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Abstract

Most enhanced sampling methods facilitate the exploration of molecular free energy

landscapes by applying a bias potential along a reduced dimensional collective variable

(CV) space. The success of these methods depends on the ability of the CVs to follow

the relevant slow modes of the system. Intuitive CVs, such as distances or contacts,

often prove inadequate, particularly in biological systems involving many coupled de-

grees of freedom. Machine learning algorithms, especially neural networks (NN), can

automate the process of CV discovery by combining a large number of molecular de-

scriptors and often outperform intuitive CVs in sampling efficiency. However, their

lack of interpretability and high cost of evaluation during trajectory propagation make

NN-CVs difficult to apply to large biomolecular processes. Here, we introduce a surro-

gate model approach using lasso regression to express the output of a neural network

as a linear combination of an automatically chosen subset of the input descriptors. We

demonstrate successful applications of our surrogate model CVs in the enhanced sam-

pling simulation of the conformational landscape of alanine dipeptide and chignolin

mini-protein. In addition to providing mechanistic insights due to their explainable

nature, the surrogate model CVs showed a negligible loss in efficiency and accuracy,

compared to the NN-CVs, in reconstructing the underlying free energy surface. More-

over, due to their simplified functional forms, these CVs are better at extrapolating to

unseen regions of the conformational space, e.g., saddle points. Surrogate model CVs

are also less expensive to evaluate compared to their NN counterparts, making them

suitable for enhanced sampling simulation of large and complex biomolecular processes.
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1 Introduction

Molecular dynamics (MD) simulations have made it possible, in the past few decades, to

study biomolecular processes in atomistic detail.1 However, significant challenges remain in

simulating rare events where high free energy barriers preclude the adequate sampling of

the molecular conformational space. Enhanced sampling methods such as umbrella sam-

pling (US),2 metadynamics (MetaD),3 Gaussian accelerated MD (GaMD),4 Adaptive Bias-

ing Force (ABF),5 etc. can address this problem and have been successfully applied to a

wide range of biomolecular systems. To accelerate the sampling of physiologically relevant

processes, most enhanced sampling methods drive transitions across high energy barriers

by applying a biasing force along a low dimensional collective variable (CV) space that

captures the relevant dynamical modes of the system.2,3,5,6 Due to the inherent complexity

of biomolecules, intuitive CVs, such as distances, contacts, or torsion angles, often cannot

describe the slow modes of the system, resulting in reduced sampling efficiency and accuracy.

To address this issue, machine learning algorithms have been used, in recent days, to

transform a high-dimensional geometric descriptor space (d) into a low-dimensional CV

space s = s(d) in a data-driven manner.7–20 Particularly notable are the deep neural net-

work (NN) based CV discovery algorithms, which overcomes the limitation of conventional

linear machine learning approaches by allowing the possibility of capturing non-linear coupled

dynamics among various degrees of freedom. In addition, NN-CVs can handle a significantly

larger descriptor space compared to conventional approaches (e.g. principal component

analysis (PCA),21 time-lagged independent component analysis (TICA),22,23 harmonic lin-

ear discriminant analysis (HLDA),15 etc.) and are less sensitive to the correlations among

the different descriptors.16 NN-CVs, therefore, eliminate the requirement of manual feature

selection, significantly automating the CV discovery protocol. Previous studies have demon-

strated improved sampling efficiency of NN-CVs over conventional ML CVs based on PCA,

TICA, and HLDA.16,24

The increased performance, however, comes at the cost of evaluating complex non-linear
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functions with a large number of parameters (103 − 105) at every time step of the MD

simulation to calculate the bias potential along the CV. This can considerably increase the

computational cost of the already expensive MD simulation algorithm. Furthermore, due to

the black-box nature of the NN-CV, the user has little control over the amount of bias de-

posited along different degrees of freedom. This increases the likelihood of biasing irrelevant

degrees of freedom included in the blindly chosen input descriptor space, potentially reduc-

ing the sampling efficiency. Furthermore, neural networks have limited ability to extrapolate

beyond the training data, which is often collected only in the metastable states.15,16,18 There-

fore, they often do not perform well in saddle points and transition regions.19 It can often

be prohibitively expensive, especially for large biological systems, to extensively sample the

conformational landscape just to train a CV. In addition, the complex NN-CVs are less

interpretable compared to conventional ML CVs e.g. HLDA, TICA, etc., that assign spe-

cific weights to each input descriptor. Therefore, extracting mechanistic information from

NN-CVs can be difficult and often requires additional sensitivity analysis.16,25

In this work, we attempt to address these limitations of NN-CVs without sacrificing

their sampling efficiency. We employ an explainable artificial intelligence (XAI) framework

known as surrogate models, which refers to a broad category of methods that utilizes a

simple interpretable function to represent the input-output relationship of a complex and

less interpretable model, e.g., neural network.26 Surrogate models are used in many areas of

science and engineering27–30 where computational efficiency and interpretability are key con-

siderations, and gaining a deeper understanding of the relationship among input variables

is necessary. A surrogate model approach called “Thermodynamics-inspired Explainable

Representations of AI and other black-box Paradigms (TERP)” has recently been applied

to molecular processes to interpret neural-network-based dynamical models.31 Here, we take

a simpler approach by using the lasso regression algorithm using the NN-CV as our target

function32 to express the output of a neural network as a linear combination of a reduced

set of input descriptors. Lasso algorithms have been applied earlier to identify key molecu-
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lar features that can discriminate between metastable states33 and to evaluate the relative

contribution of different descriptors in an NN-CV.34,35 Here, we use the output of the lasso

regression model as a CV to perform enhanced sampling simulations. Being a considerably

simpler function, the computational effort to evaluate the lasso regression CV is negligible

compared to a full neural network. Furthermore, the CV is represented as a combination of

a handful of key degrees of freedom, thereby directing the bias potential only along relevant

degrees of freedom. In addition, the surrogate CV is significantly more interpretable due to

its linear nature and the use of fewer descriptors, making it relatively straightforward to gain

molecular-level mechanistic insights. Moreover, lasso regression models can provide a better

description of the saddle points in the free energy surface as these simpler models are more

likely to generalize to new instances where little training data is available.32,36–38 Unlike other

linear ML-CVs, the user no longer needs to perform manual feature selection as this step

is automated by the training of the initial neural network CV and k-fold cross-validation

in the lasso regression step. Here, we provide the theoretical framework of our approach

and demonstrate its effectiveness in studying biomolecular processes using the examples of

alanine dipeptide and chignolin mini-protein.

2 Theory

In this section, we briefly discuss the theoretical underpinnings of the neural-network-based

CV discovery protocols and the lasso regression approach for constructing surrogate models

of deep-learning CVs.

2.1 Deep Neural Networks for Collective Variable Discovery

In this work, we constructed surrogate models for two forms of Deep Neural Network CVs:

Deep Targeted Discriminant Analysis (Deep-TDA) and Deep Time-lagged Independent Com-

ponent Analysis (Deep-TICA). The Deep-TDA algorithm aims to discriminate between the

5

https://doi.org/10.26434/chemrxiv-2024-x00x1 ORCID: https://orcid.org/0000-0002-7103-0886 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-x00x1
https://orcid.org/0000-0002-7103-0886
https://creativecommons.org/licenses/by-nc-nd/4.0/


metastable states of a system, while the Deep-TICA CV seeks to learn the slow degrees of

freedom for a molecular process. Below we provide a brief overview of these two methods.

2.1.1 Deep-TDA

The Deep-TDA algorithm18 uses a feed-forward Neural Network (NN) to discriminate be-

tween different molecular conformations based on a large number of descriptors (e.g. dis-

tance, contacts, etc.) as inputs. The training data are collected by performing short unbiased

simulations in each known metastable basin. Given a system with Nm metastable states that

can be characterized by a set of Nd descriptors d, the NN parameters are optimized to map

the multi-dimensional space of descriptors d into a Ns dimensional CV, s (Ns << Nd). The

sampled configurations from each metastable state, when projected along the output node

(s), are distributed as non-overlapping Gaussian functions located at pre-defined locations

of the CV space. This is achieved by minimizing the loss function:

LTDA = α
Nm∑
k

Nd∑
l

(µk,l − µk,l)
2 + β

Nm∑
k

Nd∑
l

(σk,l − σk,l)
2, (1)

where the first term enforces the mean of the k-th metastable state distribution along the

l component of s to remain close to the center of the target Gaussians µk,l. Similarly, the

second term ensures the variance σk,l of the metastable states distributions follow the same of

the target distribution σk,l. The hyperparameters, α and β, determine the relative weights of

the two components of the loss function. In the CV space, the target distributions are placed

sufficiently far from each other to avoid overlap between the different metastable states and

transition regions.

2.1.2 Deep-TICA

The Deep-TICA algorithm17 is a non-linear version of the time-lagged independent compo-

nent analysis (TICA)22,23,39 where the non-linearity is introduced via a neural network. In
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a conventional TICA approach, the slow modes of a system are extracted via singular value

decomposition (SVD) of the time-lagged covariance matrix C(τ) of molecular descriptors:

C(τ)U = C(0)UΛ, (2)

where τ is the lag-time, U is the eigenvector-matrix containing the time-lagged independent

components (ICs), and Λ is a diagonal eigenvalue matrix. The elements of the matrix C(τ)

are given by:

Cij(τ) =
1

T − τ − 1

T−τ∑
t=1

di(r
3N(t))dj(r

3N(t+ τ)) (3)

where T is the length of the time series and di(r
3N(t)) is the value i-th molecular descriptor

at time step t. The descriptors are functions of the 3N dimensional atomic coordinates r3N .

After sorting the eigenvectors in decreasing order of eigenvalues, the first eigenvector points

to the direction of the slowest degrees of freedom and so on.

The Deep-TICA algorithm17 modifies the TICA approach by creating non-linear combi-

nations of the molecular descriptors (d) through the hidden layers of a feed-forward neural

network. The time-lagged covariance matrix is then constructed in terms of these non-linear

combinations. The neural network parameters are optimized by maximizing the largest

eigenvalues of the covariance matrix. Following the variational approach to conformational

dynamics (VAC),40 the Deep-TICA CV can also be trained using biased enhanced sampling

trajectories as long as the bias is converged and the timescales have been appropriately

reweighted. The elements of the time-lagged covariance matrix will, therefore, be expressed

as:

Cij(τ) =

∫ T−τ

0
dt exp(βV (s(r3N(t)))) hi(r

3N(t)) hj(r
3N(t+ τ))∫ T−τ

0
dt exp(βV (s(r3N(t))))

(4)

where V is the bias potential, s is the CV along which the bias V has been applied, hi, hj are

the non-linear combinations of descriptors generated by the neural network, and β is inverse
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temperature. The integral is evaluated over the discrete MD trajectory. After training

the neural network, the singular value decomposition of the biased time-lagged covariance

matrix is performed, and the slow degrees of freedom are identified as the eigenvectors with

the largest eigenvalues.

2.2 Surrogate Models Using Lasso Regression

To make neural network CVs interpretable, we utilized one of the simplest forms of the

surrogate models: the lasso regression. We aim to recover the input-output relationship of

the neural network using a linear combination of a subset of the input descriptors (di). In

lasso regression, the predicted values (ypred) of the target variable (ytarget) is given by:

ypred = b+

Nd∑
i=i

widi (5)

The weights (wi) and bias (b) are optimized by minimizing the loss function:

Llasso =
1

2M
||ytarget − ypred||22 + λ||w||1 (6)

where M is the number of data points and ytarget, ypred, and w are vectors containing the

target values, predicted values, and the weights, respectively, while || · ||1 and || · ||2 denote

the L1 and L2 norms of a vector. Minimizing this loss function sets the value of some

of the weights to zero, reducing the effective dimensionality of the descriptor space. The

hyperparameter, λ, determines the number of coefficients (w) that will be set to zero. It,

therefore, creates a sparse linear model as a function of a limited number of descriptors

that are most relevant for reproducing the target variable. In our case, we use the CV

space learned from the neural network as our target variable ytarget and the descriptors

supplied in the input node of the NN as the feature space of lasso regression. This idea is

illustrated in Figure 1 where the output node of an 8-dimensional feedforward neural network
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is approximated as a linear combination of three of the descriptors. In earlier work, the lasso

algorithm has been used to classify metastable states in protein conformational space as a

post-analysis of the enhanced sampling simulation.33 It has also been proposed as a suitable

method to interpret deep-learning CVs.34 Here, we use the reduced descriptions learned by

the lasso regression as collective variables and apply bias potential along them to perform

enhanced sampling.
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Figure 1: Schematic of a surrogate model CV constructed to reproduce the input-output
relationship of a neural network CV. On the left, a neural network of 8-4-1 architecture is
used to construct a CV from 8 input descriptors. On the right, the same descriptors are
used in lasso regression to predict the outcome of the neural network (i.e. the CV). Due
to the introduction of sparsity in the model, only 3 out of 8 descriptors contribute to the
regression model. At the bottom, we show the mathematical expression of how the linear
lasso regression model approximates the outcome of the neural network. This figure uses the
following notations: xi = i-th descriptor, hi = i-th node of the hidden layer, wi = regression
coefficient of the i-th descriptor in the surrogate model.
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3 Computational Methods

3.1 Alanine Dipeptide

First, we tested our approach for the conformational transition between the C7eq and C7ax

states of alanine dipeptide in vacuum. This is a prototypical system for testing new rare

event sampling algorithms. This 22-atom system has been modeled using the AMBER99SB-

ILDN force field.41 All simulations were performed using GROMACS 2024.342 patched with

PLUMED 2.1143 using parameters identical to those in previous work.24 As descriptors,

we used the 45 interatomic distances introduced in Ref. 16. To train the Deep-TDA CV,

we collected unbiased configurations from the two metastable states by performing 1 ns of

unbiased MD simulation in each state. A neural network architecture of the form 45-30-15-1

was used where the 1D output node acted as the CV. The values of α and β of the loss

function (Eq. 1) were set to 1 and 250, respectively. The target distributions of the C7eq

and C7ax states were centered at s = −5 and s = +5 with a width of 0.2 arbitrary unit. The

loss function was minimized using the ADAM optimizer with a learning rate of 10−3. All NN-

CVs were trained using the mlcolvar package.44 To check the versatility of our approach,

we trained another Deep-TDA CV using the 39 torsion angles introduced by Mendels et al.45

as descriptors. A cosine transformation of the form: f(θ) = 0.5+ cos(θ− 1.25) is performed

following Ref. 7 to address the periodicity of the dihedral angles before supplying them to

the input node of the neural network.

For training the Deep-TICA CV, we performed a 10 ns On-the-fly Probability Enhanced

Sampling (OPES) simulation46 with bias deposition along the ϕ and ψ torsion angles. The

convergence of the simulation is monitored by observing multiple back-and-forth transitions

between the states and by ensuring the bias has reached the quasistatic regime. The last 8 ns

of the OPES trajectory has been used for training the deep TICA CV after reweighting the

configurations by the bias potential. The 45 pairwise distances have been used as descriptors

within a neural network architecture of 45-15-15-5, and only the first eigenvector (slowest

10

https://doi.org/10.26434/chemrxiv-2024-x00x1 ORCID: https://orcid.org/0000-0002-7103-0886 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-x00x1
https://orcid.org/0000-0002-7103-0886
https://creativecommons.org/licenses/by-nc-nd/4.0/


degree of freedom) has been used as CV. The rest of the hyperparameters for the neural

network optimization were identical to the Deep-TDA CV.

For each of the Deep-TDA CVs and the Deep-TICA CV, a surrogate model CV has

been constructed using linear regression with L1 penalty (lasso regression) with 5-fold cross-

validation to determine the optimal value of the lasso coefficient λ. The lasso regression

model has been trained on the same configurations used for the corresponding neural network

training. The values of the NN-CV have been used as the target values (ytarget).

To assess the quality of the deep CVs and the lasso regression CVs, enhanced sampling

simulations have been performed using the OPES algorithm with a BARRIER parameter

(∆E) of 40 kJ/mol. For each of the six CV combinations (Deep-TDA and Deep-TICA

with distance descriptors, Deep-TDA with torsion descriptors, and the corresponding lasso

regression CVs), three independent 10 ns OPES simulations have been performed starting

from the C7eq basin. The first 1 ns of each simulation has been discarded, and the rest of

the trajectory data is used to assess the free energy convergence. Kinetics of the transition

from C7eq to C7ax state are also computed using the distance-based NN-CVs and their

corresponding surrogate models using the OPES-flooding algorithm.24 For these simulations,

we used ∆E = 25 kJ/mol, and the excluded region boundaries were chosen based on the

free energy profiles to avoid bias deposition in the transition states.24,47

3.2 Chignolin

Next, we evaluated the effectiveness of our surrogate model approach in sampling the confor-

mational landscape of the fast-folding chignolin mini-protein. This 10-residue polypeptide

has a funnel-like free energy landscape that mirrors standard protein folding pathways.48 In

its folded state, it forms a beta-hairpin conformation, which can unfold into a disordered

structure within the microsecond timescale.49 In previous work, the folding and unfolding

dynamics of the CLN025 mutant of chignolin were investigated by performing an extended,

unbiased MD simulation using the Anton supercomputer.50 The simulation estimated the
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unfolding and folding timescales to be 2.2±0.4 µs and 0.6±0.1 µs, respectively, using the

CHARMM22* force field51 for the protein and the TIP3P model52 for the solvent. Due to

the availability of the unbiased reference simulation, this system is widely used to test new

enhanced sampling methods.24,53–57 Moreover, deep learning CVs such as Deep-TDA and

Deep-TICA have been demonstrated to achieve a converged free energy landscape for the

chignolin system.17,19

In the present study, we used a simulation setup identical to that of Ref. 50 to assess the

quality of sampling of the free energy landscapes, independent of the force field accuracy.

All simulations were performed using the CUDA-enabled version of GROMACS 2024.342

patched with PLUMED 2.11.43 We trained the Deep-TDA CV on 10 ns long unbiased MD

simulations in the folded and unfolded states of chignolin. Contrarily, for the training of

Deep-TICA CV, we utilized the whole ∼106 µs long unbiased trajectory from Ref. 50 as one

needs to sample multiple back-and-forth transitions to learn the slow degrees of freedom via

Deep-TICA analysis. It should be noted that in most practical systems, such an unbiased

trajectory is not available, and one needs to utilize biased simulation data for training Deep-

TICA CV following the protocol introduced in Ref. 17. To train both the neural network

CVs, we used a descriptor set comprised of the 45 pairwise distances between the 10 α-carbon

atoms of chignolin. Apart from the 45-dimensional input layer, each neural network contains

two hidden layers, each with 30 hidden nodes. The one-dimensional CV is obtained in the

output node of the neural network after training. The surrogate model CVs were trained

using lasso regression using a protocol identical to the one used for alanine dipeptide.

To assess the quality of the CVs, three independent OPES simulations using a BARRIER

parameter (∆E) of 30 kJ/mol were carried out for each of the four CV combinations: Deep-

TDA, Deep-TICA, and their corresponding surrogate models. The initial configurations for

the independent simulations were sampled from a 10 ns long unbiased simulation performed

in the folded state. Each OPES simulation was extended to 2.5 µs, sampling multiple re-

crossing events between the folded and unfolded states. The last 2.25 µs of each run are
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used to compute the free energy profile via reweighting.46 We also tested the ability of our

CVs to recover the unfolding kinetics of chignolin by performing OPES-flooding simulations

using each of the four CV combinations. A total of 15 independent OPES-flooding simula-

tions were initiated from the folded configurations and were terminated upon reaching the

unfolded state. A BARRIER parameter (∆E) of 12 kJ/mol was used for all OPES-flooding

simulations. The excluded region boundaries were chosen based on the free energy surfaces

obtained from the OPES simulation, and they were located at sexc = −3.5 for Deep-TDA

and -4.0 for its surrogate model, whereas sexc = 0.6 and 0.7 were used for the Deep-TICA

and its corresponding surrogate model CVs.

4 Results and Discussions

4.1 Alanine Dipeptide

We could converge the free energy landscape of the conformational transition in alanine

dipeptide using all the tested CV combinations. The surrogate model of the Deep-TDA CV

led to noticeably more transitions and a better free energy convergence than the NN-CV.

This counterintuitive result can be attributed to the high bias and low variance nature of the

linear model, making it better in extrapolation than the non-linear neural networks.32 This

can be observed in Fig. 2, which shows that the gradient of the surrogate model CV also

aligns better with the gradients of the underlying free energy surface and better distinguishes

the transition state region compared to the original Deep-TDA CV. The Deep-TDA CV is

only trained on configurations sampled within the metastable state minima (SI Fig. S5).

Therefore, its accuracy and performance critically depend on its ability to extrapolate to

unseen regions of the conformational landscape, particularly the transition states, which

the systems need to visit during the enhanced sampling simulations. The improvement in

efficiency also stems from the fact that the surrogate model CVs apply bias along a reduced

set of descriptors, thereby directing the sampling only along relevant degrees of freedom.
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a) b)

c) d)

e) f)

Figure 2: Upper panel: Time evolution of the ϕ torsion angle of alanine dipeptide in OPES
simulation using (a) Deep-TDA CV and (b) its surrogate model CV. Middle Panel: The con-
vergence of the free energy difference between the C7eq and C7ax states of alanine dipeptide
using (a) the Deep-TDA CV and (b) its surrogate model CV for biasing. The reference free
energy value is depicted in a black dashed line. Bottom Panel: Contour plots of the collective
variables projected onto the two-dimensional Ramachandran angle (ϕ and ψ) space. The
contours of the reference free energy surface are also shown as solid black lines.
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While the original Deep-TDA CV applies bias along all the 45 distance descriptors (or 39

torsion-angle descriptors), the surrogate model CVs, trained using lasso regression, bias only

along 15 distance descriptors (or 17 torsion descriptors).

Another edge of the surrogate model CV is that it is considerably less expensive to

evaluate than its neural network counterpart due to the use of fewer parameters. It, therefore,

significantly speeds up the enhanced sampling simulation, completing the same number of

integration steps as the NN-CV in almost an order of magnitude less wall clock time.

In the case of the Deep-TICA CV, the convergence speed and the frequency of transitions

between the two metastable states are comparable for the NN-CV and the surrogate model

CV, despite the latter model using a linear combination of only 22 of the 45 descriptors.

Unlike the Deep-TDA CV, we do not observe an improvement in convergence as the Deep-

TICA CV is already trained on configurations coming from the entire conformational space to

be sampled via enhanced sampling, including transition state regions (SI Fig. S5). Therefore,

the extrapolation capability of the CV is not as critical as it is in the Deep-TDA CV.

Nevertheless, the reduced CPU time makes the overall protocol significantly more efficient

than directly biasing the NN-CV.

In addition to the accurate prediction of thermodynamic properties such as the free

energy surface, when used in combination with methods like OPES-flooding,24 surrogate

model CVs of both Deep-TDA and Deep-TICA are equally capable of recovering the kinetics

of the transition from the C7eq to the C7ax state. The surrogate model CVs led to mean first

passage time (MFPT) estimates in agreement with the unbiased reference value of 1.28 µs

within the 95% confidence intervals. The reweighted first passage times follow an exponential

distribution almost perfectly, which is the hallmark of reliable kinetics estimation for single

barrier crossing events.58

Another key advantage of the surrogate model CVs is their interpretability. The con-

tribution of each descriptor toward the CV can be obtained directly from the regression

coefficients. The same three distance descriptors contribute the most toward both Deep-

15

https://doi.org/10.26434/chemrxiv-2024-x00x1 ORCID: https://orcid.org/0000-0002-7103-0886 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-x00x1
https://orcid.org/0000-0002-7103-0886
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 5

6

7

9

11

15

16

17

19

Figure 3: Left Panel: Magnitudes of the regression coefficients of the descriptors with non-
zero contribution in the surrogate models of the Deep-TDA CV (upper) and Deep-TICA
CV (lower) in alanine dipeptide. Right Panel: Molecular structure of the alanine dipeptide
molecule. The atom numbers of the heavy atoms and the three interatomic distances with
the strongest contributions toward the CVs are shown explicitly.

TDA and Deep-TICA CVs: the distances between atoms O and Cα, atoms O and Cβ, and

atoms N and Cβ (Fig. 3). These three descriptors and their ordering are identical to the three

most important descriptors identified in previous work through a more extensive committor

analysis.59 The regression coefficients of the torsion descriptors indicate the ϕ dihedral angle

to have the most significant contribution towards the Deep-TDA CV (SI Fig. S6). This ob-

servation agrees with our preexisting knowledge that the ϕ angle constitutes an optimal CV

for the alanine dipeptide conformational transition, reinforcing the ability of the surrogate

model to correctly predict the most relevant descriptors.

4.2 Chignolin

In the case of chignolin, the deep neural network CVs apply bias along all 45 pairwise

distances between the Cα atoms, whereas the surrogate models CVs trained through lasso

regression of the NN output apply bias along a much smaller set of descriptors: 8 descriptors

for Deep-TDA and 20 for Deep-TICA. This reduces the model complexity significantly,

considering the original Deep-TDA and Deep-TICA CVs include ∼2300 parameters. The
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b)

c) d)

F FU U

F U

Figure 4: Top panel: Convergence of the free energy difference between the folded and
unfolded states of chignolin using OPES simulations depositing bias along (a) Deep-TDA
and (b) its corresponding surrogate model CV. The black dashed line denotes the reference
unfolding free energy from Ref. 50. The black dotted line shows ±1 kBT variations from the
reference value. The solid line and shaded region indicate the mean and standard deviation
of unfolding free energy from three independent OPES simulations. Middle panel: Mean and
uncertainties of the free energy profiles obtained from three independent OPES simulations
using (c) Deep-TDA and (d) its corresponding surrogate model CV. The reference free energy
profile from unbiased simulation50 is shown in a black dashed line. The folded (F) and
unfolded (U) states are labeled on the free energy profiles. Bottom panel: Representative
structures of the folded (F) and unfolded (U) conformations of chignolin.
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lasso regression CV showed nearly identical free energy convergence to that of the standard

Deep-TDA (Fig. 4 a,b), demonstrating that the simplified surrogate model can perform as

effectively as the neural network CV. The free energy surfaces (FES) for both CVs fall within

one kBT of the reference value obtained from unbiased simulation of Ref. 50. In contrast, the

surrogate model Deep-TICA CV shows a slightly slower convergence speed compared to its

neural network counterpart (S9 a and b). This observation is consistent with the results of

the alanine dipeptide system, where the surrogate model outperformed the Deep-TDA CV in

terms of convergence speed but not the Deep-TICA CV. The Deep-TDA CV is trained only

on the metastable state data and does not include any information about the saddle points of

the free energy landscape, e.g., the transition state(s). Therefore, the superior extrapolation

capability of the simplified regression model compensates for its lack of adaptability caused

by the inclusion of a reduced number of descriptors and the strictly linear functional form.

Contrarily, the Deep-TICA CV is trained on almost the entire conformational space of the

protein, leaving little to no need for extrapolation during the enhanced sampling simulations.

In such a data-rich environment, the high-variance neural network model can provide a better

description of the slow modes through non-linear combinations of molecular descriptors.

It should be noted here that all four CVs led to a converged estimate of the free energy

landscape within ∼50 times less simulation time compared to the unbiased run. Therefore,

the surrogate models for both Deep-TDA and Deep-TICA CVs can be used effectively in

practical problems where the computational cost of evaluating a complex neural network

and its gradients at every MD timestep can become a bottleneck. We observe that using

identical computing hardware, the surrogate model CVs require almost half the wall clock

time than that of the neural network CVs (SI Table S3). When we used a more complex

model involving the 210 descriptors (introduced in Ref. 17) and ∼44500 parameters, the NN

CV required more than three times wall clock time than that of its corresponding surrogate

model. In more realistic problems, therefore, the surrogate model CVs will have a clear edge

over NN-CVs in terms of CPU time.
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The second consideration is that in the case of more realistic systems, it is often not

possible to sample the entire conformational landscape (either through unbiased simulation

or through biased sampling with suboptimal CVs) to obtain the training configurations for

the neural network CV. Therefore, the applicability of Deep-TICA CV in such systems can

be rather limited. In contrast, the training of Deep-TDA CV only requires metastable state

information. This is far easier to obtain in the case of large complex molecules by simply

performing unbiased simulations in known metastable states, e.g., folded and unfolded states.

As the surrogate model of Deep-TDA CV shows equal or better convergence speed and

accuracy of the free energy landscapes, it can be used in general to study molecular systems

of different sizes and complexity.

Our surrogate models also act as interpretable representations of their parent neural

network CVs and provide molecular level details of the (un)folding process. Based on the

magnitudes of the regression coefficients the distances between Cα atoms of the terminal

residues such as C9
α–C

2
α [d9-2] contribute most strongly toward the Deep-TDA CV. In con-

trast, the distances C6
α–C

3
α [d6-3] and C8

α–C
6
α [d8-6] play a more significant role in the Deep-

TICA CV (Fig. 5). Extensive committor analysis in previous work demonstrated that the

hydrogen bond formations among Asp3, Thr6, and Thr8 residues play an important role

in the transition state of chignolin folding.59 The Deep-TICA CV is able to capture these

interactions as its training data includes configurations from the whole conformational space,

including the transition regions. In contrast, the Deep-TDA CV, which aims to distinguish

the metastable states, emphasizes primarily the terminal residue interactions such as C9
α–C

2
α

[d9-2] and C10
α –C1

α [d10-1] as they alone are sufficient to discriminate between the compact

folded hairpin and the extended unfolded structures. Despite the complete omission of the

key hydrogen bonding interactions in the surrogate model of Deep-TDA, its ability to obtain

the converged free energy landscape within a simulation time comparable to that of Deep-

TICA CV reinforces the superior extrapolation capability of the lasso regression CV toward

unseen regions of the conformational space.
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a) c)b)

Figure 5: (a) Ribbon structure of the chignolin hairpin structure with Cα atoms shown
explicitly and numbered according to their residue index. (b) and (c) Magnitudes of the
non-zero regression coefficients of the surrogate models of the (b) Deep-TDA and (c) Deep-
TICA CVs for the chignolin system. Networks depicting the pairwise distances with finite
contributions toward the CV are provided as insets. The nodes denote the Cα atoms, and
the thickness of the lines joining the nodes is proportional to the magnitude of the regression
coefficient associated with the distance between those atoms.

Similar to alanine dipeptide, the surrogate model CVs are equally capable as their neu-

ral network counterparts in terms of recovering the unfolding kinetics from OPES-flooding

simulations. All four CVs led to unfolding times within a factor of 3 from the unbiased esti-

mate (2.2±0.4 µs) and acceptable exponential fit of the first passage time distributions (p >

0.05)58 (Table 1). In fact, the unfolding kinetics from surrogate model CVs are in slightly

better agreement with the reference value compared to their neural network counterparts.

However, these differences are likely not statistically significant as they are within each

other’s confidence intervals. These results indicate that despite being only an approximation

of the neural network CVs, the surrogate models perform equally well in OPES-flooding

simulations for recovering the kinetic properties.
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Table 1: Comparison of the unfolding kinetics of chignolin obtained from OPES flooding
simulations using Deep-TDA, Deep-TICA, and their respective surrogate model CVs.

Method / CV
Number of

runs
Mean first passage
time (τ) in µs

p-valuea
95% confidence
interval in µsb

Deep-TDA 15 6.87 0.430 4.42 - 12.37
Deep-TDA (Surrogate) 15 4.66 0.397 3.01 - 8.42

Deep-TICA 15 3.58 0.992 2.81 - 7.87
Deep-TICA (Surrogate) 15 2.14 0.231 2.11 - 5.92
aThe p-values were generated from 2 samples of the Kolmogorov–Smirnov test.58 bWe
computed the 95% confidence intervals using the method developed by Kaminsky.47,60

5 Conclusions

Machine learning algorithms, including deep neural networks, have seen enormous success

in the design of optimal collective variables for enhanced sampling simulation of molecular

systems. However, the lack of interpretability and the high computational cost of evaluating

large NN models in every integration timestep limits their applicability in studying large

biomolecules. In this work, we present a surrogate model approach that reintroduces the

interpretability of conventional intuitive CVs into the ones learned using a deep neural

network. Surrogate models form part of the growing field of explainable artificial intelligence

(XAI) that aims to make deep learning outcomes more interpretable. In our approach,

we first train a deep-learning CV using an extensive set of molecular descriptors as input.

Then, we use lasso regression to approximate the output of the neural network as a linear

combination of a subset of the input descriptors, chosen by minimizing the L1 norm of

regression coefficients and k-fold cross-validation. This approach automatically detects the

highest contributing descriptors toward the neural network, removing the requirement of

manual feature selection, commonly required in shallow learning algorithms, like HLDA.15

We show that despite this enormous simplification, the surrogate model CVs perform almost

equally well in recovering the underlying free energy landscape and transition kinetics of

molecular processes using enhanced sampling simulations. In fact, the surrogate models

may outperform their neural network counterparts in terms of sampling and convergence
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speed when no information about transition states and saddle points is included during

the training of the neural network. This stems from the superior extrapolation capacity of

the simpler regression approach over the more complex neural network models that do not

generalize well beyond the training data. This is an important consideration for large and

complex molecular systems, where it is difficult to sample the entire conformational space

just to generate the training data for a machine learning CV. Particularly challenging is the

sampling of transition states, although, in recent days, key advancements have been made

in this direction.19,20,59,61

In this proof-of-concept study, we limit ourselves to one of the simplest forms of sur-

rogate model, linear regression. However, this work opens the possibility of incorporating

other forms of surrogate models that include non-linearity and couplings between variables

to improve the CVs without sacrificing interpretability and computational efficiency. We

also envision a significantly higher performance gain from surrogate modeling of larger and

significantly more complex neural network architectures, including Permutationally Invari-

ant Networks for Enhanced Sampling (PINES)62 and Graph Neural Networks (GNN).35,63,64

In situations where the surrogate model CV is not as optimal as their neural network coun-

terparts but provides noticeable gains in computational wall-clock time, they can be used in

combination with the new variants of OPES specifically designed for quantitative sampling

of free energy landscapes using suboptimal CVs.65,66 We aim to pursue these avenues in the

future. This work, therefore, paves the way for advancing the field of enhanced sampling

and CV discovery and facilitates mechanistic investigation of complex biological processes

through molecular dynamics simulation.
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