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1 Abstract 

We propel photopolymerizable liquid crystalline (LC) shape memory materials from solely 

elastomeric performance to the thermomechanical performance of tough, yielding 

thermosets. LC elastomers are at the forefront of smart, stimuli-responsive materials 

development. To apply their properties to mechanically superior thermosets, we 

demonstrate main-chain incorporation of high quantities of preordered LC motifs into a 

densely crosslinked network via thiol-ene photopolymerization to achieve a new material 

class hybridizing the advantages of LC elastomers and liquid crystalline networks. A 

terminal alkene mesogen with a robust LC phase is combined with multiple trithiol 

comonomers and selected based on resulting polymer crystallinities (13-37%). The bulk 

materials exhibit high strength, stiffness and pronounced yielding under stress with 

elongations around 200%. Their excellent thermomechanical properties were explained 

by phase separation observed in atomic force microscopy. Furthermore, we demonstrate 

shape memory of these materials with fast, near-perfect shape imprinting (99%) and 

recovery (97%) over at least 20 cycles, and their light-based 3D printing at high 

temperature. 
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2 Introduction 

Liquid crystalline elastomers (LCEs) are lightly crosslinked polymer networks that show 

promise in multiple future-oriented industries like soft robotics,1-3 electronics4,5 and the 

medical industry6-8 because they exhibit unique reversible mechanical,9-11 optical,12,13 

electrical14,15 and thermal16-18 properties. One particularly outstanding feature is their 

ability to react to external stimuli, allowing modulation of mentioned properties on 

demand. These stimuli can be electricity,15 light,19,20 mechanical stress21 or temperature 

changes triggering reversible shape deformation (actuation) up to 400%22-28 or 

color/opacity changes.21,29 

LCEs are typically produced by pre-polymerizing an LC monomer and a chain extender, 

followed by alignment through stretching, rubbed surfaces, 3D printing30, or electrical or 

magnetic field exposure. The mesogenic groups may be located in the polymer backbone 

(main-chain LCE)31 or as a pendant group (side-chain LCE).32 After the alignment, a 

crosslinking step is employed, leading to a loosely crosslinked, elastomeric network with 

a well-defined structure. Thus, functional LCE materials are typically soft, elastic 

materials.24,33,34 

Liquid crystalline networks (LCN), or liquid crystalline thermosets, are highly crosslinked 

polymer networks containing mesogenic groups. Their crosslinking densities, and thus 

their properties, are similar to conventional thermosets, which may be obtained by 

polymerizing e.g., (meth)acrylate monomers with a high fraction of crosslinker. By aligning 

the mesogens in LCNs before polymerization, directional anisotropy in mechanical 

properties, in particular high strength in the direction of the alignment, can be achieved. 

However, these highly crosslinked materials are usually frozen in their glassy state 

exhibiting low crystallinity and actuation strains below 5%.24,35,36 Therefore, they are not 

suitable for use as smart materials in analogy to LCEs. 

The combination of structured microphases with high crosslinking densities is arguably 

one of the leading challenges in soft matter material design in general37 and for photo-

polymers and 3D printing of photopolymers in stereolithographic processes specifically.38 
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Mastering this challenge promises access to stiff, high load bearing materials with 

additional functionality such as shape memory. 

Herein, we propel 3D printable liquid crystalline shape memory materials from solely 

elastomeric performance to the thermomechanical performance of tough, yielding 

thermosets by utilizing Hot Lithography, which allows light-based printing at 

temperatures up to 140 °C. For this purpose, we have designed a mesogenic terminal 

alkene monomer to achieve a broad temperature range of the LC phase, which is stable 

even in the presence of non-LC thiol comonomers (Figure 1). The LC phase stability of 

this monomer is screened in combination with a variety of trifunctional thiol comonomers, 

which vary in molecular weight and rigidity. Furthermore, the liquid crystalline behavior 

before polymerization and the thermomechanical behavior after polymerization is  

 

 

Figure 1: Photopolymerization from the liquid crystalline phase. A) A photoreactive formulation comprising 

a liquid crystalline ene-monomer (LCM) and a low molecular weight trithiol crosslinker is heated above the 

monomers’ collective melting point, where it exhibits a self-organized nematic liquid crystalline phase. B) 

Irradiation leads to a crosslinked, highly crystalline thermoset. C) Monomer combination, which leads to the 

highest polymer crystallinity.  
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characterized. To confirm the hypothesized structure-property relationships, we elucidate 

the microstructure of the most crystalline materials. Finally, we successfully demonstrate 

shape-memory behavior and 3D printing for one monomer combination. 

3 Liquid crystalline monomer design 

As the key building block for highly crosslinked, crystalline polymer networks, we 

synthesized a novel difunctional liquid crystalline terminal alkene monomer (LCM, 

Scheme 1). We employ short six-carbon spacer chains to reach a high crosslinking density 

even with thiol-ene step growth polymerization. A manageable melting point (104 °C) 

allows processing and 3D printing and is achieved by avoiding a conventional aromatic 

ether bridge between mesogen and spacer. Instead, a cross-coupling reaction39 attaches 

the spacer directly to the core, which we found to reduce the melting point.40-42 A fully 

rod-shaped mesogenic core without side groups43 ensures a broad LC phase (104-172 °C, 

Supplementary Figure 9), which is particularly important for consistent curing within the 

LC phase, since adding a non-LC thiol comonomer will reduce the LC temperature range. 

The type of liquid crystallinity for pure LCM was determined to be nematic by X-ray 

characterization (Supplementary Figure 11). This aligns with the Schlieren patterns 

observed via polarized optical microscopy (Supplementary Figure 10).   

 

 

Scheme 1: Synthesis of liquid crystalline terminal alkene monomer LCM.  
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4 Comonomer selection 

For optimal thermomechanical and shape memory performance, crystalline domains 

should be distributed homogeneously throughout the polymer network and exhibit 

narrow domain size distribution. Both are supported best by a thiol-ene radical addition 

reaction mechanism. Since the aliphatic terminal alkene group cannot homopolymerize,44 

an even distribution of mesogenic groups along the main chains is ensured.  

The newly synthesized monomer was copolymerized with four different trifunctional thiol 

comonomers in photoreactive formulations (Figure 2 A), in which equal amounts of thiol 

and alkene groups were employed. To improve crystallinity, the mesogen load was 

maximized by avoiding dithiol chain extenders. Their liquid crystalline phase behavior was 

assessed on a polarized optical microscope and revealed a strong correlation of the 

weight fraction of LCM with the presence and stability of an LC phase (Figure 2 B-D). At 

nearly equal weight fractions of LCM and thiol in formulations containing 100% of the 

high-molecular weight comonomer ETTMP, no LC phase is observed. Mixtures of LCM 

with the comonomer TEMPIC increase the LCM weight fraction only slightly, hence an 

isotropic melt occurs across all temperature ranges, except for traces of liquid crystallinity 

close to the recrystallization temperature during cooling. The formulation containing 

TMPMP as comonomer displays a partial LC phase (less than 50% of the observed area 

covered by liquid crystalline regions, in the shape of small droplets), which persists for 

25 °C above the melting point. From LCM weight fractions of at least 65% on, distinct LC 

phases dominate across large areas of the formulation, which is the case for the low-

molecular weight crosslinker CHTT. To vary the crosslinking density, the flexible toughener 

ETTMP was added as substituent for CHTT in concentrations of 10 and 20 mol%, which 

did not cause a significant change of LC behavior. A stable LC phase across a temperature 

range of around 10 °C is formed by all three formulations, which gradually reduces in 

intensity before turning into a fully isotropic melt approximately 30 °C above the melting 

point. The exact weight fractions and phase transition temperatures are listed in the 

supplementary information (Supplementary Figure 14, Supplementary Table 1). Therein,  
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Figure 2: Evaluation of liquid crystalline behavior of formulations. A) Components used in formulations: LCM, 

as the sole ene-component and sole LC-forming monomer, photoinitiator TPO (0.5 mol%), radical stabilizer 

pyrogallol (0.05 wt%), trithiol comonomers with different molecular weights (Mthiol). B) Weight ratios of LCM 

to thiol comonomers (rMonomer) in formulations resulting from combinations of the monomers with equal 

stoichiometric amounts of terminal alkene and thiol groups. C) Polarized optical microscopy (POM) of 

formulations at their melting temperatures (Tm). Bright orange-brown areas are liquid crystalline, black areas 

are isotropic. D) Observations of LC phases in formulations at temperatures above the melting temperature 

(∆T > Tm). Liquid crystalline phases were considered as “partial” when at least 50% of the area observed during 

POM had turned into an isotropic melt. 

all recorded temperatures are subject to some interpretation (± 2-3 °C) as substance 

mixtures lead to more diffuse phase transitions compared to pure compounds.  

To reproduce the formulations’ liquid crystalline behavior during bulk polymerization, we 

designed a custom heated mold with precise temperature control (Supplementary Figures 

1, 2). Furthermore, a customized curing protocol was established to avoid heating the 
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formulation above its liquid crystalline phase due to polymerization heat, initially 

employing a low-intensity irradiation step followed by a high intensity final curing step, 

which resulted in a soft, semitransparent specimen in the case of ETTMP, and in milky, 

opaque specimens in all other cases. 

5 Crystallinity evaluation 

To quantify the degree of crystallinity trapped in the semitransparent to opaque bulk 

specimens upon curing of the liquid crystalline formulations, the phase transitions of the 

samples were followed by differential scanning calorimetry (Figure 3 A).   
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Figure 3: Crystallinity analysis and thermomechanical behavior of liquid crystalline polymer networks 

obtained by polymerizing LCM with various trithiol monomers. A) Differential scanning calorimetry (DSC) 

measurements of polymers. B) Transition enthalpies obtained via integration of DSC signals and thereof 

calculated approximate polymer crystallinities according to supplementary equation 2. C) Storage modulus 

(G’) and D) loss factor (tan δ) measured via dynamic mechanical analysis (DMA). An adjacent-averaging 

smoothing algorithm over 10 data points was applied for more effective analysis of loss factor curves.  
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The networks comprising ETTMP, TEMPIC and TMPMP exhibit a visible glass transition 

temperature signified by an endothermal baseline shift, while no glass transition is 

observed when CHTT is used as a comonomer. Endothermal peaks signifying melting 

transitions confirm that we achieve crystallinity in all cases. To our knowledge, this was 

not achieved to date without the use of a chain extender in LC thiol-ene networks.45-47 

Very high crystallinity is achieved using pure ETTMP as comonomer, as well as CHTT with 

smaller amounts of ETTMP. Use of TEMPIC and TMPMP results in much lower crystallinity. 

We postulate two different mechanisms as the cause of crystallinity in the investigated 

samples. The presence of an LC phase before polymerization aids crystallization of the 

CHTT-containing polymers, while use of the flexible, long-chain comonomer ETTMP 

enables the liquid crystalline groups to crystallize spontaneously during or after 

polymerization akin to a more loosely crosslinked typical liquid crystalline elastomer. 

None of these two conditions are met for the TEMPIC- and TMPMP-containing specimens, 

which leads to their low crystallinity. The degree of crystallinity (Figure 3 B) is 

approximated based on the percentage of LCM in the formulation according to 

Supplementary Equation 2, which calculates the percentage of LCM that has crystallized 

in the polymer, assuming that the thiol comonomer does not contribute to crystallization. 

This approximation leads to LCM-ETTMP networks reaching the highest relative 

crystallinity while exhibiting the second highest melting transition enthalpy. This is closely 

followed by LCM-CHTT networks, which exhibit the highest melting transition enthalpy 

but lower relative crystallinity due to a lower comonomer molecular weight compared to 

LCM-ETTMP.  

To determine whether crystallinity impacts the thermomechanical performance of bulk 

specimens, their storage moduli were determined as a function of temperature in dynamic 

mechanical analysis (DMA, Figure 3C-D). The storage modulus (G’) of polymer networks 

typically decreases with increasing temperatures, signifying a transition from elastic 

towards more viscous behavior. Thereby, the slope of the curve is a material-specific 

parameter that varies depending on whether the network undergoes first a glass 

transition at lower temperatures, where short-range polymer chain motions become 
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accessible, and then a melting transition at higher temperatures, where the crystalline 

regions lose their long-range order. The change in slopes for the CHTT-containing 

specimens indicates that the crystallinity of these networks is particularly pronounced. 

Most intriguingly, crystallinity in CHTT-containing specimens shifts the decline of the 

storage modulus to higher temperatures, indicating a significant impact of crystallinity on 

the materials’ thermomechanical behavior, which goes hand in hand with considerable 

enlargement of the application temperature window towards higher temperatures. For 

less crystalline samples, where the viscous behavior is more dominant, transitions in the 

loss factor, which is the ratio of loss to storage modulus, are more pronounced than 

changes in the storage modulus and hence convey the melting transition better. Its 

maxima signify the glass transition temperatures (Tg) and melting point (Tm). All glass 

transitions occur between -25 °C and room temperature, with higher Tgs for more rigid 

network structures due to shorter trithiol arms of the comonomer. Upon close 

examination of the curves, two glass transitions are visible if two trithiol comonomers are 

present in the polymer. Most interestingly, all networks exhibit maxima corresponding to 

the melting of crystalline domains, occuring at 38 °C for the loosest polymer network 

containing purely ETTMP as a comonomer, and above 80 °C for all other samples. This 

corroborates the DSC results that all networks exhibit a certain degree of crystallinity, 

whereby CHTT-containing networks have the most pronounced effect on the 

thermomechanical behavior. This is consistent with the determined degrees of 

crystallinity, with the exception of the network containing only ETTMP as comonomer. 

Even though this network is more crystalline, its loose network structure dissipates the 

stiffening effect that the crystalline domains should exhibit in the dominating rubbery 

matrix. 

Early crystallization during polymerization could further cause an immobilization of 

reactive groups and thus affect the conversion of reactive groups in the different 

copolymer networks. Therefore, we determined reactive terminal alkene conversion via 

infrared spectroscopy, which was above 94% in all networks (Supplementary Figure 16). 

This indicates that the preordered state of the formulations aids homogeneous curing 
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regardless of crystallinity and does not inhibit complete reactive group conversion, which 

arguably sets these materials apart from other highly crystalline thermosets. 

6 Mechanical and microstructural characterization 

Due to the pronounced effects of crystallinity on the storage modulus observed in DMA 

and the excellent homogeneous and complete curing behavior of the bulk specimens, we 

anticipated excellent thermomechanical performance of these materials. Further tests 

exclude the comonomers TEMPIC and TMPMP as they result in a relatively unremarkable 

storage modulus progression and low crystallinity. Indeed, tensile tests reveal high tensile 

strength of around 19 MPa for the polymer employing pure CHTT as the comonomer 

(Figure 4 A). However, the high degree of crystallinity paired with a rigid network matrix 

causes brittle fracture at around 4% elongation. Conversely, using ETTMP as the exclusive 

comonomer results in a low tensile strength with a lower elongation at break than the 

specimen containing only 20% thiol end groups of ETTMP. When attempting to toughen 

the polymer by tuning the network density through substitution of CHTT with 10 mol% 

ETTMP, the tensile strength decreases but the elongation at break triples. Addition of 

20 mol% ETTMP hardly affects the yield strength of the material compared to 10 mol% 

while massively improving the elongation at break to 200%. Together with the 

pronounced yield point and necking of the specimen, this photopolymer network 

remarkably resembles thermoplastic behavior.  

To corroborate the assumption that crystallinity causes this shift in thermomechanical 

performance, we performed micro- and nanostructural characterization of the polymers. 

Polarized optical microscopy of 10 µm thick microtome cuts was performed, which reveals 

significant differences in the microstructure depending on the thiol crosslinkers 

incorporated into the polymer (Figure 4 B). Using pure CHTT as comonomer, a colorful 

Schlieren texture reminiscent of a nematic liquid crystalline phase is observed, leading to 

our interpretation of “trapping” the liquid crystalline phase. This effect is also observed 

when mixtures of CHTT and ETTMP are studied. However, the texture appears to be much 

more finely distributed, leading to a grainy multicolored appearance. Higher crystallinity 
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is identified through higher optical anisotropy in the purely CHTT-containing sample, 

which is signified by its lighter color under the crossed polarizers. With higher ETTMP-

content, the color appears darker as crystallinity decreases. Pure ETTMP as comonomer 

leads to a spotted texture with alternating crystalline and amorphous areas. We postulate 

this large spherulite texture as the reason for the samples’ subpar tensile properties. 

Potentially, a weakening effect occurs as the crystalline areas are not distributed 

homogenously enough throughout the bulk to achieve a stiff material. Therefore, when 

the material is strained, energy is solely absorbed by the amorphous regions.   

 

 

Figure 4: Mechanical and microstructural characterization of polymers exhibiting the highest degree of 

crystallinity, derived from LCM and the trithiol comonomers CHTT and ETTMP. A) Representative tensile 

testing curves of the polymers and corresponding average strength and elongation at break. B) Polarized 

optical microscopy of 10 µm thick microtome cuts of polymer samples. C) Atomic force microscopy phase 

images (2x2 µm) and resulting histograms of these areas.  
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Additionally, atomic force microscopy (AFM) enhanced by force-distance spectroscopy 

was conducted on polished surfaces (Figure 4 C). Phase imaging allows for a qualitative 

assessment of material properties (stiffness, viscoelasticity, adhesion or others) across the 

scanned surface. We observed a strong phase separation between a softer and harder 

phase for the pure CHTT-containing polymer with little interphase content. By utilizing 

force-distance spectroscopy and calculating the Young’s modulus based on the DMT 

model,48 quantitative assessments of local properties can be made. We identified the 

bright-colored areas as the harder phase, as they display an approximately 60% higher 

Young’s modulus than the dark-colored areas (Supplementary Figure 18).  

When the toughener ETTMP is employed to substitute CHTT in concentrations of 10 and 

20 mol%, the difference in modulus between soft and hard phases was reduced to 20% 

and 17%, respectively. An increase of interphase content is observed along with an overall 

reduction of modulus in both cases. 

In comparison, pure ETTMP as a comonomer does not give the characteristic texture of 

the other measured samples and the monomodal phase shift diagram indicates that no 

phase separation takes place. This is consistent with the rubbery behavior of the sample 

observed in DMA and tensile tests.  

7 Shape memory behavior 

To investigate shape memory behavior, a bulk cured sample from LCM and CHTT was 

examined. For the quantitative assessment of shape recovery, two key values were 

required: In an initial assessment the softening temperature, at which the specimen 

becomes malleable, was determined as 138 °C (Supplementary Figure 20), which also 

matches the melting point determined via DMA (Figure 3 C, D). As intended, the 

specimen remained in its deformed shape after cooling and recovered its initial shape 

upon reheating. Additionally, the approximate maximum strain at 138°C was determined 

to set the elongation limit for shape recovery experiments. After heating the material 
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above 138 °C and carefully stretching it manually, 74% elongation were achieved before 

fracture occurred (Supplementary Figure 21).  

Based on these key values, quantitative analysis of shape recovery was conducted. For this 

purpose, the DMA instrument was used to expose a tensile test specimen to programmed 

cycles of (i) heating to 140 °C (ii) stretching to 50% strain, (iii) cooling to room 

temperature, (iv) releasing the applied force and (v) reheating to 140 °C without applying 

external stress (Figure 5 A, Supplementary Figure 22). From (iv) the occurring contraction 

of the specimen allows the calculation of the shape fixity ratio49, which is the percentage 

of shape deformation that persists after shape imprinting. (v) is used to calculate the 

percentage of recovery of the remaining strain. For all cycles except the first, excellent 

shape recoveries above 96% were achieved. Even more impressively, shape recovery 

continuously improved and reached numbers above 98% during the final cycles due to 

the training phenomenon.49 Throughout all measurements, near-complete shape fixity 

was achieved (99%) with an average shape recovery of around 97%.  

8 3D printing  

To access the full potential of the semicrystalline polymer networks, we investigated their 

processing into arbitrary shapes via 3D printing. We chose the formulation containing 

100% CHTT as crosslinker, which led to the highest absolute crystallinity in bulk studies 

along with the highest tensile strength. A custom-built heated digital light processing 

(DLP)-based 3D printer was utilized, with which the temperature can be controlled 

precisely enough to keep the entire formulation in its liquid crystalline state throughout 

the printing process. In an initial test, we irradiated a droplet of formulation in the heated 

vat, which causes solidification in its crystalline state to take place after around five 

seconds (Supplementary Video 1). A subsequently printed resolution test chip (Figure 

5 B) demonstrates excellent printing resolution after removing the excess formulation by 

sonication of the specimen in toluene (Figure 5 C). Good layer adhesion of macroscopic 

3D objects was demonstrated by printing pyramid specimens (Figure 5 B). 

https://doi.org/10.26434/chemrxiv-2024-h62w7 ORCID: https://orcid.org/0000-0002-0161-0527 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-h62w7
https://orcid.org/0000-0002-0161-0527
https://creativecommons.org/licenses/by/4.0/


14 

 

Figure 5: A) Cyclic shape memory test of bulk-cured polymer cured from monomers LCM and CHTT. In red, 

the length of the parallel section of the tensile test specimen used in the test is displayed. In grey, the 

temperature cycles are shown. The numbers above the graph indicate the shape fixity ratio and shape recovery 

percentages for each cycle. B) Top- and front-view of 3D printed specimens of LCM-CHTT polymer. C) Light 

microscopy of print resolution test chip depicting “.25” text in well-resolved detail with a dot diameter of 

250 µm and font thickness of 125 µm. D) Shape memory behavior of printed part: Upon heating above the 

crystallite melting point, the sample can be deformed akin to an elastomeric polymer. After cooling, the 

polymer remains in the deformed shape until it is again heated above the crystallite melting point (138 °C), 

where it returns to its original printed shape.  

DSC measurements of the printed part confirm their crystallinity, albeit less pronounced 

(13%) with a broader melting temperature range (Supplementary Figure 19). This could 

be explained by the faster solidification due to more intense irradiation leading to 
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complete crosslinking before crystallinity can develop. Further increase in crystallinity may 

be possible by decreasing the irradiation intensity while increasing the exposure time, 

which would, however, have a negative impact on the printing speed. To demonstrate 

that 3D printing can produce the same shape memory effect observed in bulk specimens, 

a 3D printed spiral was subjected to a shape memory test, in which it was heated and 

stretched into a straightened shape, which solidified rapidly upon removal of the heat 

source. Upon reheating, the spiral shape was restored (Figure 5 D, Supplementary Video 

2). Typically, after 3-4 cycles, the pressure of the tweezers used to hold the specimen in 

place caused a piece to break off. Nevertheless, the shape recovery process was repeated 

successfully 20+ times. We attribute this consistently high shape recovery over many 

cycles to the unique combination of high crosslinking density with high degree of 

crystallinity in the presented material. 

9 Conclusions 

Herein, a neat thiol-ene photoclick polymerization from the liquid crystalline phase is 

demonstrated for the first time as a powerful method to homogeneously incorporate 

liquid crystalline groups into the main chain of densely crosslinked polymer networks. 

Tuning the comonomer molecular weight to achieve liquid crystalline preordering 

enhances the polymer crystallinity and crosslink density, which are typically competing 

properties. Further comonomer adjustment allows the programming of mechanical 

properties from those of a stiff, hard thermoset to those of a tough, yielding thermoplastic 

with over 200% elongation. Micro- and nanostructural analysis indicate phase separation 

between soft and hard phases as a result of the liquid crystalline preordering, effectively 

acting as a thermomechanical toughening mechanism. Lastly, we demonstrate 3D printing 

of one of these materials using the Hot Lithography method, and its potential as a 

functional, smart material that additionally displays shape memory behavior with a shape 

imprinting response of over 99% fixity and shape recovery values of above 98% over 

numerous cycles after an initial acclimatization phase. The high shape recovery 
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temperature enables a broad application temperature range (0-100°C) without 

unintended shape recovery. 

The expansion of mechanical properties of printable shape-memory polymers from 

elastomeric to stiff, strong and tough holds great potential in many smart material 

applications. For example, a pre-programmed shape change of a structural element from 

one stiff, load bearing shape to a different one could have applications in small, remotely 

or even autonomously controlled electronic or mechanical devices. 

10 Methods 

Monomer synthesis and characterization 

Detailed synthetic procedures and analysis results are available in the Supplementary 

Information (Chapter 3).  

The precursor to LCM, 4-(5-hexen-1-yl)benzoic acid methyl ester, was synthesized from 

6-bromo-1-hexene and 4-chlorobenzoic acid methyl ester according to Fürstner et al.39 

in an iron-catalyzed coupling reaction, which gave the product as a clear oil (35% after 

distillation). The methyl ester was cleaved under alkaline conditions, which yielded 4-(5-

hexen-1-yl)benzoic acid as an off-white solid (94% after recrystallization). The carboxylic 

acid was then subjected to a Steglich esterification according to Zhang et al.50 with 

hydroquinone, yielding LCM as a white powder (58% after recrystallization). The monomer 

was characterized by 1H- and 13C-NMR, high-resolution mass spectrometry, dynamic 

scanning calorimetry, polarized optical microscopy and X-ray diffraction (Supplementary 

Information Chapter 3.1.3). 

Formulation preparation and analysis 

For all formulations, 0.05 wt% (based on total formulation weight) of the inhibitor 

pyrogallol was weighed into a brown glass vial, followed by 0.5 mol% (based on terminal 

double bonds) of photoinitiator TPO. Next, the thiol(s) were added, and the mixture was 

carefully heated to approximately 50 °C and stirred on a vortex mixer to dissolve the 

inhibitor and initiator to improve stability and homogeneity of the formulation. Lastly, 
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LCM was added, and the mixture was heated to approximately 120 °C and fully 

homogenized using a vortex mixer. An equimolar ratio of thiol and alkene end groups 

was used in all cases. Monomer purity was not considered for this ratio. Formulation liquid 

crystallinity was evaluated using a polarized optical light microscope with crossed 

polarizers (Supplementary Information Chapter 4.1). 

Bulk curing 

To obtain bulk polymer specimens from the formulations, the formulation components 

were molten and homogenized as described above and poured into a custom-built 

heated mold, which allows accurate temperature control (Supplementary Figures 1 and 

2). The irradiation protocol was optimized to ensure homogeneous curing from the liquid 

crystalline state without temperature variation due to evolving polymerization heat. The 

sample thickness was approximately 2 mm. The mold was preheated to 100 °C and an 

initial irradion step was conducted for 300 s at 1.5 mW cm-2 using a 405 nm LED light 

source. Afterwards, a second irradiation was employed at 290 mW cm-2 for 180 s using a 

365 nm LED light source. These irradiation steps were repeated after the specimens were 

flipped carefully in the mold.  

Polymer network analysis 

To measure dynamic mechanical analysis (DMA) of bulk cured samples using the heated 

mold, cuboid samples (DIN EN ISO 6721) were cured as described previously, and sanded 

to correct any geometric irregularities. Measurements were performed in torsional mode 

in a temperature range of -50 to 200 °C with a heating rate of 2 °C min-1, a shear strain of 

0.1% and a frequency of 1 Hz.  

To perform differential scanning calorimetry (DSC), 3-5 mg of the polymer networks were 

weighed into aluminium DSC crucibles and heated to 200 °C from room temperature, 

after which the sample was cooled to -90 °C. With this uniformized thermal history, the 

samples were once again heated to 200 °C. All heating and cooling rates were constant 

at 10 °C min-1. All reported transition temperatures and enthalpies were taken from the 

second heating cycle. Crystallinity calculations from obtained enthalpies are described in 
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depth in the Supplementary Information (Chapter 5.1.1, Chapter 5.2). Polymer networks 

were either cured in bulk in the heated mold or 3D printed, as stated in each case. 

To perform tensile tests, dogbone specimens were cured according to ISO 527 test 

specimen 5b in bulk in the heated mold. The specimens were sanded to ensure even 

thickness and clamped into the device, on which the traverse speed was set to 

5 mm min-1.  

Cryo-microtome cuts were prepared at a thickness of 10 µm at -80 °C with a glass knife 

and analyzed using polarized optical microscopy as described above.  

Atomic force microscopy was conducted on bulk cured polymer specimens utilizing the 

heated mold. These specimens were embedded in a clear epoxy resin and polished to 

achieve a smooth surface. Imaging was performed in intermittent (tapping) mode at a 

scan rate of 0.7 Hz, using an AC160TS cantilever with a spring constant of 26 N m-1, and 

a tip radius of 7 nm. The phase images were compared with topography images to verify 

that the observed features were not artifacts of surface unevenness. 

Shape memory behavior was analyzed by fastening a tensile test dogbone specimen into 

a dynamic mechanical analysis device equipped with a tensile test sample bracket. The 

sample was heated to 140 °C with a heating rate of 20 °C min-1 and, after an equilibration 

period, strained by 50% based on the length of the parallel section of the specimen. The 

sample was air-cooled to room temperature using a cooling rate of 5 °C min-1. The strain 

previously applied by the measurement device was removed to test the ensuing 

contraction of the sample (shape fixity). Next, the sample was heated to 140 °C again with 

a heating rate of 10 °C min-1 under no external stress and held at this temperature for 

70 min. The contraction of the sample during this process was recorded and divided by 

the sample strain after it was allowed to contract to calculate the shape recovery. This 

process was repeated up to 10 times during one measurement. The equations used to 

calculate shape fixity and shape recovery are given in the Supplementary Information 

(Supplementary Equations 3 and 4).  
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3D printing and post processing 

3D printing was performed using a digital light processing printer at a vat temperature of 

105 °C and using an LED with its emission maximum centered around 385 nm 

(Supplementary Figure 4). 50 µm thick layers were exposed for 11 s each with an 

irradiation intensity of 25 mW cm-2. The vat was coated with formulation for each layer by 

simply moving the building platform upwards and back down into printing position. 

Since the formulation becomes solid at room temperature, post-processing of printed 

parts requires careful removal of the solid with a suitable solvent by sonication. In the 

optimized process, specimens were sonicated in toluene for around two minutes at 

approximately 40 °C. 
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