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Abstract 

 

Electrochemical CO2 reduction reaction (CO2RR) offers a promising route to storing chemical 

energy and producing valuable chemicals, while also contributing to carbon cycle closure. Despite 

significant advances in electrocatalytic CO2RR for multi-carbon products, challenges remain in 

optimizing catalysts for high selectivity and efficiency. Cu-based heterogeneous catalysts are 

among the most promising options; however, enhancing their catalytic efficiency and product 

selectivity remains complex due to several factors. One key challenge is that product selectivity 

heavily depends on the catalyst’s surface morphology, which impacts both Faradaic efficiency and 

overpotential requirements for target product formation. Additionally, the reaction pathways and 

intermediates for multi-carbon products are not yet fully understood, complicating efforts to 

achieve consistent multi-carbon yields. Variability introduced by the electrolyte environment, 

applied potential, and operating conditions further impacts selectivity and efficiency. This review 

aims to address these challenges by exploring the interplay between the surface structure of Cu-

based catalysts and system parameters that shape reaction pathways for ethanol formation. 

Notably, we explore alternative pathways beyond the conventional mechanisms involving CHO, 

COH, and CO dimers. 
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1. Introduction 

Using CO2 as the raw material for generating fuels with high energy density would help to 

diminish our dependence on fossil fuels and provide a sustainable economic way to reduce the 

CO2 level in the atmosphere.[1-3] Carbon dioxide conversion into useful chemicals is done by 

different methods such as reforming,[4, 5] biological,[6, 7] photochemical,[8, 9] organic 

synthesis,[10, 11] and electrochemical.[12-15] Electrochemical CO2 reduction is attracting 

significant interest due to its ability to produce a wide range of valuable chemical feedstocks such 

as carbon monoxide, formic acid, methane, ethylene, methanol, ethanol, etc.[16-22] As CO2 is a 

linear, stable molecule it is more difficult to break down, so its activation requires elevated 

temperature/pressure conditions or active reductants. Alternatively, CO2 can be activated under 

ambient conditions with the assistance of a catalyst. The electrochemical reduction of CO2 can be 

carried out in liquid, aqueous, or non-aqueous solvents. There are some main challenges associated 

with the process are, low absorption of CO2 into the solution, hydrogen suppression reaction 

(HER), pH control issues, product separation issues, low energy efficiency due to higher 

overpotential, and low product selectivity.  

The most common electrocatalysts used in CO2 reduction reaction (CO2RR) are heterogeneous 

catalysts,[23-26] homogeneous/molecular catalysts,[27, 28] and MOFs.[29, 30] Selective 

production of single-carbon (C1) products, like carbon monoxide,[31-33] formic acid,[34-36] and 

methane[37, 38] via electrochemical CO2RR have been achieved. Therefore, producing single-

carbon (C1) products via electrochemical CO2RR is not very challenging compared to producing 

C2+ products. However, single-carbon products have a significantly lower energy density than 

multi-carbon products. Methanol is one of the promising C1 products from electrochemical CO2 

reduction. Electrochemical conversion of CO2 into methanol and formic acid has been achieved 
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with a good yield which makes this technique promising.[39-41] However, methanol is toxic in 

contrast with ethanol and not a promising fuel. The energy density of ethanol (8.0 kW h/kg) is 

higher than methanol (6.0 kW h/kg) in one process of complete oxidation.  

There is a growing interest in producing multi-carbon (C2+) products because of their higher 

added value. Nevertheless, selective production of C2+ is more challenging because of the complex 

mechanism, including many proton-coupled electron transfer (PCET) processes, and due to the 

limitations of effective electrocatalysts. Among C2+ species, ethanol (C2H5OH) is a highly valued 

product as an industrial feedstock, the largest additive to gasoline, and being relatively easy to 

store and transport (compared to gaseous products like ethylene and corrosive products like acetic 

acids). The electrochemical CO2 reduction to ethanol requires 12 electrons (2CO2+12H++12e- → 

C2H5OH+3H2O), with the equilibrium potential of 0.09 V vs. reversible hydrogen electrode 

(RHE).  However, two main challenges must be overcome. They are a high onset potential of -1.0 

V (or more negative) and low product selectivity.[14, 42] There are very few reported 

electrocatalysts for ethanol production with faradaic efficiency (FE) above 30%,[43-45] as 

competing double-carbon (C2) products are also formed. [45-48] Thus, the industrial-scale 

electrochemical CO2 reduction into ethanol is hindered by low energy efficiency and poor product 

selectivity.[25, 45, 49-51] To achieve the selective production of ethanol or other multi-carbon 

products efficiently, selective catalysts are essential. 

Our interest in CO2 reduction to ethanol is two-fold. First, it comes from our aim to develop 

tandem ethanol fuel cells, which features two cathodes: an oxygen reduction cathode, as in 

conventional fuel cells,[52] and a CO2 reduction cathode. Unlike traditional ethanol fuel cells, the 

tandem design incorporates a second cathode to capture CO2 released from the anode, convert it 

back to ethanol, and reuse it as fuel for the anode. The proposed tandem ethanol fuel cells have the 
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potential to significantly increase fuel efficiency while simultaneously reducing CO2 emissions. 

Notably, rapid developments in CO2 capture under various conditions[53] further improve the 

technical feasibility of tandem ethanol fuel cells. Second, CO2 reduction to ethanol represents the 

reverse of the ethanol oxidation reaction (EOR). However, this area of chemical reaction space 

within CO2RR remains largely unexplored. Our expertise in studying catalytic ethanol oxidation 

reaction[54-66] could provide valuable insight into discovering efficient pathways for the CO2-to-

CH3CH2OH conversion. 

This review focuses on studies based on computational approaches for achieving efficient 

electrochemical CO2RR to ethanol and other multi-carbon products, with an emphasis on Cu-based 

electrocatalysts. Achieving selectivity for multi-carbon products is challenging due to the potential 

dependence of the reactions, as well as the characteristics and surface morphology of the catalyst. 

Additionally, this review explores reaction pathways beyond those conventionally studied in the 

literature to expand the chemical reaction space for the efficient conversion of CO2 to ethanol. 

 A fundamental understanding of the reaction intermediates and reaction pathways is essential 

in the rational design and further development of electrocatalysts for ethanol production. Due to 

the limitations of the experimental detection techniques, identifying possible reaction 

intermediates along the pathways to ethanol production is still challenging. So many experimental 

studies have been performed to determine the possible intermediates along the C2 product 

formation on Cu surfaces.[67-70] Therefore, experimental studies combined with density 

functional theory (DFT) calculations were employed to support the proposed mechanism and 

possible intermediates. Computational studies have been widely used to provide detailed atomistic 

understandings along with the nature of the active site of used catalysts. The initial assessment of 

the Cu-based catalyst starts with predicting the adsorption energies of reaction intermediates and 
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constructing the free-energy diagrams.[49, 71, 72] Then thermodynamic analysis is performed to 

calculate the activation barriers of different elementary reactions in the proposed mechanism.[73, 

74] 

2. Heterogeneous catalysts 

Electrochemical CO2RR can be achieved via both homogeneous and heterogeneous catalysts. 

These two catalytic systems have different reaction mechanisms and experimental conditions. 

Homogeneous catalysts' performance[75] towards the electrochemical CO2RR can be optimized 

by tuning the active sites in the metal centers. Homogeneous catalysts such as cyclam complexes 

[76, 77] , pincer complexes [78, 79] , and porphyrins [80, 81] have been tested as electrocatalysts 

for CO2RR. But in large-scale applications, homogeneous catalyst recovery is more difficult than 

heterogeneous catalysts.  To study the mechanistic pathways of CO2RR, heterogeneous catalysts 

have many advantages over homogeneous catalysts as they can easily be recovered and have no 

need for separation from products. As copper is the only monometallic catalyst that facilitates the 

multi-carbon product formation, this review discusses only the progress of Cu-based 

electrocatalysts. More research efforts have been devoted to understanding the nature of the active 

sites and product selectivity on Cu catalysts.[82-86] To enhance the electrochemical CO2 reduction 

process, it is important to investigate the geometry, morphology, and size of the catalyst 

particles.[87-103] Heterogeneous catalyst types have been mainly developed as 

nanomaterials,[104] oxide-derived metals,[105, 106] core-shell structures,[107] single-atom 

catalysts,[108-110] and nanoporous films.[111] 

2.1 The C-C bond formation  

Tuning electrocatalytic systems for CO2RR into multi-carbon-containing products is much 

more attractive than C1(single-carbon products).[112] Copper is the only reported metal for 
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catalyzing CO2RR towards multi-carbon products which facilitates the C-C coupling.[13, 15, 113] 

The C-C bond formation is the more critical step in multi-carbon production which competes with 

the further hydrogenation of single-carbon products. At very high negative potentials, the 

hydrogen evolution reaction also occurs, which hinders C–C bond formation and reduces 

selectivity toward C2+ products. These activities in the electrochemical system further challenge 

the efficient reduction of CO2 into desired multi-carbon products. Therefore, it is crucial to study 

the reaction mechanism of C–C coupling along with the optimal catalyst surface to achieve 

the efficient formation of multi-carbon products.  

Based on both experimental and DFT calculations there are a few proposed pathways for C-C 

bond formation during the CO2RR (Figure 1). The left route in Figure 1 indicated by the blue lines 

represents the mechanism proposed by Hori et al. toward the C2H4 formation.[114] Montoya et al. 

performed the first DFT studies of *CO dimerization to form *CO ‒*CO on Cu(111) and Cu(100) 

surfaces (Figure 1a top right branch).[74] Theoretical studies performed by Calle-Vallejo and his 

colleagues proposed that C-C coupling occurs via the pathway indicated in the red color route 

which suggested that *CO dimerization step coupled with an electron transfer ended up with the 

formation of *CO-COH.[115] However, there are still barriers preventing the use of Cu-based 

catalysts[71, 115] for CO2RR into multi-carbon products as of higher overpotential requirement. 
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Figure 1. Proposed pathways for C-C bond formation. *CO on the Cu surface. Reproduced with 

permission. [116] Copyright 2019, JACS 

  

Many researchers are working to address these challenges by developing novel Cu-based 

catalysts, as market interest largely focuses on reduced products with higher energy density. 

Therefore studying reaction mechanisms from CO2 to main C2 products, such as ethanol and 

ethylene has become concentrated in many experimental and theoretical studies.[117-120] Most 

studies have shown that rate-determining *CO dimerization as the critical C-C coupling step,[116, 

119, 121] with the formation of enough *CO on the catalyst surface. Further, C-C coupling can 

occur via the reaction of *CO with *CHO or *COH as well. There are other possible pathways to 

form a C-C bond via the coupling of hydrogenated C1 species.[74] Hence, understanding the 

reaction steps along with C-C coupling is essential for developing a selective and efficient catalyst 

for CO2RR to ethanol. Various parameters, like crystal facet, applied potential, pH, electrolyte, 

and defective sites may affect the C-C coupling.    

2.2 Catalyst facets 

The morphology of the nanomaterial plays an important role in product selectivity which both 

experimental and theoretical studies have proved. Furthermore, the effect of catalyst facet on 
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CO2RR has been extensively studied using theoretical simulations.[122, 123] Copper-based 

nanostructured catalysts[124-126] and oxide-derived (OD)[127, 128] electrodes have been shown 

the higher CO2RR activity and selectivity in active sites with different coordination numbers. To 

promote CO2RR products beyond the C1, Cu catalysts should be modified with features including 

defects, different facets, low coordinated Cu sites, and surface roughness. For the formation of C2
+ 

products, the C–C coupling reaction is widely accepted to occur through *CO dimerization, 

followed by hydrogenation, as supported by many studies.[129-131] Theoretical studies conducted 

by Sandberg and his colleagues reported that the Cu(100) surface has the lowest energy barrier 

(0.45 eV), which is lower than that of the Cu(111) and Cu(211) surfaces.[132] As CO dimerization 

is an important step towards C2 product formation, detailed understanding of CO adsorption[133-

138] is useful to the design of catalysts. 

Copper electrodes with different crystal facets exert different activity and selectivity, such as 

(111), (211), and (100) facets form different end products under similar electrochemical 

conditions.[125] Crystal facets of Cu(100), Cu(110), and Cu(111) have often shown different 

catalytic activities[139, 140] and illustrated effective catalytic activity towards CO2RR, while 

Cu(100) has been reported as highly active for ethylene formation, and Cu(110) for acetate, 

ethanol, and acetaldehyde production, and Cu(111) for methane formation.[118] Further, it has 

been reported that Cu(100) facet prefers to the production of C2H4 over the formation of C1 

products.[115] Moreover, high-index surfaces also play a major role in product selectivity in 

CO2RR. Highly stepped Cu(211) sites prefer CO2 reduction into CH4.[71] Wang and co-workers 

experimentally illustrated the significant enhancement of CO2RR activity and C2 product 

selectivity with stepped Cu(211) and Cu(200) facets.[141] A study based on micro-kinetic sites 

than Cu(100) and Cu(111).[142] Choi and co-workers reported a remarkably high faradaic 

https://doi.org/10.26434/chemrxiv-2024-zmdtq ORCID: https://orcid.org/0000-0002-6131-3532 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zmdtq
https://orcid.org/0000-0002-6131-3532
https://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

9 
 

efficiency in the formation of C2H4 on Cu nanowires with rich surface steps.[143] The C-C 

coupling step should be promoted to enhance the Cu catalyst for higher selectivity and activity 

toward the C2+ product formation.[120, 142, 144] Ab initio molecular dynamics (AIMD) 

simulations also reported the high selectivity of C2+ products on high-index Cu facets, facilitating 

C-C coupling by lowering the C-C coupling barrier.[145] As shown in Figure 2 energy barriers for 

C-C coupling predominance on high-index Cu facets with less than 0.12 Ha ( 3 eV). According 

to the energy barriers, the (911) facet has shown the best performance, followed by (511) and 

(711). The best formation efficiency of C2+ products on the Cu(911) facet is inconsistent with 

experimental results as well.[23] The impact of catalyst size and phase structure on the facet 

dependent is also interesting to investigate.[146-150]    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Energy barriers for CO dimerization into CO−CO structures on (a) Cu(S)-[n(100) × (111)] and 

(b) Cu(S)-[n(100) × (110)] along the x-direction and y-direction, respectively. The top inset shows the 

reaction process of CO dimerization. CO−CO formation energies on (c) Cu(S)-[n(100) × (111)] and (d) 
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Cu(S)-[n(100) × (110)] along the x-direction and y-direction, respectively. The bottom inset shows the 

CO−CO adsorption process. Reproduced with permission.[145] Copyright 2022, J. Phys. Chem. Lett. 

 

2.3 Oxide-derived Cu catalysts 

Oxide-derived (OD) copper has shown a significant potential for forming value-added C2+ 

products during the CO2 reduction process.[151] Partially oxidized Cu on the OD-Cu nanocatalyst 

could modify the electronic structure of the surface atoms and then promote the multi-carbon 

product formation by optimizing the binding energies of intermediates and the C-C coupling 

barrier.[127, 152] Both experimental and theoretical simulations have been conducted to 

investigate how the Cu+ state enhances the formation of multi-carbon products during the reaction. 

An experimental study conducted by Jang et al. reported that OD-Cu nanosheets, featuring a 

partially oxidized Cu surface, exhibit a 72% Faradaic efficiency with a higher current density for 

the formation of C2+ products.[153] OD-Cu nanowires fabricated with CuOx sheath has also shown 

a significant Faradaic efficiency of 78% for C2+ products.[154]  

Recently Chen et al. have presented experimental results on OD-Cu nanorod samples, 

demonstrating outstanding performance in the formation of C2+ products with 83.8% Faradaic 

efficiency and a current density of 341.5 mA cm-1 at -0.9 V vs RHE.[155] Not only does the 

oxidation state promote the desired product, but the surface roughness of OD-Cu surfaces also 

enhances the catalytic activity of the electrocatalyst during the electrochemical CO2RR.[143, 156] 

Furthermore, surface roughness, along with the generation of more defects on the catalytic surface 

can be attributed to the high yields of multi-carbon products during the electrochemical reduction 

of the oxidized Cu layer.[154] Therefore, studies on the effect of surface defects[157] and surface 

ligands[158-163] on the adsorption and catalytic activities as well as effective modulating 

oxidation states of catalysts via O species[164, 165] or alloying[166, 167] are critical for accurate 

prediction of efficient catalysts. 
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2.4 Applied potentials  

Electrocatalysts play a major role in the product distribution of the CO2RR and in determining 

the overpotential, which is closely related to the stability and binding affinity of the reaction 

intermediates to the catalyst surface. Despite the continuing expansion of research studies toward 

efficient electrocatalysts for CO2RR, existing catalysts still operate at high overpotentials with low 

selectivity toward the desired products.[42, 168-171] Hence, a thorough understanding of the 

catalyst material, catalytic reaction pathway, and favorable intermediates is still a challenge in the 

field of CO2RR into desired multi-carbon products. 

Electrocatalytic CO2RR is a very complex reaction that involves many reaction intermediates 

along with a series of proton coupled electron transfer (PCET) steps. CO2RR starts with the 

adsorption of CO2 to form *CO2 (or *CO2
-) and then various reaction intermediates and products 

will be formed followed by proton and electron transfer.[142] This initial activation step requires 

an electrode potential of -1.9 V (vs RHE)[172] which makes the electrochemical CO2 reduction 

process costly in terms of overpotential. Therefore, the catalyst should pre-activate the CO2 in 

terms of reducing the overpotential. The equilibrium potentials for some of the main products in 

aqueous solutions are listed below: 

CO2 + 2H+ + 2e- → CO + H2O  E = -0.10 V vs RHE   (1) 

CO2 + 2H+ + 2e- → HCOOH   E = -0.20 V vs RHE   (2) 

CO2 + 6H+ + 6e- → CH3OH + H2O  E = -0.02 V vs RHE   (3) 

CO2 + 8H+ + 8e- → CH4 + 2H2O  E = 0.17 V vs RHE   (4) 

2CO2 + 12H+ + 12e- → C2H4 + 4H2O  E = 0.08 V vs RHE   (5) 

2CO2 + 12H+ + 12e- → C2H5OH + 3H2O E = 0.09 V vs RHE   (6) 
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By transferring a different number of electrons and protons to *CO2, different products can be 

formed, such as CO, HCOOH, CH3OH, CH4, C2H5OH, and C2H4 shown in the above 

equations.[173] Very small differences between the thermodynamic potentials for CO2 reduction 

products bring the challenge to selectively produce the desirable product. Hence the CO2RR should 

be studied extensively by varying the applied potential to tune the product selectivity. It will be 

interesting to use the results of applied potential to design catalysts that have the built-in 

fields[174-178] to facilitate the reactions of interest. 

Electrochemical CO2RR on Cu(111) yields ethylene and methane at all applied potentials,[117, 

118] while Cu(100) produces ethylene at low overpotentials and methane at high 

overpotentials.[117, 118, 179] Various DFT simulations have indicated that the *COCO dimer 

facilitates the C-C bond formation at low overpotentials, whereas the *CO and *CHO couples to 

form the C-C bond at high overpotentials.[73, 180-182] The C-C coupling step is crucial for the 

formation of multi-carbon products during the electrochemical CO2 reduction. Therefore, it is 

essential to study the voltage dependence of this step. Goodpaster and his group conducted an 

intensive computational simulation to investigate this aspect via *CO dimerization on Cu(100) and 

Cu(111) surfaces at low overpotentials.[120] Furthermore, molecular dynamics (MD) simulations 

have also confirmed the voltage dependence of the C-C coupling steps on Cu(100) surfaces as 

mentioned above.[73] This simulation further reported that more negative potentials (than -0.85 

V), it promotes the CH4 formation than C-C coupling via *CHO intermediate.  

2.5 Electrolytes 

The efficiency and selectivity of the CO2RR catalyst are influenced by the electrolyte's nature, 

primarily in terms of pH and the type of cation used in the system. The most used electrolytes in 

aqueous solutions are NaHCO3, KHCO3, and Na2SO4. The nature of alkali metal cations can 

https://doi.org/10.26434/chemrxiv-2024-zmdtq ORCID: https://orcid.org/0000-0002-6131-3532 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zmdtq
https://orcid.org/0000-0002-6131-3532
https://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

13 
 

influence the efficiency of the metal catalyst and the selectivity of products in CO2 reduction 

reactions.[183-186] The experimental studies have proven that increasing the cation size leads to 

higher product selectivity for multi-carbon products, higher current density, and lower 

overpotentials. During the electrochemical reaction pH is maintained at 7 to suppress the 

undesirable hydrogen evolution reaction (HER).  

Resasco et al. performed DFT calculations and their results suggested that the size of the cation 

influences the stabilization of surface intermediates.[184] As the cation size increases, it enhances 

the stabilization of surface adsorbates. There are great needs of extensive studies on the effect of 

electrolytes through both DFT calculations and MD simulations[187-192] to fully understand 

CO2RR. 

3 Reduction mechanism for electrochemical CO2RR to ethanol and other multi-carbon 

products 

Electrochemical CO2RR is a complex reaction that involves multiple proton and electron 

transfer steps along with different reaction intermediates and products. A detailed understanding 

of the reaction mechanism and the design of electrocatalysts with specific characteristics targeting 

desired products are essential to improve the efficiency of the electrochemical CO2 reduction 

reaction. Copper is the only reported metal for catalyzing CO2RR towards multi-carbon products. 

A fundamental understanding of the reaction intermediates and reaction pathways are essential in 

the rational design and further development of electrocatalysts for ethanol production. Due to the 

limitations of the experimental detection techniques, identifying possible reaction intermediates 

along the pathways to ethanol production is still challenging. These difficulties motivate people to 

computationally screen the reaction pathways of CO2 reduction.  
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3.1 Computational methods 

Simulations based on DFT studies have been extensively utilized to elucidate the underlying 

reaction mechanisms and the nature of active sites. The energetics associated with electrochemical 

CO₂ reduction reactions (CO₂RR) can be elucidated by incorporating solvent effects, primarily 

through two methods: implicit and explicit solvent models.[193-195] The computational hydrogen 

electrode (CHE) approach, suggested by Nørskov et al is convenient and useful in predicting 

catalytic activity and reaction mechanisms based on limiting potential which was suggested 

by.[196] Using this CHE model, we can generate the free energy landscape for the reaction 

mechanism at any applied potential, which involves multiple PCET steps, and then determine the 

potential determining step of the proposed reaction pathway.  

The constant electrode potential (CEP) model enables improved simulation of the influence of 

applied potential on the electrode-electrolyte interface which addresses the drawback of the CHE 

model.[120] The limiting potential for each reaction pathway can be calculated using the CEP 

model hence offering the most feasible reaction mechanism. To identify promising catalysts for 

CO2RR, kinetic models can be employed to calculate the reaction energies and activation barriers 

for the proposed reaction mechanisms. Machine learning methods are another approach to predict 

the reaction barriers.[197] 

3.2 Mechanism of C-C coupling in CO2RR 

Activation of the CO2 molecule is the initial step of electrochemical CO2RR. CO2 is a stable 

molecule with a higher negative potential, -1.9 V vs RHE.[172] In an aqueous medium, adsorbed 

CO2 (*CO2) either desorbs as formate ion after surface hydrogenation[198] or transforms to *CO 

and desorbs as gaseous CO. Further hydrogenation and reaction of *CO with other adsorbed 
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species can lead to the formation of hydrocarbons, alcohols, or other acids.[114, 179, 199-203] 

Hydrogenation of *CO via O-H can form *COH and via C-H can form *CHO. The formation 

pathway of *CHO on Cu(211) surface has been proposed by Peterson at al. based on the CHE 

model approach.[71]  

The coexistence of both *COH and *CHO has been shown to depend on the coordination 

number of the active site of the Cu facet.[204] Schouten et al. conducted an experimental study to 

identify the C1 and C2 products. They reported that the formation pathways of ethylene and 

methane on Cu(111) share intermediates, including *CHO as the key intermediate.[118] Most of 

the computational studies have confirmed that initial protonation of *CO forms *CHO than *COH 

intermediate during the electrochemical CO2RR on both Cu(100)[73, 119, 180, 205] and 

Cu(211)[71] surfaces, and *COH dominant on Cu(111).[206] Number of PCET steps determines 

the end products of electrochemical CO2RR. In this process, the C-C coupling step plays the most 

important role in forming C2+ products. Overall, studies of reaction pathways suggest that the 

hydrogenation of *CO to form *CHO/*COH, which are key intermediates for single-carbon 

products, competes with the dimerization of adjacent *CO species to form multi-carbon products. 

Hence, another study performed by Schouten et al. proposed that dimerization of *CO occurs 

before the hydrogenation to form *CO-CO on certain Cu surfaces is the rate-determining step in 

multi-carbon product formation.[179]  

Most of the theoretical studies reported that enhancing surface CO concentrations favors *CO 

dimerization to form C-C bond and it is the rate-determining step[207] and it is confirmed by some 

experimental analysis as well.[208, 209] When using catalyst surfaces encourages to enhance the 

*CO population than the reduced *CHO or *COH, dimerization is more likely to form C-C bond 

for multi-carbon products. The coupling between *CO and *COH has formed *COCOH leading 
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to C2 pathway on Cu(100) at 0V and its reaction barrier was lower than the dimerization.[210] The 

coupling between *CO and *CHO intermediates form *COCHO.[120, 181, 184, 211] However, 

the stability of those products depends on the catalytic system. In gas phase calculations, *COCOH 

was more stable than the *COCHO on Cu(100) surface.[115] When considering solvent effects on 

intermediates, these intermediates have exhibited different stabilities.[182, 212] Hence, a clear 

understanding of the C-C coupling step and key reaction intermediates, along with other system 

parameters, is essential for developing efficient electrocatalysts for the CO2 reduction reaction into 

multi-carbon products. 

3.3 Mechanism of C-C coupling in CO2RR beyond CHO, COH, and CO species 

Most of computational studies of CO2RR to form C2 species involving reaction pathways 

mentioned in the previous subsection as outlined by Kortlever, et al.[175] These reaction pathways 

represent a very limited chemical reaction space and can hinder our abilities to explore efficient 

catalysts. One of such an example is in the investigation of reaction mechanism for C2+ steam 

reforming. Most of computational studies focus on investigating the C-C bond cleavage along the 

pathways: C2H6→…→C2Hx →CHy+CHz, namely the C-C bond cleavage at different degree of 

dehydrogenation. DFT studies on Ir(100) (see Table 1)[213]and on other metal catalysts[214] 

illustrate that the reaction barrier for C-C bond cleavage in C2 steam reforming is above 1 eV 

regardless the catalysts. This is also the case for butane.[215, 216] However, when the DFT 

calculations include more chemical reaction space, better reaction pathways can be found (see 

Table 1) and the goal of C2+ steam reforming catalyst is shifted from C-C bond cleavage to the 

catalysts for better C-O coupling abilities. This is illustrated clearly in Figure 3. The addition of O 

species significantly changes reaction pathway.  
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Table 1. The activation barrier (Ea) and reaction energy (E) of the C-C bond cleavage reactions of 

ethane on Ir(100) in the presence of O and OH species. Reproduced from Ref. [213].  

 

 

 

 

 

 

 

aData was taken from ref.[60]; bData was taken from ref. [61]. 

 

 

 

 

 

 

 

 

 

 

 

In the case of CO2RR, Table 2 lists several pathways based on the previous data on the studies 

of EOR. The results clearly demonstrate that Cu, particularly partially oxidized Cu (Cu2O), 

outperforms other catalysts. Interestingly, very recent in-situ IR experiments by Zhan, et al. 

revealed [22] the possibility of new reaction pathways, further  underscoring the importance of 

Label Reactant 
Ea/E 

(eV) 

With O  

Reactant        Ea E (eV) 

          With OH 

Reactant         Ea E (eV) 

Rx1 CH3CH3    1.55/-0.22           
Rx2 CH3CH2   1.19/-0.35 CH3CH2Ob  1.37/-0.11 CH3CH2OH  2.31/-0.17 
Rx3a CH3CH  0.97/-0.75 CH3CHOb  0.80/-0.38 CH3CHOHb  1.40/-0.16 
Rx3b CH2CH2   1.36/-0.21 CH2CH2Ob   1.13/-0.24 CH2CH2OHb   1.70/0.01 
Rx4a CH3C   1.22/0.26 CH3COa   1.26/-0.06 CH3COHb 1.87/-0.28 
Rx4b CH2CH   1.49/-1.23 CH2CHOa   0.91/-0.51 CH2CHOHb   1.30/-0.15 
   CHCH2O 1.35/-0.08 CHCH2OH 1.04/-0.62 
Rx5a CH2Ca   1.26/-0.40 CH2COa   0.52/-1.17 CH2COHb   1.54/-0.44 
   CCH2O 1.18/-0.71 CCH2OH 1.59/-0.56 
Rx5b CHCH   1.03/-0.71 CHCHOb 1.06/-0.30 CHCHOHb 1.13/-0.82 
Rx6 CHCa   1.14/-0.54 CHCOa   0.30/-1.32 CHCOHb   1.04/-0.37 
   CCHOb 0.88/-0.74 CCHOH 1.58/-0.99 
Rx7 CCa  1.19/-1.45 CCOb 0.23/-1.16 CCOHb 0.95/-0.65 

Figure 3. Activation energy surface in C2 chemical reaction space. The 

black strip highlights are the activation energy barriers for reactions of 

CHm-CHn species only. Picture is taken from ref. [215]. 
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exploring alternative feasible routes for effective CO2-to-CH3CH2OH conversion. Therefore, 

investigations extending beyond the currently known chemical reaction space, while incorporating 

electrochemical environments, will significantly enhance the accuracy of CO2RR mechanism 

predictions.  

Table 2. Reaction barriers (Ea) and reaction energy (E) of C-C coupling on Cu(100), 

Cu2O(111), and Ir(100). 

 

Reaction 

        Cu(100) [58]         Cu2O(111) [57]         Ir(100) [60] 

Ea (eV) E (eV) Ea (eV) E (eV) Ea (eV) E (eV) 
CH3+CO→CH3CO 1.09 0.06 0.02 -1.22 1.32 0.06 

CH2+CO→CH2CO 0.75 -0.27 0.49 -2.57 1.69 1.17 

CH+CO→CHCO 0.89 -0.28 2.60 -0.83 1.62 1.32 

 

4 Summary and perspectives 

In the last two decades, people have devoted many studies, including theoretical and 

experimental to exploring the efficient catalysts for electrochemical CO2RR into valuable 

products. The CO2RR can easily produce C1 products like methane, formate, methanol, and CO 

while multi-carbon products including C2H6, C2H4, C2H5OH, CH3COOH, and C3H7OH make it 

more challenging to produce with desired yield and product selectivity. Multi-carbon product 

formation using electrochemical CO2RR is still far away from industrial-level applications due to 

the low energy efficiency and low yield. Addressing these issues has become more complex due 

to the lack of a clear understanding of the reaction mechanisms and stable intermediates. 

Additionally, practical applications are significantly different from experimental and theoretical 

conditions, such as pH, applied potential, electrolyte, and catalyst morphology and composition. 

Bridging this gap is highly important for the rational design of efficient electrocatalysts. Carefully 

optimizing all the parameters toward the high faradaic efficiencies and current densities can lead 

to the formation of multi-carbon products with the desired selectivity. 
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To achieve efficient electrochemical CO2 reduction to ethanol, novel catalyst designs are 

essential. The electronic structure of the catalyst can be modified by adjusting crystal facets and 

introducing defects with different active sites in nanocatalysts. In this regard, theoretical 

simulations can be designed to investigate the impact of crystal structure on intermediate stability 

through both thermodynamic and kinetic analyses. Currently, there is a shortage of theoretical 

studies addressing electrolyte-electrode interactions under applied potentials with along solvent 

models in the production of multi-carbon products via CO2 reduction. Therefore, examining the 

effect of applied potentials on catalytic activity for multi-carbon products using a CEP model could 

provide valuable insights into changes in catalyst surfaces, selectivity determining intermediates, 

and the proposed reaction mechanisms. We believe that future studies should focus on various Cu-

based nanocatalysts with surface modifications and explore chemical reaction space beyond the 

current areas, as well as consider solvent and applied potential effects, to establish detailed reaction 

pathways for electrochemical CO2 reduction toward ethanol or other multi-carbon productions. 

Such research will support advancements in experimental trials and bring us closer to achieving 

successful CO2 reduction to ethanol formation or any desired multi-carbon products. 
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