of tunable emission colors. Furthermore, the SR-CT features also ensure substantial orbital
overlap between the HOMO and LUMO, thereby endowing the significant oscillator strength.

Beyond the narrow FWHM of the sampled molecules, our targeted inverse design approach, directed
by specific wavelength criteria, has fine-tuned the CIE color coordinates of the molecules. From our
sampled pool, we identified candidates capable of constructing a wider color gamut that not only
exceeds the range of the regular sRGB color space but also closely aligns with the Rec.2020 [23]
standard, with CIE coordinates of (0.137, 0.051) for blue, (0.167, 0.723) for green, and (0.715, 0.285)
for red(Figure 5 d-e).

Conclusion

By combining MCMC sampling with property prediction models, we have streamlined the inverse
design of molecules capable of narrowband emissions across the entire spectrum of wavelengths. This
integration facilitates a more efficient exploration of the expansive chemical space compared to con-
ventional HTVS approaches. Through a self-improving iterative process, the novel chemical space
investigated by MEMOS can be progressively refined by the proxy model, achieving hit rates of 70%
for emission peak wavelengths and 80% for the FWHM. Our model uncovers design strategies from
existing molecules, systematically modulates the charge transfer characteristics of the model-designed
molecules, successfully narrows their emission spectra, and fine-tunes their molecular emission to the
target color. The FWHM of the sampled molecules is recorded at 27.5 nm/81.6 meV for red, 17
nm/80.1 meV for green, and 13.5 nm/79.8 meV for blue emissions. These characteristics enable our
sampled molecules to contribute to the extensive color gamut required for ultra-high-definition dis-
plays. With the integration of enhanced vocabularies and editing operations, our approach can delve
into a broader chemical space and uncover molecules with even narrower FWHM. Furthermore, our
approach is readily adaptable for the concurrent multi-objective optimization of desirable attributes,
such as luminescence efficiency, stability, and fluorescence lifetime. Our findings demonstrate the poten-
tial to construct a broad color gamut and are expected to accelerate the development and discovery of
novel organic luminescent materials.
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Methods

Dataset construction and proxy models training

The initial dataset was constructed by collecting molecules with multiple resonance structures and
narrow spectral profiles, as reported in the literature. To minimize the impact of other factors on the
spectral data, the emission peak wavelength (measured in nm) and FWHM (measured in eV) of the
emission spectra in dichloromethane or toluene solutions were used as labels. Furthermore, we expanded
the dataset by including molecules from the dataset reported by Park et. al. [47] that exhibited an
FWHM below 100 nm in either dichloromethane or toluene solutions. The final dataset consisted of
811 molecules, with 320 of them possessing multiple resonance structure characteristics.

The Uni-Mol models were fine-tuned using this curated dataset. We trained two separate models to
predict each of these properties individually. Both properties were normalized to adhere to a standard
normal distribution. The entire dataset was randomly partitioned into training and validation sets in
a 4:1 ratio. Before input into Uni-Mol, all molecules were converted into a 3D conformation using the
Experimental-Torsion Basic Knowledge Distance Geometry (ETKDG) [48] algorithm and optimized
with the MMFF94 force field [49] by the RDKit program. During training, we utilized the Adam
optimizer and employed mean squared error (MSE) as the loss function. Each model was trained for
100 epochs, and the training process was terminated if the validation MSE did not show improvement
for 10 consecutive epochs. The batch size was set to 32, and the learning rate was fixed at 1 × 10−4.
The remaining training hyperparameters were consistent with the pre-training procedure of Uni-Mol,
as detailed in the original paper [28].

Spectra calculation

During the active learning phase, the DFT-calculated emission spectra of the sampled molecules
were integrated into the dataset. The emission spectrum was obtained by computing the thermal
vibration correlation function (TVCF) using the MOlecular MAterials Property Prediction Package
(MOMAP) [50], without accounting for the Herzberg-Teller effect and Duschinsky rotation.

Structural optimizations for both the ground and excited states, along with electronic energy and
frequency analyses, were conducted at the B3LYP-D3(BJ)/6-31g* level of theory using the Gaussian 16
package [51]. Solvent effects were taken into consideration through the Polarizable Continuum Model
using the Integral Equation Formalism (IEFPCM), with the solvent’s volume and dielectric constant
set according to the properties of toluene.

To further mitigate the impact of discrepancies between experimental and computational spectra
on model training, the calculated emission wavelengths and FWHM were calibrated based on a linear
regression relationship prior to model training.

Molecular sampling

Sampling objective. The sampling objective of MEMOS is defined as:

π(x) = Srep(x) + Sstruct(x) + Swave(x) + SFWHM(x)

Here, π(x) represents the objective function of molecule x and also serves as an unnormalized proba-
bility distribution over the chemical space from which we aim to sample. The four objective functions
of the RHS are formulated as follows:

• Molecular representation constraint: A challenge in material design is that the proxy models may
be less reliable for molecules distant from the training data. To mitigate this issue, we imposed a
constraint on the proximity of sampled molecules to the training dataXtrain within the representation
space of Uni-Mol. The corresponding score function is defined as Srep(x) = 1/max(d(x,Xtrain), D),
where D is a threshold and d(x,Xtrain) calculates the distance between x and Xtrain. In practice,
we use the Euclidean distance between x and the center of Xtrain. Srep encourages the sampling of
molecules that are within a distance of D from the training data, hence ensuring the reliability of
model predictions.
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• Molecular structure validity: Valid OLED molecules are subject to various structural constraints.
To address this, we empirically limited the topology of molecular graphs and introduced a score
function, Sstruct(x) = exp(−N(x)), where N(x) represents the count of unfavorable substructures in
x, such as -BH.

• Emission peak wavelength: The score function for the emission peak wavelength (in nm) is defined
as:

Swave(x) =
50−min

(
|fwave(x)−Wtarget|, 50

)
50

where fwave(·) is the wavelength predictor and Wtarget is the target wavelength.
• FWHM of the emission spectrum: The score function for the spectral FWHM (in eV) is given by

SFWHM(x) =
0.4−min

(
|fFWHM(x)|, 0.4

)
0.4

where fFWHM(·) is the FWHM predictor.

All other scores are set to zero when Srep(x) ̸= 1/D, indicating that molecule x is significantly distant
from the training data, which is not pertinent to our analysis.

Molecular editing operations. To transform one molecule into another, we considered five molec-
ular editing operations based on the molecular graph, as illustrated in Figure 1 (b). Specifically, the
Adding and Fusing operations involve expanding the molecule by attaching a structure from prede-
fined vocabularies. Conversely, the Deleting and Defusing operations serve as the inverse of Adding
and Fusing, respectively. Finally, the Substitution operation converts a valency-permissive aromatic
carbon (or nitrogen) to nitrogen (or carbon).

Parameterizing proposal distributions with MPNNs. All proposal distributions for the edit-
ing operations were parameterized using Message Passing Neural Networks (MPNNs), a type of Graph
Neural Networks (GNNs) that iteratively updates node features by exchanging messages with their
neighboring nodes. Specifically, we employ graph convolutions as the message-passing function. Detailed
MPNNs’ architecture is displayed in Figure S6. The MPNNs are trained in a self-adaptive manner
with samples from MCMC, which can increase the likelihood of generating high-quality proposals and
thus enhance the efficiency of searching the chemical space.

Molecular sampling process. During each sampling process, 300 trajectories were established,
originating from randomly selected seed molecules. Each trajectory undergoes 1,500 editing steps. At
each time step, we randomly selected an operation with a fixed probability. Once the operation is
determined, a molecule x is edited according to the corresponding proposal distributions, yielding a
new molecule x′. We decided whether to accept x′ with a probability of min{1, πα(x′)/πα(x)}, where
α = 1/0.95⌊t/5⌋. t is the index of the sampling time step. Finally, molecules from the last 200 steps were
collected, and the top-100 unique molecules with the highest scores were selected for DFT calculation.

Data & Code availability

We will release the code and data associated with this study upon acceptance of the manuscript for
publication.
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