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GRAPHICAL ABSTRACT: 

 

ABSTRACT: While developing site-selective alcohol-modifying catalysts, we found that Lewis acid-promoted 

benzylation or cyclative dibenzylation of aminopyridines with alcohols effectively overcomes the synthetic 

challenges typically thwarting access to new aminopyridines, a key family of nucleophilic organocatalysts. 

Using this innovative approach, we successfully prepared unprecedented (2,5-diarylpyrrolidino)pyridines and 

new (N-benzyl-N-methylamino)pyridines with expanded ortho-alkoxy tails on the aryls. The new catalysts, with 

their bulky outer sphere, exhibit remarkable activity and site-selectivity in the phosphorylation of a model diol 

amphiphile. 
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Site-selective organic transformations are paramount in contemporary organic synthesis, particularly for 

targeting functional groups prevalent in natural products.1 Among these, selective modifications of polyol 

compounds, such as mono- and oligosaccharides, glycopeptides, and glycoconjugates of macrocycles, have 

been successfully developed by several research teams.2 In recent years, our group has explored ways to 

selectively functionalize alcohols in amphiphilic compounds, targeting both polar and apolar domains. 

In this context, we developed a range of catalysts nominally derived from DMAP and aimed at site-selective 

modifications of amphiphilic diols.3 Notably, replacing one of the amine-substituting methyls in DMAP with a 

benzyl moiety bearing extensive alkoxy groups in the ortho positions (thereby forming the 4-(N-benzyl,N-

methylamino)pyridine family of catalysts, henceforth BMAPs) led to catalytic compounds that substantially 

reinforced the innate preference of model amphiphilic diols to undergo phosphorylation at the apolar alcohol 

site (Scheme 1a).3b,c Moreover, catalysts incorporating branched alkoxy groups slightly outperformed those with 

linear appendages in both activity and selectivity,3c,4 likely due to the increased steric bulk of the outer-sphere 

envelope. 

 

Scheme 1. Previous site selectivity studies with 4-aminopyridine-based catalysts (a-c),16 the proposed 4-

pyrrolidinopyridine-based catalysts (d), and the proposed BMAP catalysts with bulky alkoxy appendages (e). 

 

Additionally, replacing the remaining methyl in BMAPs with a matching benzyl substituent (thus establishing 

the 4-(N,N-dibenzylamino)pyridine family of catalysts, henceforth DBAPs) produced catalysts exhibiting even 

higher site selectivity in the model phosphorylation reaction (Scheme 1b).3d Remarkably, DBAP catalysts were 

also more active than their BMAP analogues, despite the increased steric demands of the substituents. This 
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suggests that the electronic influence of the electron-rich dialkoxybenzyl substituent outweighs the steric effects 

in determining catalyst activity. Concurrently, the improved site selectivity, favoring the apolar domain, likely 

arises from the expanded lipophilic outer sphere of the DBAP catalysts (compared to BMAPs). 

While synthesizing additional DBAP catalysts with an expanded outer sphere (e.g., branched lipophilic 

alkoxy groups) appeared promising for further enhancing the apolar-site favoring selectivity, the approach was 

severely hampered by the lengthy synthetic sequence. Particularly challenging and yield-reducing was the last 

step: coupling the relevant dibenzylamine with the pyridine-based electrophile. Both a direct SNAr thermal 

reaction and a Buchwald-Hartwig Pd-catalyzed method using 4-halopyridines (previously used approaches3a,c) 

failed to form the desired catalysts, which were prepared in low yields only via a more cumbersome reaction 

involving the acrylamide-chloropyridine adduct.3d,5 

Following unsuccessful attempts to facilitate the synthetic sequence and improve the outcome of the final 

step, we saw two alternative strategies to build on the insights gained from the above-described studies while 

further enhancing the site selectivity of the catalytic phosphorylation of the model diol. One tactic involved 

reverting to BMAP catalysts and increasing the steric bulk of the alkoxy appendages on their single benzyl 

substituent (Scheme 1e). As we will detail subsequently, this approach was initially also seriously thwarted by 

disappointing yields of the C-N coupling step, which decreased sharply as the steric bulk of the alkoxy groups 

increased.  

Another strategy we explored involved interconnecting the two benzyl substituents of DBAP, to reduce the 

bite angle of the dibenzylamine nucleophile and ease the C-N coupling step of the synthesis. Modifying the 

DBAP core structure by linking the two phenyls of the benzyl substituents at the ortho positions (thus forming 

a tricyclic pyridine-carrying scaffold with a biphenyl structural unit fused to a dihydroazepine ring) and 

transposing one alkoxy tail on each ring, yielded cyclo-DBAP catalyst series (Scheme 1c). However, these 

catalysts were less active and selective in the model phosphorylation reaction than their DBAP counterparts.6 

We suspected that the transposition of two alkoxy groups, which increased their distance from the reaction site 

and thinned the catalyst’s outer sphere, was to be blamed for this inferior performance. 

Another way to interconnect the benzyl substituents of the DBAP scaffold, but without requiring the 

transposition of the alkoxy substituent, involves linking the benzylic carbons, e.g., via a C2 bridge (Scheme 1d). 

This design offers two additional benefits. First, the proposed catalysts can be viewed as formally derived from 

4-pyrrolidinopyridine (PPY), a nucleophilic catalyst usually superior to DMAP in terms of activity.7 Second, 

due to its chiral nature, the trans isomer of the proposed pyrrolidinopyridines may enable new opportunities for 

stereoselective catalysis in the future. 

While attempting to prepare such diarylpyrrolidinopyridine (henceforth DAPP) prototype catalysts, we 

encountered several obstacles. Although trans-2,5-diphenylpyrrolidine (10a), a key intermediate en route to the 

DAPP catalyst without alkoxy appendages, could be prepared as described in the literature (Scheme 2),8 its 
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coupling with 4-bromopyridine or related pyridine-including electrophiles consistently failed. This was 

surprising, as the Buchwald-Hartwig cross-coupling is typically highly efficient with cyclic secondary amines.9 

Moreover, we had previously performed this transformation with acyclic secondary amines, which are generally 

less suitable partners for this reaction.3b,c Furthermore, we could not prepare trans-2,5-diarylpyrrolidine 

featuring methoxy groups in the ortho positions of the aryl substituents, an analogue of key intermediate 10a, 

by the route depicted in Scheme 2 or closely related variations. These attempts failed due to the low stability of 

the electrophilic intermediates.10 

 
Scheme 2. Failed synthesis of DAPP. 

 
Fortunately, a new methodology we describe here has recently enabled the preparation of both a series of 

unprecedented DAPP catalysts and BMAP catalysts with expanded, branched outer sphere appendages. To 

address difficulties in introducing the pyridine moiety into the final product, we switched from using an 

electrophilic pyridine-introducing reagent (e.g., 4-bromopyridine) to a nucleophilic one (e.g., 4-aminopyridine). 

While this approach can be implemented by deprotonating the aminopyridine derivative and reacting the formed 

anion with a typical electrophile (alkyl halide, mesylate, etc.),11 this route requires strongly basic conditions and 

often suffers from poor yields, low electrophile stability (as previously noted for the analogue of 8a), or 

byproduct formation.12 Alcohols constitute alternative, more stable, and easier accessible electrophiles capable 

of alkylating aminopyridine under milder conditions.13 In recent decades, amine alkylation by alcohols has 

typically relied on hydrogen-borrowing or hydrogen autotransfer mechanisms,14,15 which have occasionally 

been used to synthesize pyrrolidines (or other saturated azaheterocycles) from diols and primary amines, most 

commonly when at least one of the alcohols in the diol is primary.16-18 However, these methods have not yielded 

pyrrolidines with two aryl substituents at the 2 and 5 positions, nor have they been applied to electron-deficient 

heterocyclic arylamines.19 We attempted to prepare DAPP catalysts from methoxy-bearing diols (7b-7d),20 

using some of these approaches,15b,18a,c,19a but unfortunately, these reactions were unsuccessful. In contrast, an 

alternative mechanism for amine alkylation by alcohols via a carbocationic pathway, as disclosed in a few recent 

reports,21 appears better suited for forming 2,5-disubstituted pyrrolidine from 1,4-butanediol with electron-rich 

aryls at the 1- and 4-positions. Such cyclization could potentially lead to the desired catalytic structure, although 

cyclic amine formation from diols via this mechanism has not yet been reported. 
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Based on this reasoning, we applied a set of experimental conditions, similar to those in a report suggesting 

the carbocationic alkylation pathway,21b with appropriate modifications, to the reaction of diols 7b-7d with 4-

aminopyridine (Scheme 3a). Heating a solution of 7b with a stoichiometric amount of ZnBr2 in DCE under 

reflux yielded the racemic trans isomer of the catalyst prototype, Cat(DAPP,C1) (11b), in ca. 60% isolated 

yield. The cis isomer was not observed, in contrast to the abovementioned reports of 2,5-disubstituted 

pyrrolidine formation via the hydrogen-borrowing mechanism, where the cis isomer predominated.22 For diols 

7c and 7d with a single OMe group in either the ortho or para position of each aryl moiety, full conversion 

required 24-hour reflux, compared to just one hour for 7b. These reactions produced pyrrolidinopyridine 

products as mixtures of trans and cis isomers in a ca. 1.4:1 ratio, with 47 and 41% yields, respectively. From 

one of these mixtures, compound Cat(DAPP,o-C1) (11c) was isolated.23 When 7a, the diol, bearing 

unsubstituted phenyl groups, was subjected to the same reaction conditions, no product was observed. The 

pronounced dependence of the amine di-alkylating cyclization on the electron-donating capacity of the aryl 

substituents in the diol convincingly supports the carbocationic mechanism of the transformation. 

 
Scheme 3. DAPP formation by double alkylation of 4-aminopyridine with diols 7. 

 
Furthermore, monitoring the progress of the ZnBr2-induced alkylative cyclization forming the catalysts with 

only one alkoxy moiety on each aryl revealed that, initially, a cyclic ether (THF) derivative is predominantly 

formed from the diol. Only after prolonged heating (ca. 24 h) do the pyrrolidinopyridines (trans and cis) become 

the major products, with the THF derivative disappearing from the reaction mixture. This observation aligns 

well with the carbocationic pathway mechanism, which involves an ether intermediate, proposed in the literature 

for the alkylation of arylamines by alcohols.21a 

Building on our initial success, we prepared catalysts featuring extended alkoxy tails on the aryl substituents 

in place of the methoxy groups in the catalyst prototype, thereby obtaining Cat(DAPP,C12) (11e) and 

Cat(DAPP,TEG) (11f).20 Notably, the cyclization step in these syntheses proceeded with yields of 44 and 46%, 

respectively (Scheme 3b). 
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Encouraged by these results, we sought to apply the new methodology to overcome difficulties in 

synthesizing BMAP catalysts with bulky secondary spheres. As mentioned above, increasing the steric bulk of 

the alkoxy groups on the benzyl substituent in BMAPs sharply reduced the yield of the finalizing Buchwald-

Hartwig coupling step, from 70-80% for linear groups to a mere 4-20% for branched neopentyloxy and (2,2-

dipropylpentyl)oxy tails (Scheme 4, path a). These low yields were further exacerbated by the formation of 

byproducts and difficult chromatographic purifications. Gratifyingly, alkylating 4-(N-methylamino)pyridine 

with appropriate benzylic alcohols produced the same BMAP catalysts with over 80% yield and excellent purity 

(Scheme 4, path b). Furthermore, for BMAPS with linear alkoxy tails, yields exceeded 90% in the final step of 

the new synthetic pathway. The high purity of the crude products facilitated straightforward purification. A 

comparison of the yields in the final steps of the BMAP synthesis sequences (Pd-catalyzed vs ZnBr2-induced 

reactions, Table 1) highlights the advantages of the new methodology for preparing aminopyridines, particularly 

aminopyridine-based catalysts. 

 
Scheme 4. The previously applied (path a) and the new (path b) pathways for preparing BMAPs. 

 
 
Table 1. The yields of the final step of BMAPs’ synthesis via the previous and the new pathways. 

Entry Catalyst Yield of the Buchwald-

Hartwig coupling (%) 

Yield of the ZnBr2-

induced alkylation (%)a 

1 Cat(BMAP,C1) 74 92 

2 Cat(BMAP,C12) 80 95 

3 Cat(BMAP,TEG) 76 90 

4 Cat(BMAP,CH2CMe3) 20 51(92) 

5 Cat(BMAP,CH2CPr3) 4 82(88) 

6 Cat(BMAP,CH2Ada) 26 52 
a Yield before chromatographic purification in parentheses. 

 

Subsequent to their preparation, the new DAPP catalysts, Cat(PPY,C1), Cat(PPY,C12), and Cat(PPY,TEG) 

(11b, 11e, and 11f), were examined in a site-selective phosphorylation model reaction (Scheme 5) and compared 
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to PPY. The new BMAP catalysts were similarly tested in the model reaction. The results, summarized in Table 

2, reveal activity and selectivity trends consistent with those previously observed for the BMAP and DBAP 

families (for convenience, some prior results were included in the table).3b-d The addition of dimethoxyaryls to 

the PPY core yielded a more active and site-selective catalyst (entry 2 vs. 1), alike the influence of similar 

modifications on the DMAP structure that led to the BMAP and DBAP series (entries 6 and 12 vs. 5). This 

improvement is primarily attributed to the electronic influence of replacing alkyls with o,o-dialkoxybenzyls on 

the 4-dialkylaminopyridine frame. Expanding methoxy groups to longer dodecyloxy or triethyleneglycol-

derived moieties in DAPP catalysts further enhanced the selectivity for the apolar site (entries 3 and 4 vs. 2, 

entries 7 and 8 vs. 6, and entry 13 vs. 12 for comparison). For BMAP catalysts, increased branching appears to 

offset the shortening of alkoxy tails compared to linear appendages (entries 10-11 vs. 7), though longer tails 

remain advantageous even within branched alkoxy groups (entry 10 vs. 9). The enhanced selectivity associated 

with the increased bulk of the catalyst’s secondary sphere (composed of the alkoxy tails) highlights the strong 

influence of the latter on the reactive site of the catalyst and the incoming substrate. For DAPP catalysts, this 

long-range impact may induce other modes of selectivity in phosphorylation reactions. Moreover, the higher 

activity of the DAPP catalysts compared to their DBAP counterparts, combined with the greater increase in 

selectivity of DAPP catalysts vs. PPY compared to the selectivity improvement of BMAPs vs. DMAP, 

underscores the importance of core geometry in catalytic performance. 

 
Scheme 5. The site-selective catalytic experiments with the model diol substrate and new catalysts. 

 
Surprisingly, the TEG-based DAPP catalyst was less active than its analogues with methoxy and dodecyloxy 

appendages, contrary to the trend observed in the BMAP series (Table 2) and the family of imidazole-based 

catalysts.24 This discrepancy was even more pronounced in the related acylation of the model diol amphiphile.25 

We infer that this anomaly in the DAPP series may be attributed to the overstabilization of the cationic catalytic 

intermediate caused by the four oligoether appendages of the Cat(DAPP,TEG) catalyst. While our studies 

demonstrated that n–cation interactions in intermediates with two oligoether tails, as seen in the BMAP series 
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and the imidazole-based catalysts, enhance catalytic activity, the cationic catalytic intermediate generated from 

Cat(DAPP,TEG) with four such tails may become so stable that the reaction rate is sharply reduced.26 

 
Table 2. The results of the site selectivity studies with the new catalysts in comparison to previous results.a 

Entry Catalyst Ratio of products 2:3b,c Time (sec)b 

1 PPY 2.4:1 28 

2 Cat(DAPP,C1) 3.4:1 16 

3 Cat(DAPP,C12) 3.9:1 13 

4 Cat(DAPP,TEG) 3.7:1 35 

5d DMAP 2.9:1 50 

6d Cat(BMAP,C1) 3.1:1 42 

7d Cat(BMAP,C12) 3.7:1 43 

8d Cat(BMAP,TEG) 3.8:1 21 

9 Cat(BMAP,CH2CMe3) 3.5:1 35 

10 Cat(BMAP,CH2CPr3) 3.9:1 43 

11 Cat(BMAP,CH2Ada) 3.7:1 42 

12e Cat(DBAP,C1) 3.3:1 19 

13e Cat(DBAP,C12) 4.1:1 27 
a Reaction conditions: 0.1 mmol of substrate, 0.25 mmol of diphenylphosphoryl chloride, 0.25 mmol DIPEA and 0.005 mmol (5 mol %) 

of the catalyst in 1 mL benzene at room temperature. The reactions were followed by HPLC. b At 50% consumption. c At this 

consumption, 6% of the diphosphorylated product is typically formed. d From ref. 3b. e From ref. 3d. 

 

In conclusion, the new synthetic methodology for preparing 4-aminopyridine-based structures efficiently 

yielded novel organocatalysts of the unprecedented diarylpyrrolidionopyridine type, as well as new 

benzylmethylaminopyridine catalysts, practically inaccessible by other routes. Both types of catalysts 

demonstrated highly promising phosphorylating site selectivity, with some DAPP catalysts exhibiting the 

highest activity among all nucleophilic organocatalysts we have explored in recent years for this transformation. 
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