Harnessing Oxidized Amines as Robust Sorbents for Carbon Capture

Authors: Sijing Meng¹, Tristan H. Lambert^{1*}, Phillip J. Milner^{1*}

Affiliations:

¹ Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States.

*Corresponding authors. Email: Tristan H. Lambert. th136@cornell.edu, Phillip J. Milner. pjm347@cornell.edu.

Abstract

5

Carbon capture and sequestration (CCS) is imperative to mitigating climate change¹. Aqueous amine solutions are the leading technology for CO₂ separations², but they suffer from chemical 10 instability under scrubbing conditions, corrosiveness, and toxicity, hindering their long-term deployment³⁻⁵. Herein, we demonstrate that tertiary amine *N*-oxides, an oxidative degradation product of amines^{6,7}, can remove CO₂ from dilute streams, including flue gas from a natural gasfired power plant. Extensive spectroscopic and computational studies support that the non-toxic,

non-corrosive, and inexpensive 4-methylmorpholine N-oxide (MMNO) captures CO2 under humid 15 conditions via the formation of a hydrogen-bond-stabilized bicarbonate (HCO₃⁻) species, despite being significantly less basic than an amine. MMNO exhibits improved oxidative and thermal stability compared to structurally similar amines, highlighting the potential of N-oxides to complement traditional amine-based scrubbers for industrial carbon capture applications.

20 Main

25

Following current trends in greenhouse gas emissions, the average temperature of the Earth's surface will inevitably warm by 1.5 °C, the global limit agreed to under the 2015 Paris Agreement⁸, by as early as 20349. Due to this urgent situation, carbon capture and sequestration (CCS) from fossil fuel-fired power plants and relative hard-to-abate sectors plays a key role during clean energy transition to reach international climate targets. Although global CCS deployment has bloomed in recent years to reach a capacity of ~50 Mt CO₂ captured and stored annually^{10,11}, this amount only accounts for 0.6% of the value needed (>8 Gt) to achieve net zero CO₂ emissions, consistent with the Paris Agreement 1.5 °C limit, by 2050^{12,13} (Fig. 1a). Clearly, this disparity requires a large expansion of CCS deployment worldwide to meet the climate mitigation targets over the coming decades.

30

Since their conception nearly a century ago¹⁴, aqueous amine scrubbers have emerged as the most technology-ready system for CCS². The first-generation technology using monoethanolamine (MEA) and later advances using secondary/tertiary amines demonstrate high selectivity for CO₂ via reversible ammonium carbamate formation under dry conditions and ammonium bicarbonate

 (HCO_3^{-}) and/or carbonate (CO_3^{2-}) formation under humid conditions (Fig. 1a)¹⁵. However, amines 35 suffer from several critical drawbacks that hinder their widespread deployment. First, high regeneration temperatures (>100 °C) in temperature-swing processes are needed to reverse the strong binding of CO₂ ($-\Delta H_{abs}$ > 12 kcal/mol)¹⁶, which accounts for 70–80%^{17,18} of the total energy cost required to continuously operate a scrubber. Second, high operation temperatures and the presence of oxygen combined with leached metal ions lead to significant thermal and oxidative

- 5 amine degradation into over 100 reported products, necessitating continuous replacement and complex reclaiming processes^{3,18–22}. The decomposition of amines, which is hard to avoid due to their highly electron-rich, nucleophilic, and basic nature, adds an additional 10% to the overall cost of carbon capture systems²³. Last, amines are toxic, volatile, and corrosive, which presents challenges regarding their safe handling on multi-ton scale^{4,5,24,25}. As such, replacements for
- 10 amines that maintain their reactivity-based selectivity for CO₂ while also demonstrating improved stability and reduced energy use, corrosiveness, volatility, and toxicity, would greatly accelerate the global adoption of CCS.

One type of reported oxidation products of tertiary amines are the corresponding trialkylamine *N*-oxides^{6,7} (Fig. 1b). The formation of *N*-oxides would normally be considered a dead-end for carbon capture due to the loss of the nucleophilic and basic nitrogen center. Nonetheless, *N*-oxides are

- 15 capture due to the loss of the nucleophilic and basic nitrogen center. Nonetheless, *N*-oxides are highly prevalent in both biological and industrial settings for a variety of applications, as they are generally non-toxic and non-corrosive^{26–28}. For example, trimethyl amine *N*-oxide (TMAO) is found in deep-sea organisms as an osmolyte to prevent denaturation of vital proteins^{29,30}. Smallmolecule *N*-oxides, specifically *N*-methylmorpholine *N*-oxide (MMNO), are used industrially in
- 20 the Lyocell process to dissolve cellulose³¹⁻³⁴. Long-chain and polymeric *N*-oxides are used as surfactants in cleansing products such as detergents and shampoos, and industrially as antifouling reagents and kinetic hydrate inhibitors^{26,35,36}.

Herein, we demonstrate that oxidation of trialkylamines to the corresponding trialkylamine *N*-oxides does not preclude their use for carbon capture, as weakly basic MMNO is still capable of
binding CO₂ under humid conditions via the formation of a hydrogen-bond-stabilized HCO₃⁻ species (Fig. 1c). Unlike amines, MMNO exhibits good oxidative and thermal stability, is minimally volatile³⁷, and binds CO₂ weakly enough to allow for facile release at room temperature in a simulated vacuum swing process and ~ 65 °C in a simulated temperature swing process. Along with their similar structural tunability to amines, these promising features suggest that
trialkylamine *N*-oxides such as MMNO may serve as industrially viable alternative for amines

with improved longevity and reduced operating costs.

Fig. 1. Evolution and challenges of carbon capture and sequestration (CCS) | **a**, Evolution of amine-scrubbing technology from 1st generation (G1) monoethanolamine (MEA) to secondary/tertiary amines, and gap between current CCS capacities and required capacities. **b**, Oxidative instability limits the large-scale employment of amine-scrubbing technologies under industrially relevant conditions. **c**, CO₂ capture using 4-methylmorpholine *N*-oxide hydrate (this work).

Role of water in CO₂ capture with MMNO

5

To probe whether MMNO is capable of reversibly binding CO₂, ¹³C nuclear magnetic resonance (NMR) experiments in wet deuterated dimethyl sulfoxide (DMSO-D₆) were conducted at 25 °C (Supplementary Fig. 3). The presence of MMNO induced significant broadening of the resonance corresponding to dissolved CO₂ (124–125 ppm, see Supplementary Fig. 5 for comparison with non-broadened resonances); in addition, a new broad resonance (158–159 ppm) corresponding to a carbonyl (C=O)-containing species was observed. The broad nature of the observed resonances indicates that free CO₂ and the new species are undergoing slow-intermediate exchange on the ¹³C NMR time scale ($k_{ex} < |\Delta v|$)³⁸. As such, experiments were conducted with ¹³CO₂ in anhydrous DMSO-D₆ to better visualize the chemically bound ¹³CO₂ adduct and to carefully control the equivalents of H₂O present in solution (Fig. 2a). With water or anhydrous MMNO alone, no new

species form upon dosing the solution with ¹³CO₂. However, when an equimolar solution of H₂O and MMNO is dosed with ¹³CO₂, a broad new resonance appears at 158–159 ppm, which is assigned to a ¹³CO₂ adduct of MMNO and H₂O (MMNO•H₂O•¹³CO₂) containing a C=O group (the same is observed for up to 20 equivalents of H₂O, see Fig. 2a, 3a, and Supplementary Fig. 13). The free ¹³CO₂ resonance is also significantly broadened due to chemical exchange interactions (Fig. 2a). Notably, bubbling N₂ through the solution for 60 minutes at room temperature

(simulating a vacuum swing) leads to full desorption of chemically bound ¹³CO₂, supporting that the reaction between MMNO, H₂O, and ¹³CO₂ can be readily reversed (Fig. 2a). No degradation or rearrangement of MMNO occurred under these conditions, as confirmed by ¹H–¹³C 2D HMBC spectroscopy (Supplementary Fig. 39). Notably, CO₂ could also be released at ~65 ° C in a simulated temperature swing process, reflecting the lower potential regeneration energy costs of MMNO compared to amines (Supplementary Fig. 29).

5

10

It is clear that the presence of H₂O is vital for MMNO to react with CO₂. Unlike amines, *N*-oxides are not strongly nucleophilic nor Brønsted basic (pK_a of R₃N⁺–OH = 4.5–5), yet they are highly Lewis basic and one of the strongest neutral organic hydrogen-bond acceptors due to the polar N \rightarrow O bond (dipole moment ~5 D) and the formal negative charge on O^{26,39}. To better understand the role of H₂O in the CO₂ capture process, MMNO hydrate (MMNO•(H₂O)_n) formation was first

probed using the interaction-induced chemical shift perturbations of MMNO as the host and H₂O as the guest molecule in DMSO-D₆. NMR titration experiments were performed with three different MMNO concentrations (0.125 M, 0.25 M, and 0.5 M) with increasing equivalents of water. At all three host concentrations, the ¹H chemical shifts were perturbed as H₂O was titrated

(Fig. 2b, Supplementary Figs. 6, 8, and 10; see Equation 1 in Supplementary Information), consistent with fast-exchange interactions between MMNO and its hydrates on the ¹H NMR time scale ($k_{ex} >> |\Delta v|$) ³⁸. Among the nuclei monitored, H_a and H_d of MMNO experience the largest perturbations, indicating that they participate in the interaction with H₂O most closely. The NMR

titration experimental data were fit to five binding models corresponding to host:guest ratios of 1:1 (monohydrate) or 1:2 (dihydrate) using Bindfit with a global non-linear regression method⁴⁰⁻⁴² (see Supplementary Information for theory, and Supplementary Table 1 for model features). The 1:2 full model yielded the best cov_{fit} (see Supplementary Table 1 for details), indicating that the binding of the second H₂O molecule is made weaker by the binding of the first, with an interaction

25 parameter (α) of 0.2 (Equation 11 in Supplementary Information). Together, these NMR studies support the association of H₂O with MMNO to form both MMNO•H₂O and MMNO•(H₂O)₂, with the maximum relative molar ratio of MMNO•H₂O reached at 5–10 equivalents of H₂O added relative to MMNO (Fig. 3b).

Intermolecular 2D nuclear Overhauser effect spectroscopy (NOESY) experiments were conducted
to further probe the nature of the interactions between H₂O and MMNO (Fig. 2c–d and Supplementary Figs. 20–21). With 1 equivalent of H₂O in 0.25 M MMNO in DMSO-D₆ at a long mixing time of 600 ms, the NOESY spectrum shows several major cross-peaks resulting from the close contact between the H₂O proton (3.6 ppm) and the methyl H_c (3.0 ppm) and α (to N)-equatorial H_d (2.7 ppm) protons of MMNO (Fig. 2c). This spectrum provides direct evidence for
the preferred H₂O binding site (A) for MMNO•H₂O, in which H₂O hydrogen bonds to the oxygen of MMNO in an orientation pointing away from the ring. In contrast, with 20 equivalents of H₂O, an additional intense cross-peak becomes visible. The new peak represents an interaction between the H₂O proton (3.7 ppm) and β (to N)-axial H_a (4.0 ppm), revealing the second binding pocket (B) for water to hydrogen bond with MMNO in an orientation pointing towards the ring in

https://doi.org/10.26434/chemrxiv-2024-817j5 ORCID: https://orcid.org/0000-0002-2618-013X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

MMNO•(H₂O)₂ (Fig. 2d). Combining the NMR titration and NOESY experiments, the mechanism of MMNO hydrate and dihydrate formation can be recapitulated (Fig. 2e).

Fig. 2. Role of water in MMNO-H₂O-DMSO system | a, ¹³C{¹H} NMR spectra of ¹³CO₂-dosed MMNO (0.25 M, DMSO-D₆) with different equivalents of water, control experiments with no MMNO, and after N₂ purging for 1 hour. b, ¹H NMR spectra of NMR titration experiments of MMNO (host, 0.25 M in DMSO-D₆) and water (guest, 0, 0.5, 1, 2, 3, 4, 5, 10, 20 equivalents). H_a, H_b, H_c, H_d for MMNO were tracked for perturbation. See Supplementary Information for experiments with other host concentrations. c, 2D NOESY spectrum of MMNO (0.25 M, DMSO-D₆) with 1 equivalent of water at 25 °C at a mixing time of 600 ms. d, 2D NOESY spectrum of MMNO (0.25 M, DMSO-D₆)
10 with 20 equivalents of water at 25 °C at a mixing time of 600 ms. e, The most plausible mechanism (1:2 full model) of MMNO-H₂O host-guest binding determined from the NMR titration experiments via NMR data fitting using nonlinear regression methods, and association constants (*K*₁ and *K*₂). See Supplementary Information for details of theories and calculations. Numbers are reported as "average ± standard error" among three experiments with different

15

host concentrations.

Mechanism of CO₂ capture with MMNO•H₂O

To interrogate the formation of MMNO•H₂O•¹³CO₂, NMR titration experiments with MMNO (0.25 M in DMSO-D₆) in the presence of ¹³CO₂ were conducted (Fig. 3a). By integrating the resonances corresponding to dissolved ¹³CO₂ and MMNO•H₂O•¹³CO₂, the relative mole fractions

- ⁵ of both species as a function of H₂O equivalents added could be determined (Fig. 3b). The mole fraction of MMNO•H₂O•¹³CO₂ relative to dissolved ¹³CO₂ maximizes at 2–10 equivalents of H₂O added relative to MMNO, which is a similar MMNO:H₂O ratio at which the concentration of MMNO•H₂O maximizes in the absence of CO₂ (highlighted with green in Fig. 3b). This finding indicates that MMNO•H₂O is likely responsible for CO₂ capture under these conditions. Likewise,
- 10 dosing ¹³CO₂ into solutions of MMNO in D₂O (spanning from ~22 to ~222 equivalents of D₂O) yields a new resonance (~160 ppm) corresponding to a MMNO•¹³CO₂ adduct, which was not observed in D₂O alone (Fig. 3c). Furthermore, the relative integrations of free ¹³CO₂ and this adduct showed a negative correlation between the concentration of MMNO•¹³CO₂ and the D₂O:MMNO ratio.
- 15 Although observing MMNO•H₂O•¹³CO₂ directly by ¹H NMR is challenging due to the dynamic fast-exchange nature of ¹³CO₂ binding on the ¹H NMR time scale (Supplementary Fig. 14), the chemical shift observed for H₂O further supports the formation of a ¹³CO₂ adduct. For example, at 4 equivalents of H₂O relative to MMNO in DMSO-D₆ (see Supplementary Figs. 14–17 for other equivalents), the exchange among free H₂O, H₂O•MMNO, and MMNO•(H₂O)₂ results in a shift
- 20 downfield from 3.4 ppm to 3.6 ppm due to strong hydrogen-bonding interactions between H₂O and MMNO (Fig. 3d). Markedly, in the presence of ¹³CO₂, the resonance of H₂O shifts to 3.9 ppm and further broadens (Fig. 3d), which likely results from exchanging with a new species possessing a much more downfield-shifted proton (i.e., MMNO•H₂O•¹³CO₂) on top of the exchange pathways discussed above.
- Based on the observations above, the most likely mechanistic scenario is that MMNO•H₂O—and not free MMNO—reacts with CO₂ via carbonic acid (H₂CO₃, $pK_{a(apparent)} \sim 6)^{43,44}$, HCO₃⁻ ($pK_a \sim 10)^{43}$, or CO₃²⁻ formation. The latter is unfavored because, unlike amines, MMNO is not basic enough to deprotonate HCO₃⁻ to form CO₃²⁻. An alternative mechanistic pathway in which the oxygen of the *N*-oxide directly attacks CO₂ was ruled out based on ¹⁵N and ¹H⁻¹³C 2D HMBC
- 30 spectroscopies and density functional theory (DFT) calculations (see Supplementary Figs. 42, 43, and DFT discussions). To distinguish among these possibilities, ¹³C NMR experiments were conducted to benchmark the chemical shift of the CO₂ adduct formed with MMNO•H₂O in D₂O against various HCO₃⁻ and CO₃²⁻ salts (Fig. 3e). The experimental ¹³C NMR chemical shift of MMNO•¹³CO₂ in D₂O (160 ppm) is closer to that observed for HCO₃⁻ (160.6–160.7 ppm) than for
- 35 CO₃²⁻ (161.1–168.5 ppm) or that predicted for H₂CO₃ (152 ppm, see Supplementary Table 4 for computational details). Furthermore, the pH was monitored when CO₂ was bubbled through a 0.25 M aqueous MMNO solution and ultrapure water for comparison (Fig. 3f and Supplementary Fig. 41). In pure water, the pH drops and then stabilizes at 4.36, at which only dissolved CO₂ and H₂CO₃ are present^{43,45}. However, in the presence of MMNO, a steady state at pH 6.19 was observed,

corresponding to the apparent pK_1 of 6.35 at which no CO_3^{2-} is present in aqueous solutions⁴³. Together, these findings support that carbon capture with MMNO•H₂O occurs via formation of a HCO_3^- species stabilized by hydrogen bonding with MMNO.

DFT calculations were next performed with Gaussian 16⁴⁶ at the ωB97XD⁴⁷ level of theory at 298.15 K in DMSO as the solvent to support the proposed pathway (Fig. 3g). Optimized structures of MMNO•H₂O(A) and MMNO•(H₂O)₂ were found to have H₂O bound in preferred orientations that match well with the NOESY experiments (Fig. 3g and Fig. 2c–d; see Supplementary Information for the less favored MMNO•H₂O(B)). Three possible and energetically similar adducts (1–3) based on different conformations^{48–51} of MMNO–H⁺…HCO3⁻ or MMNO···H₂CO3 can be envisioned (Fig. 3g). For structures 2 and 3, the O…O distances (2.45 Å for 2, 2.44 Å for 3) for the most important hydrogen bond interactions (O–H⁺…O⁻) are much shorter than in 1 (2.55 Å and 2.58 Å), within the range of strong hydrogen-bonding interactions (2.2–2.5 Å)⁵². Further, C–H…O interactions are also predicted in optimized structures 2 and 3. The ¹³C chemical shifts

- corresponding to the C=O carbons in 1–3 were also predicted using the gauge-independent atomic orbitals method^{53,54} at the same level of theory in DMSO (see Supplementary Table 4 for chemical shift calculations in H₂O). The calculated chemical shift (155 ppm) of **3** agrees best with the experimental chemical shift (159 ppm) of MMNO•H₂O•¹³CO₂ in DMSO-D₆, making **3** the most plausible structure for this adduct. However, due to the highly dynamic nature of this reaction, we cannot rule out involvement of other species. Further, our calculations also support that
- 20 MMNO•H₂O reacting with CO₂ is favored by $\Delta\Delta H = 2.34-2.98$ kcal/mol compared to MMNO•(H₂O)₂ formation, supporting that CO₂ capture is still favored even in the presence of excess H₂O. The calculated CO₂ binding enthalpy for **3** relative to MMNO•H₂O is only -9.53 kcal/mol, which is significantly less downhill than that normally observed for amines (<-12 kcal/mol)¹⁶. This finding explains why MMNO•H₂O•CO₂ can release CO₂ easily (~65 °C under
- ²⁵ pure CO₂ atmosphere), whereas most amines must be heated above 100 °C to be regenerated in a temperature swing process.

Fig. 3. Mechanism investigation and product identification | **a**, ${}^{13}C{}^{1}H$ } spectrum of MMNO (0.25 M, DMSO-D₆) dosed with ${}^{13}CO_2$ with different equivalents of water. **b**, Mole fractions of new ${}^{13}C=O$ species (versus total ${}^{13}C$ species) from the integrations and mole fractions of free MMNO, MMNO•H₂O, and MMNO•(H₂O)₂ (versus total MMNO

5

from the integrations and mole fractions of free MMNO, MMNO•H₂O, and MMNO•(H₂O)₂ (versus total MMNO species) from the output parameters of the NMR titration data fitting. **c**, ${}^{13}C{}^{1}H$ spectrum of MMNO (D₂O) dosed with ${}^{13}CO_2$ with different concentrations, and corresponding equivalents of water. **d**, ${}^{1}H$ NMR spectrum of 4 equivalents of water (DMSO-D₆) without and with 1 equivalent of MMNO (0.25 M), and with both MMNO and ${}^{13}CO_2$. See supplementary materials for other equivalents of water. **e**, A comparison of the ${}^{13}C$ NMR chemical shift in D₂O for the product detected in this study with other common (bi)carbonate compounds in D₂O. Observed ${}^{13}C$ chemical

10 shifts for K⁺ mixtures ("75% HCO₃⁻⁻" and "75% CO₃²⁻") only showed a single chemical shifts due to the fast exchange of the proton between KHCO₃ and K₂CO₃⁵⁵. **f**, pH before and after pure water and 0.25 M aqueous MMNO solution were equilibrated with CO₂ bubbling for 11 min at room temperature (21–22 °C). **g**, DFT-calculated enthalpy changes and optimized geometries of MMNO and its hydrates, along with three different proposed structures for the product

(1, 2, and 3). Calculated ¹³C NMR chemical shifts for C=O carbons in 1-3 compared to the observed chemical shift (both in DMSO(-D₆) as the solvent). See Methods and Supplementary Information for DFT methods.

Carbon capture cyclability, performance, and stability

The studies outlined above support that MMNO•H₂O can reversibly react with CO₂ to form
MMNO-H⁺···HCO₃⁻ (3), representing a new pathway for CO₂ absorption. To validate that this mechanism enables carbon capture under realistic conditions, the cyclability of CO₂ binding were evaluated using infrared (IR) spectroscopy. Owing to its reasonable saturation time and ease of preparation, a 1:4 (v:v) mixture of commercially available 50 wt. % (~6.5 equivalents of water) aqueous MMNO solution and DMSO was employed for these measurements (both components used directly as received). Upon bubbling CO₂ (6 sccm, see Supplementary Note 2), two new characteristic C=O stretches at 1656 cm⁻¹ and 1716 cm⁻¹ were found to increase in intensity over time (Fig. 4a), which can be attributed to the formation of MMNO-H⁺···HCO₃⁻. Indeed, DFT-calculated vibrational frequencies of proposed products 2 and 3 reveal a similar two-peak profile in the range of 1550–1800 cm⁻¹ (see Supplementary Figs. 47–48 and Supplementary Note 4).

- Upon purging the solution with N₂, these signals disappear, consistent with the reversibility of CO₂ binding observed by ¹³C NMR (Fig. 2a). Emulating a vacuum-swing process, pure CO₂ was bubbled through the MMNO solution (6 sccm) for 1 hour, followed by pure N₂ (6 sccm) for 1 hour. Good reversibility was observed over seven cycles, with the last four cycles showing nearly identical profiles (Fig. 4b, see Supplementary Fig. 23 for the first three cycles before stabilizing).
- Absorption and desorption were largely completed in less than 30 minutes; in addition, viscosity measurements revealed that this solution retained low viscosities both before and after CO₂ dosing (Supplementary Fig. 40). Gravimetric CO₂ capacities were also measured by weighing solutions before and after 1 hour of absorption, corrected by solvent controls under the same conditions (see Supplementary Information for details, Supplementary Table 2, 3 for data). We determined that
- 25 the MMNO solution reaches a capacity of 2.32 mmol CO₂/g MMNO under a pure CO₂ stream in 1 hour (Fig. 4c).

To evaluate whether MMNO•H₂O can remove CO₂ from dilute, mixed gas streams, 50% and 15% CO₂ mixtures in N₂ were flowed through the same MMNO solution (Fig. 4c). Good capacities (1.48 and 0.92 mmol CO₂/g MMNO, respectively) were still observed by IR and gravimetric

- 30 measurements after 1 hour under these conditions. However, real flue gas streams contain contaminants other than N₂, including O₂, H₂O, NO_x, and SO_x, that can lead to sorbent degradation³. A sample of flue gas from the Cornell Combined Heat and Power (CHP) natural gas-fired power plant—consisting of 9.7% CO₂, 3.8% O₂, 43 ppm NO_x, remainder H₂O and N₂—was obtained to test the CO₂ capture capability of MMNO•H₂O from an industrial waste stream. Remarkably, we
- 35 determined that MMNO•H₂O can capture CO₂ from this flue gas to reach a capacity of 0.70 mmol CO₂/g MMNO after 1 hour, with no additional stretches observed due to sorbent degradation by IR (Supplementary Fig. 28).

One of the major limitations of amine-based scrubbers is their poor long-term cycling stability arising from oxidative and thermal degradation^{3,19}. Indeed, heating the amines 4-methyl

morpholine (MM) and 1-methylpiperazine (MP), two close structural analogs of MMNO, and monoethanolamine (MEA), a benchmark amine for carbon capture, in D₂O for 1 week at 100 °C under flue gas led to the formation of insoluble impurities (Fig. 5d). More degradation was observed for MM, MP, and MEA in wet DMSO-D₆ after the same accelerated aging studies: the solutions became darkly colored, and numerous new species were observed by ¹H NMR (Supplementary Figs. 36–38). In contrast, MMNO exhibits excellent stability after being heated in both D₂O and wet DMSO-D₆ at 100 °C under flue gas (Fig. 5d). No degradation was observed in D₂O (Supplementary Fig. 34), and the only degradation product observed upon extended heating in DMSO-D₆ under flue gas was MM, likely due to slow O atom transfer from MMNO to the solvent (Supplementary Fig. 35). Notably, MM can be easily reoxidized to MMNO with hydrogen peroxide in the presence of CO₂ as the catalyst^{26,56}, offering a potential method for sorbent regeneration after extended cycling.

10

Fig. 4. CO₂ cyclability and MMNO stability | a, The *in situ* IR spectrum of 1:4 (v:v) 50 wt. % MMNO(aq): DMSO
before CO₂ bubbling, after CO₂ (100%) bubbling (absorption) and after N₂ bubbling (desorption). Stretches at 1716 and 1656 cm⁻¹ are assigned to the product(s). b, IR trend tracking for stretches 1716 and 1656 cm⁻¹ of CO₂ (100%) absorption-desorption cycles 4–7 at 6 sccm using 1:4 (v:v) 50 wt. % MMNO(aq): DMSO at room temperature (21–22 °C). c, The CO₂ capacity trend of one CO₂ absorption-desorption cycle with 1:4 (v:v) 50 wt. % MMNO(aq):DMSO

using 100%, 50%, 15% CO_2 in N_2 mixtures, and flue gas from Cornell University's natural gas-fired power plant (9.7% CO_2) at 6 sccm at room temperature (21–22 °C). **d**, Appearances after accelerated aging studies for MMNO, 4-methylmorpholine (MM), 1-methylpiperazine (MP), and monoethanolamine (MEA) with heating at 100 °C for 1 week in D_2O or DMSO- D_6 under flue gas.

5 Conclusion

Given the immediacy of the looming climate crisis, we urgently need new sorbents that can be rapidly scaled and employed in engineering configurations that have already been optimized for amine-based scrubbers. The presented gas sorption, spectroscopic, and computational studies support that the monohydrates of tertiary amine *N*-oxides, one of the oxidative byproducts arising

- from CO₂ capture with tertiary amines^{6,7}, can capture CO₂ via a new hydrogen-bonding pathway. The inexpensive MMNO is robust towards oxygen and high temperatures while exhibiting good CO₂ uptake from dilute streams, including flue gas from a natural gas-fired power plant. Given the relatively low heat of absorption of this system, it could also offer opportunities for high-feedpressure systems. Our findings lay the groundwork for the further development of small-molecule
- and polymeric tertiary amine *N*-oxides as non-basic sorbents for challenging CO₂ separations.

Methods

¹³CO₂ dosing with controlled water amount

In a N₂-filled glovebox, MMNO (dried by vacuum sublimation) and DMSO-D₆ (dried over molecular sieves) were added to a screw-cap NMR tube (dried at 165 °C for 12 hours). The tube was then sealed and brought out of glovebox. Alternatively, D₂O (instead of DMSO-D₆) or DI water was added quickly outside the glovebox. Subsequently, the sample was dosed with ¹³CO₂ (99 atom % ¹³C, <3 atom % ¹⁸O) on the custom-built setup after degassing (cooling to -78 °C for DMSO-D₆ or 0 °C for D₂O).

10 NMR Chemical Shift Perturbation Titration

DI water (1, 2, 4, 6, 8, 10, 20, 40 equiv. for 0.125 M; 0.5, 1, 1.5, 2, 2.5, 5, 10, 20 equiv. for 0.2 M; 0.25, 0.5, 1, 1.5, 2, 2.5, 5, 10 equiv. for 0.5 M) was added quickly to the NMR tube with (¹³CO₂ dosed) MMNO solutions in DMSO-D₆. The mixture obtained at each titration point was shaken thoroughly for 1 min and allowed to equilibrate in the NMR probe for 5 min before the spectra

15 thoroughly for 1 min and allowed to equilibrate in the NMR probe for 5 min before the spectra were recorded. All NMR spectra were recorded at 25 °C. The data were fitted to the built-in mathematical models in Bindfit⁴⁰.

NMR spectroscopy

20

25

5

¹H, ¹³C, ¹H–¹H NOESY, ¹H–¹⁵N HMBC NMR spectra were all recorded on Bruker or Varian 500 MHz spectrometers, ¹H–¹³C HMBC was recorded on a Varian 600 MHz spectrometer. In the cases of DMSO-D₆, spectra were referenced to 2.50 ppm for ¹H NMR and 39.52 ppm for ¹³C NMR. In the cases of D₂O, spectra were referenced to 4.79 ppm for ¹H NMR, and 77.16 ppm (for CDCl₃ inserts) or using the absolute reference function in Mestrenova for ¹³C NMR.

IR measurements

Infrared spectra were recorded with ReactIRTM iC10 FTIR spectrometer fitted with a 30-bounce, silicon-tipped probe. 100%, 50%, and 15% CO₂ (in N₂), flue gas (from Cornell Combined Heat and Power Plant, 9.7% CO₂, 3.8% O₂, 43 ppm NO_x, remainder H₂O and N₂), and 100% N₂ were dosed through the custom-built setups at 6 sccm or 6 mL/min. During a regular carbon capture cycle, CO₂-containing streams were bubbled through a 5 mL 1:4 (v:v) 50 wt. % MMNO(aq):DMSO solution (used as received) for 1 hour, then the streams were switched to 100% N₂ for 1 hour to simulate vacuum swing processes for desorption. The cycling experiments were all done at room temperature (21–22 °C).

35 Gravimetric measurements

Empty vials with septa caps were tared, and then 50 wt. % MMNO (aq) and DMSO (used as received) were added to make total of 5 mL solutions. For control experiments, the same amounts of DI water and DMSO were added instead. The total masses were recorded, and then a 100%, 50% or 15% CO₂ in N₂ mixture was bubbled through the mixtures for 1 hour. After bubbling, the masses

40 were recorded again. All experiments were conducted in triplicate. The measurements were done at room temperature (21–22 °C).

Viscosity measurements

Viscosities of 22 mL 1:4 (v:v) 50 wt. % MMNO(aq):DMSO solution before and after 100% CO₂ dosing (1.5 h, room temperature) were measured on Discovery Hybrid Rheometer HR-3 (TA Instruments) equipped with Peltier Concentric Cylinder system using a geometry of DIN conical rotor and standard cup. Viscosities were measured at a shear rate of 300 s⁻¹ at 25, 45, 65, and 85 °C.

5 <u>pH measurements</u>

pH measurements were conducted with a HI 221 Calibration Check Microprocessor pH Meter. A 3-point calibration (with pH 4, pH 7, and pH 10 buffers) was performed before the measurement. Measurements were performed on both ultrapure water and 0.25 M MMNO in DI water (both 6 mL). pH readings on the pH meter were recorded every 10 s.

10

DFT calculations

All DFT calculations were performed using Gaussian 16 package⁴⁶ at the ω B97XD⁴⁷ level of theory at 298.15 K. A pruned (99, 590) integration grid (equivalent to Gaussian's "UltraFine" option) was used for all calculations. The self-consistent reaction field (SCRF) was used to model systems in DMSO as the soluent by using SMD (solvation model density) solvation model⁵⁷. All

- 15 systems in DMSO as the solvent by using SMD (solvation model density) solvation model⁵⁷. All geometries were optimized with the def2-SVP basis set^{58,59}. A vibrational frequency analysis was conducted at the same level of theory as the geometry optimizations (ω B97XD/def2-SVP). The optimized geometries characterized as local minima on the potential energy surfaces (PES) have no imaginary frequencies. For improved accuracy single point energies were calculated with the
- same dispersion corrected ωB97XD functional using the slightly larger (def2-TZVP) basis set^{58,59} of the same family. ¹³C NMR chemical shifts of C=O carbons in structures **1**, **2**, and **3** in both water and DMSO were predicted by using DFT at their optimized geometries by employing GIAO (gauge-independent atomic orbitals) method^{53,54}, with tetramethylsilane (TMS) as the reference (0 ppm) calculated at the same level of theory. The isotropic magnetic shielding tensors were averaged over all symmetric carbons when applicable.

References

- 1. International Energy Agency (IEA). *The Role of CCUS in Low-Carbon Power Systems*. https://www.iea.org/reports/the-role-of-ccus-in-low-carbon-power-systems (2020).
- 2. Rochelle, G. T. Amine Scrubbing for CO₂ Capture. Science 325, 1652–1654 (2009).
- Gouedard, C., Picq, D., Launay, F. & Carrette, P.-L. Amine degradation in CO₂ capture. I. A review. *Int. J. Greenh. Gas Control* 10, 244–270 (2012).
 - 4. McDonald, J. D. *et al.* Carbon Capture and Sequestration: An Exploratory Inhalation Toxicity Assessment of Amine-Trapping Solvents and Their Degradation Products. *Environ. Sci. Technol.* **48**, 10821–10828 (2014).
 - 5. Mazari, S. A. *et al.* Review of modelling and simulation strategies for evaluating corrosive behavior of aqueous
 - amine systems for CO₂ capture. Int. J. Greenh. Gas Control 96, 103010 (2020).
 - Lepaumier, H. Study of the degradation mechanisms of amines used for the capture of CO₂ in industrial fumes. (Universite de Savoie, Le Bourget-du-Lac, France, 2008).
 - Voice, A. K. Amine oxidation in carbon dioxide capture by aqueous scrubbing. (The University of Texas at Austin, Austin, TX, 2013).
- 15 8. United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. (2015).
 - Amici, A., Barghini, A., Cucchi, M., Correa-Mendes, M., Buontempo, C., Vamborg, F. & Simmons, A. How close are we to reaching a global warming of 1.5°C? Copernicus Climate Change Service (2021) https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-global-temperature-trend-monitor?tab=app.
 - 10. International Energy Agency (IEA), Capacity of current and planned large-scale CO₂ capture projects vs. the

20

25

- Net Zero Scenario, 2020–2030 (2023); https://www.iea.org/data-and-statistics/charts/capacity-of-current-and-planned-large-scale-co2-capture-projects-vs-the-net-zero-scenario-2020-2030.
- 11. Global CCS Institute. *Global Status of CCS 2024: Collaborating for a Net-Zero Future*. https://www.globalccsinstitute.com/resources/global-status-report/ (2024).
- 12. Lyons, M., Durrant, P. & Kochhar, K. *Reaching Zero with Renewables: Capturing Carbon*. https://www.irena.org/Technical-Papers/Capturing-Carbon (2021).
 - 13. Cozzi, L. et al. Net Zero by 2050: A Roadmap for the Global Energy Sector. https://www.iea.org/reports/netzero-by-2050 (2021).
 - 14. Bottoms, R. R. Separating acid gases. U.S. Patent 1783901 (1930).

- 15. Rochelle, G. T., Bishnoi, S., Chi, S., Dang, H. & Santos, J. Research needs for CO₂ capture from flue gas by aqueous absorption/stripping, Final report for P.O. No. DE-AF26-99FT01029. (2001).
- 16. Xu, Q. Thermodynamics of CO₂ loaded aqueous amines. (The University of Texas at Austin, Austin, TX, 2011).
- 17. Aaron, D. & Tsouris, C. Separation of CO₂ from Flue Gas: A Review. Sep. Sci. Technol. 40, 321-348 (2005).
- Meng, F. *et al.* Research progress of aqueous amine solution for CO₂ capture: A review. *Renew. Sustain. Energy Rev.* 168, 112902 (2022).
 - 19. Rochelle, G. T. Thermal degradation of amines for CO₂ capture. Curr. Opin. Chem. Eng. 1, 183–190 (2012).
 - Dumée, L., Scholes, C., Stevens, G. & Kentish, S. Purification of aqueous amine solvents used in post combustion CO₂ capture: A review. *Int. J. Greenh. Gas Control* 10, 443–455 (2012).
- Wang, T., Hovland, J. & Jens, K. J. Amine reclaiming technologies in post-combustion carbon dioxide capture.
 J. Environ. Sci. 27, 276–289 (2015).
 - Vevelstad, S. J., Buvik, V., Knuutila, H. K., Grimstvedt, A. & Da Silva, E. F. Important Aspects Regarding the Chemical Stability of Aqueous Amine Solvents for CO₂ Capture. *Ind. Eng. Chem. Res.* acs.iecr.2c02344 (2022) doi:10.1021/acs.iecr.2c02344.
- Rao, A. B. & Rubin, E. S. A Technical, Economic, and Environmental Assessment of Amine-Based CO₂ Capture Technology for Power Plant Greenhouse Gas Control. *Environ. Sci. Technol.* 36, 4467–4475 (2002).
 - Veltman, K., Singh, B. & Hertwich, E. G. Human and Environmental Impact Assessment of Postcombustion CO₂ Capture Focusing on Emissions from Amine-Based Scrubbing Solvents to Air. *Environ. Sci. Technol.* 44, 1496– 1502 (2010).
- 20 25. Rochelle, G. T. Air pollution impacts of amine scrubbing for CO₂ capture. *Carbon Capture Sci. Technol.* 11, 100192 (2024).
 - Kobus, M., Friedrich, T., Zorn, E., Burmeister, N. & Maison, W. Medicinal Chemistry of Drugs with N-Oxide Functionalities. J. Med. Chem. 67, 5168–5184 (2024).
 - 27. Singh, S. K., Bajpai, M. & Tyagi, V. K. Amine Oxides: A Review. J. Oleo Sci. 55, 99-119 (2006).
- 25 28. Clewell, R. A. *et al.* An in vitro approach to determine the human relevance of anti-spermatogenic effects of 4methylmorpholine 4-oxide, monohydrate (NMMO) in rat reproductive toxicity studies. *Toxicol. In Vitro* 82, 105365 (2022).

- Yancey, P. H., Blake, W. R. & Conley, J. Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. *Comp. Biochem. Physiol. A. Mol. Integr. Physiol.* 133, 667–676 (2002).
- 30. Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. *J. Exp. Biol.* **208**, 2819–2830 (2005).

5

15

- Fink, H.-P., Weigel, P., Purz, H. J. & Ganster, J. Structure formation of regenerated cellulose materials from NMMO-solutions. *Prog. Polym. Sci.* 26, 1473–1524 (2001).
- Perepelkin, K. E. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: Development and prospects. *Fibre Chem.* 39, 163–172 (2007).
- 33. Acharya, S. *et al.* Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. *Polymers* 13, 4344 (2021).
 - Qiao, H., Li, M., Wang, C., Zhang, Y. & Zhou, H. Progress, Challenge, and Perspective of Fabricating Cellulose. Macromol. Rapid Commun. 43, 2200208 (2022).
 - 35. Li, B. *et al.* Trimethylamine *N*-oxide–derived zwitterionic polymers: A new class of ultralow fouling bioinspired materials. *Sci. Adv.* **5**, eaaw9562 (2019).
 - 36. Scholten, H. & Rindtorff, K. Process for producing aqueous N-methylmorpholine-N-oxide solutions.
 - Chanzy, H., Nawrot, S., Peguy, A., Smith, P. & Chevalier, J. Phase behavior of the quasiternary system *N*-methylmorpholine-*N*-oxide, water, and cellulose. *J. Polym. Sci. Polym. Phys. Ed.* 20, 1909–1924 (1982).
 - 38. Claridge, T. D. W. Dynamic Effects in NMR. in High-Resolution NMR Techniques in Organic Chemistry 38-57
- 20 (Elsevier, 2016). doi:10.1016/B978-0-08-099986-9.00001-4.
 - Pike, S. J., Hutchinson, J. J. & Hunter, C. A. H-Bond Acceptor Parameters for Anions. J. Am. Chem. Soc. 139, 6700–6706 (2017).
 - 40. Thordarson, P. BindFit. http://app.supramolecular.org/bindfit/.
 - 41. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. *Chem Soc Rev* **40**, 1305–1323 (2011).
 - Brynn Hibbert, D. & Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. *Chem. Commun.* 52, 12792–12805 (2016).

- 43. Pedersen, O., Colmer, T. D. & Sand-Jensen, K. Underwater Photosynthesis of Submerged Plants Recent Advances and Methods. Front. Plant Sci. 4, (2013).
- 44. Pines, D. et al. How Acidic Is Carbonic Acid? J. Phys. Chem. B 120, 2440-2451 (2016).
- 45. Zhong, H., Fujii, K., Nakano, Y. & Jin, F. Effect of CO₂ Bubbling into Aqueous Solutions Used for Electrochemical Reduction of CO₂ for Energy Conversion and Storage. J. Phys. Chem. C 119, 55-61 (2015).
- 46. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.;
- Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
 - 47. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615 (2008).

Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01; Gaussian, Inc., Wallingford CT, 2016.

- 48. Jönsson, B., Karlström, G., Wennerström, H. & Roos, B. Ab initio molecular orbital calculations on the watercarbon dioxide system: carbonic acid. Chem. Phys. Lett. 41, 317-320 (1976).
- 20 49. Nguyen Minh Tho & Ha, T. K. A theoretical study of the formation of carbonic acid from the hydration of carbon dioxide: a case of active solvent catalysis. J. Am. Chem. Soc. 106, 599-602 (1984).
 - 50. Mori, T., Suma, K., Sumiyoshi, Y. & Endo, Y. Spectroscopic detection of isolated carbonic acid. J. Chem. Phys. 130, 204308 (2009).
 - 51. Reddy, S. K. & Balasubramanian, S. Carbonic acid: molecule, crystal and aqueous solution. Chem Commun 50, 503-514 (2014).
 - 52. Nygren, C. L., Wilson, C. C. & Turner, J. F. C. Electron and Nuclear Positions in the Short Hydrogen Bond in Urotropine-N-oxide Formic Acid. J. Phys. Chem. A 109, 1911-1919 (2005).

5

10

15

- Wolinski, K., Hinton, J. F. & Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. *J. Am. Chem. Soc.* 112, 8251–8260 (1990).
- Cheeseman, J. R., Trucks, G. W., Keith, T. A. & Frisch, M. J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. *J. Chem. Phys.* 104, 5497–5509 (1996).
- 5 55. Mani, F., Peruzzini, M. & Stoppioni, P. CO₂ absorption by aqueous NH₃ solutions: speciation of ammonium carbamate, bicarbonate and carbonate by a ¹³C NMR study. *Green Chem.* **8**, 995 (2006).
 - Balagam, B. & Richardson, D. E. The Mechanism of Carbon Dioxide Catalysis in the Hydrogen Peroxide N-Oxidation of Amines. *Inorg. Chem.* 47, 1173–1178 (2008).
 - 57. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density
- and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions.
 J. Phys. Chem. B 113, 6378–6396 (2009).
 - 58. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297 (2005).
 - 59. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057 (2006).

Supplementary Information

This file contains detailed methods with relevant data, figures, and tables.

Acknowledgements

We are grateful for Dr. I. Keresztes for acquiring 2D NOESY and 2D HMBC NMR spectra and providing guidance, insights, and discussions regarding NMR analyses. We thank Prof. D. Collum 5 and Dr. Q. You for use of the React IR. We thank Prof. R. Cerione and Dr. S. Milano for the use of the pH meter. We thank B. Ahmad for helping with designing the flue gas dosing setup. We thank Dr. R. Siegelman for helpful feedback. We thank the Cornell Heat and Power (CHP) plant for donating a sample of flue gas. This work made use of the Bard Materials and Characterization facility of the Cornell Center for Materials Research (CCMR).

10

Funding: This work was supported by a Research-to-Impact Fast Grant awarded by the 2030 Project and the Cornell Atkinson Center for Sustainability (S.M., T.H.L., P.J.M.). This work was also supported by the Carbontech Development Initiative (S.M., T.H.L., P.J.M.). This work was further supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy

Sciences under Award Number DE-SC0021000 (S.M., P.J.M.). We also acknowledge support from 15 a Camille Dreyfus Teacher-Scholar Award to P.J.M. (TC-23-048). The NMR data were collected on a Bruker AV III HD 500 MHz spectrometer that was purchased with support from the National Science Foundation (CHE-1531632).

Author contributions: S.M. carried out NMR studies, IR studies, gravimetric measurements, pH measurements, viscosity measurements, and DFT calculations. S.M. wrote the original draft with 20 editorial assistance from P.J.M. and T.H.L.. P.J.M. and T.H.L. directed the research.

Competing interests: Cornell University has filed a provisional patent application related to this work on which S.M., P.J.M., and T.H.L. are included as inventors.