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Abstract 

Skeletal editing and “single-atom logic” are emerging strategies that accelerate compound synthesis 

and open new chemical space by modifying organic molecules using unconventional bond forming 

processes.  These new strategies are particularly attractive to access important biologically active 

classes of compounds, such as secondary amines, which are key synthetic intermediates and 

components found in numerous pharmaceutical agents.  Herein, a practical modification of the 

classical reductive amination of ketones and aldehydes, a staple reaction in drug discovery research, 

was developed to provide isomeric amines by way of a migratory reductive amination (MRA). This 

one-pot method combines three distinct chemical reactions in a single flask, without solvent 

changes, via the orchestrated addition of two inexpensive and non-toxic multitasking reagents: 

Zn(II) salts and a hydrosilane. Both reagents display exceptional orthogonality with a synergetic 

role in all three stages of the process, lending a procedure that embodies many of the ideals of green 

chemistry. This MRA method demonstrates a wide scope of acyclic and cyclic ketones and 

aldehydes with aliphatic or aromatic groups, including complex molecules such as drug 

intermediates and natural products with an exceptionally low E factor compared to established 

methods. Remarkably, MRA enables the expeditious preparation of cyclic secondary amines of 

varying ring size, including a cyclopentanone-to-piperidine ring-edit that provides a direct access to 

the most common saturated heterocycle in drug discovery. 
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Introduction   

Amines are a ubiquitous functional group present on the structure of a large number of natural 

products (e.g., alkaloids) and other biologically occurring compounds such as amino acids.  

Countless synthetic commodity chemicals and as many as 62% of bioactive molecules embed an 

amine-containing substructure (Figure 1A).1 Although other methods exist to prepare amines, the 

process of reductive amination (RA) of carbonyl compounds stands out as one of the staple 

reactions of organic chemistry that ranks amongst the top-ten most employed chemical reactions in 

medicinal chemistry.2,3 Reductive amination is a two-stage transformation involving first, a 

condensation between the carbonyl compound and the amine, followed by reduction of the imine or 

iminium intermediate typically with a hydride reagent.4  It can often be achieved in “one-pot”,5 

enabling the predictable formation of primary, secondary, and tertiary amines without altering the 

skeleton of the starting ketone or aldehyde (Figure 1B). As exemplified by recent advances in 

“skeletal editing” or “single atom logic”, transformations that provide a rearrangement of the 

existing carbon framework are rare and highly desirable tools to accelerate organic synthesis and 

expand chemical space.6-9 By providing isomeric amine products with a rearranged carbon skeleton 

featuring the formal insertion of a nitrogen atom into a C–C bond, the process of migrative 

reductive amination (MRA) would provide a powerful complement to the classical reductive 

amination. The resulting secondary amines are particularly attractive products that can be  readily 

transformed into a tertiary amine or other functional groups (amide, sulfonamide, etc.). With cyclic 

ketones, MRA would enable a unique ring expansion to afford medium- and large-sized cyclic 

amines, including the cyclopentanone-to-piperidine ring edit affording, in a single operation, the 

most utilized non-aromatic heterocycle in drug development.10   

  

The design of a MRA reaction requires the insertion of a nitrogen atom into a carbon–carbon sigma 

bond. This type of 1,2-carbon-to-nitrogen electrophilic migration can be achieved by way of a 

Beckmann rearrangement of oximes to amides.11,12 The latter can subsequently be reduced to the 

desired amines. However, starting from ketones, this entire sequence requires three distinct 

reactions that usually necessitate individual isolations and purifications of the respective oxime and 

amide intermediates (Figure 1C). The first two steps of oxime formation and rearrangement are 

rarely performed in a one-pot protocol.13-18 Likewise, few examples exist of the one-pot reductive 

Beckmann rearrangement wherein the amide product of an oxime substrate is reduced in situ to an 

amine, and typically employ harsh reductants and air-sensitive Lewis acid activators.19-22 Although 
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an elegant procedure was recently described, it resorts to the use of an air-sensitive catalyst and its 

demonstrated scope is limited to the preparation of tertiary aromatic amines.23 There is currently no 

practical and general MRA method enabling access to a wide scope of secondary amines from 

ketones that can circumvent solvent exchange and intermediary purification operations.  

 

Despite innovations in green chemistry enabling technologies such as continuous-flow synthesis,24 

electrosynthesis,25,26 and solid-state (mechanochemical) synthesis,27 the multi-step synthesis of an 

organic molecule is commonly executed by repeating a series of three consecutive operations 

consisting of: reaction, workup, purification. This approach can be time- and energy-consuming. 

Moreover, solvents used in reactions, filtrations, and purifications are responsible for the largest 

mass contribution to the unfavorable E-factor in pharmaceutical processes.28 Excessive or 

unnecessary purification of intermediates results in significant solvent waste, thus deviating from 

the principles of green chemistry.29 To address this quandary, the concept of “one-pot” synthesis 

provides an opportunity for telescoping the above operations while reducing time and solvent 

consumption by avoiding filtrations and solvent exchanges.30,31 In addition to embracing the notions 

of green chemistry, an ideal one-pot reaction would employ the sequential addition of minimal non-

toxic reagents that are not only mutually compatible, but also active and even synergetic in all 

stages of the process – “multitasking reagents”. The step-economical telescoping of intermolecular 

reactions is challenging as it requires the successive addition of various reagents that may prove 

detrimental to subsequent operations owing to incompatibilities between other reagents, 

intermediates, or with the universal solvent employed. Key issues involve the selection of a non-

reactive solvent capable of maintaining a homogenous solution throughout the sequence of 

reactions, the selection of safe and non-toxic reagents, and the possible need to eliminate by-

products or excess reagents that are incompatible with subsequent reagents. In this scenario, a 

multitasking reagent can perform multiple roles; when added at the initial stage of a telescoped 

reaction, it can serve a specific task as an activator or a neutralizer, and play similar or different 

task in subsequent stages of the process. Herein, we describe a general synthesis of secondary 

amines by an operationally simple and practical one-pot migrative reductive amination of ketones 

and aldehydes enabled by the exceptional efficiency and concerted action of mutually compatible, 

multitasking reagents.  
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Figure 1. Synthesis of secondary amines. A. Examples of biologically relevant natural products and 
therapeutic drugs containing a secondary amine. B. Representation of classical reductive amination 
(RA) and the migrative variant (MRA). C. Design of a one-pot MRA of ketones.   
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Results and Discussions  

Identification and optimization of reaction conditions with two model ketones 

To achieve the challenging objective of telescoping three chemical reactions into a one pot MRA, 

we sought to identify a solvent and a set of reaction conditions with reagents that would be mutually 

compatible and possibly display synergetic effects. Mechanistically, some of the challenges include: 

the possible detrimental effect of water released in the first stage of oxime condensation; 

heterogeneous reaction mixtures; competitive reduction of the unreacted ketone or oxime 

intermediates; catalyst poisoning, or reaction of the amine product with electrophilic activators used 

in the rearrangement. Thus, without any intermediate purification operations or change of solvent, 

we systematically combined some of the most common and mildest reported procedures for each of 

the individual stages of dehydrative oxime formation, Beckmann rearrangement, and reduction 

(Figure 2, see Supporting Information for details). In order to afford a practical benchtop procedure, 

conditions employing highly air- or water-sensitive reagents and catalysts were disregarded. 

Possible solvents that are deemed to be attractive on the standpoint of green chemistry were 

selected.32 Two representative substrates were designated: cyclopentanone serves as a model cyclic 

ketone, and 4-fluoroacetophenone as a representative acyclic aromatic ketone. The respective 

subclasses of products, a cyclic amine and a N-alkyl aniline, are prominent and valued in drug 

discovery.1 After setting up the initial stage of oxime formation, reagents and additives for the 

second and third stage were added successively using temperatures and reaction times 

commensurate with reported conditions (see Supporting Information for details).  
 

 
Figure 2. Discovery strategy and optimization outcome for a one-pot MRA procedure.  
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The first round of screening unveiled Zn(II) salts and hydrosilane reagents in trifluorotoluene as the 

most promising set of conditions providing good yields with both model substrates. Further fine-

tuning of the identity of both the Zn(II) salt and hydrosilane was accompanied by a study of various 

reaction parameters such as reagent stoichiometry, time, order of addition, additives (e.g., 

dehydrating agent), co-solvent, and finally, workup and isolation procedures (see Supporting 

Information for details). The optimal procedure shown in Figure 2 consists in forming the ketoxime 

by the in situ generation of Crismer’s salt (dichlorobis(hydroxylamine)zinc(II),33 a source of neutral 

hydroxylamine generated through the combined action of ZnO, a basic Zn(II) salt), and 

NH2OH•HCl in trifluorotoluene. ZnCl2 was chosen as a Lewis acid accelerant for the oximation 

because it is amongst the cheapest, mildest, and most commercially accessible zinc salts. 

Additionally, it is easily prepared and handled as a 2 M ZnCl2∙(2MeTHF)3 solution in 

trifluorotoluene that can be employed as is for the first stage of oxime formation. One challenging 

aspect of the one-pot procedure was to eliminate the deleterious stoichiometric amount of water 

from the in situ formation of the Crismer’s salt and its ensuing condensation with the ketone prior to 

the second stage (rearrangement). Addition of conventional drying agents (molecular sieves, CaCl2, 

etc.) and distillation procedures (Dean-Stark) were not effective (see Supporting Information for 

details). Since a hydrosilane reagent would be needed to promote the reduction stage and possibly 

participate in the rearrangement stage, we tested the use of a sacrificial amount of hydrosilane as an 

irreversible dehydrating agent. Indeed, it is known but seemingly underexploited that hydrosilane 

reagents readily hydrolyze under acidic and basic conditions to form hydrogen gas and inert 

polymeric side-products.34 Satisfactorily, the addition of 1,1,3,3-tetramethyldisiloxane (TMDS) 

successfully purged the water in the reaction mixture within an hour in the presence of Zn(II) salt. 

Gas evolution was observed upon addition of the hydrosilane, and the cyclic siloxane by-product 

was formed (observed by LC-MS and GC-MS). Notably, both TMDS35 and trifluorotoluene36 are 

viewed as safe alternatives compared to other reductants and solvents. The following two stages of 

the optimal procedure are executed simply through adding more TMDS (3 equiv). Both of these 

stages (rearrangement and reduction) are accelerated in the presence of Zn(II) (vide infra). It is 

especially noteworthy that the overall benchtop reaction procedure is operationally simple and 

neither a distilled solvent or inert atmosphere is required. Since the reaction by-products include 

hydrogen gas, zinc chloride salt, and siloxane polymers, the reaction workup is straightforward and 

does not require any chromatographic purification. While zinc salts and any unreacted oxime can be 
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extracted into the basic aqueous layer, the non-polar siloxane impurities and unreacted ketone 

remain in the organic solvent from which the amine product is precipitated as a highly pure salt. 

   

Reaction scope 

The optimized MRA conditions were applied to a range of structurally diverse ketones with 

different types of groups flanking the carbonyl. As shown in Figure 3, a series of acetophenones 

and other aryl-alkyl ketones (products 1–16) bearing various substituents on the aryl ring provided 

the expected amine products, with most examples isolated in good to excellent yields. Naphthyl and 

heterocycle-containing ketones afforded the expected amines 17–20. In the few low-yielding 

examples, such as product 8, losses are caused by incomplete oxime formation or rearrangement, as 

well as difficult purification by salt formation. The position of the substituent on the aryl ring did 

not significantly influence the reaction outcome (e.g., 2 vs 4, 9 vs 11). Furthermore, methoxy (2), 

thioether (6), and trifluoromethyl (8) substituents and a sulfone (7) functional group are tolerated, 

and no dehalogenation product was observed with either 4-fluoro- or 4-iodoacetophenones (3, 5). 

Indanones provided the desired tetrahydroquinoline products (21–25) in high yields. In all cases, 

the major migration product is the N-alkylaniline regioisomer, with tetrahydroisoquinoline being 

the only side-product. Larger ring systems are also amenable to this MRA method (26, 27). 

Benzophenones (28–31) react smoothly to afford the corresponding amine salts in 51–78% yields, 

albeit unsymmetrical examples are subject to the intrinsically modest regioselectivity of the 

rearrangement stage.  

 

The MRA is compatible with aliphatic (alkyl-alkyl) ketones, with acyclic substrates affording 

products 32–39 in moderate to good yields. In the few cases where a minor regioisomer is observed, 

the predominant isomer is rationalized based on established migratory aptitudes.11,12 As shown with 

product 39, the preferential migration of a bulky tertiary alkyl group may lead to reduced yields. 

Surprisingly, benzylacetone (36) resulted in a crude mixture containing the rearranged amines (13 

% and 63 %) along with a primary amine (24%), the non-rearranged side-product of a normal 

reductive amination arising from oxime reduction and N–O bond hydrogenolysis. To avoid a 

challenging and solvent-wasting chromatographic separation that would increase the reaction’s E-

factor, an operationally simple and novel method for the separation of primary and secondary 

amines was developed. It involves scavenging the primary amine via Schiff base formation with 

salicylaldehyde during the extractive workup,37 followed by precipitation of the unreacted 
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secondary amines as the oxalate salt (see Supporting Information for details). This purification 

procedure is possible because of the difference in pKa values between protonated secondary amines 

(~10) and the Schiff base (~5–7), enabling a selective salting of the desired amine product.  

 

Alicyclic ketones of all sizes, including the cyclopentanone to piperidine ring-edit (41), can be 

transformed in high yields into the corresponding ring-enlarged cyclic secondary amines 40-49. 

Medium- and large-ring cyclic amines such as 42-47 would be difficult to synthesize in such a 

straightforward manner using alternative approaches.  For example, azacyclohexadecane 47 was 

previously prepared from cyclopentadecanone in three steps, each requiring isolation of the 

intermediates.38 Similarly to the benzylacetone substrate 36, the primary amine side-product of 

oxime reduction was observed in varying amounts. Nevertheless, the salicylaldehyde purification 

procedure was successfully applied to all alicyclic substrates exclusively yielding secondary amine 

products in good yields. Finally, as shown with product 50, aldehydes are suitable substrates 

affording the rearranged methylated amines. This MRA procedure is incompatible with a number of 

unsaturated functionalities, such as carboxylate, nitrile, and nitro functional groups. Substrates 

bearing a free amino group resulted in precipitation during the oxime formation step, which caused 

a low conversion.  
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Figure 3. MRA substrate scope (Part 1). All yields are isolated products as hydrochloridea or oxalateb 
salts. Unless noted, rr > 95:5 i. Oximation stage: 0.5 mmol ketone (1 equiv), 0.5 mmol NH2OH∙HCl 
(1 equiv), 0.25 mmol ZnO (0.5 equiv), 0.25 mL 2M ZnCl2∙(2-methyltetrahydrofuran)3 (1 equiv) in 
trifluorotoluene, 80 °C, 15 minutes — 1 hour; ii. Dehydration: add 0.75 mL trifluorotoluene, 0.18 
mL 1,1,3,3-tetramethyldisiloxane (2 equiv), 80 °C, 1 hour; iii. Rearrangement and reduction stage: 
0.27 mL 1,1,3,3-tetramethyldisiloxane (3 equiv), 18 hours. Abbreviations: Si: HSiMe2OSiMe2H 
(TMDS), Zn: ZnO + ZnCl2, N: NH2OH∙HCl.  rr: regioisomeric ratio. 
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Figure 4. MRA substrate scope (Part 2). See Figure 3 legend for conditions. 
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syntheses of 4641,42 were compared with the developed MRA procedure on a gram-scale. Although 

the three-step and one-pot MRA methodologies provide a similar overall yield, the E-factor and 

process mass intensity (PMI) metrics are more than six times better for the one-pot procedure. 

Likewise, the improved atom economy (AE) and the reaction mass efficiency (RME) parameters 

demonstrate the significant improvement in “greenness” provided by the MRA method. 

 

 
 
Figure 5. Gram-scale synthesis and green chemistry metrics for a macrocyclic motuporamine A 
precursor comparing the MRA and other approaches. See Figure 3 legend for MRA conditions. 
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vs 87%, ii). Furthermore, for full conversion of oxime to amine, two equivalents of TMDS (i.e., 4 

equiv. SiH) are necessary, with a single equivalent affording only half of the product (iii).  

 

To determine whether the reaction occurred via the proposed Beckmann rearrangement or via a 

Stieglitz rearrangement (i.e., inverted reduction and migration: oxime reduction followed by 

rearrangement of the resulting hydroxylamine),22,44 a comparison of migratory aptitudes was 

performed on phenyl isopropyl ketone and the corresponding hydroxylamine (Figure 6A). As 

expected for a classical Beckmann rearrangement,11 under standard MRA conditions the isolated 

amine isomer ratio is relatively close to the oxime’s E/Z isomeric ratio (iv), whereas starting 

directly from the hydroxylamine intermediate results almost exclusively in a single product 

regioisomer (v). Moreover, silylated oxime, which is suspected to form in the presence of excess 

TMDS22 and was observed by DART-HRMS, was shown to undergo the Beckmann rearrangement 

under standard MRA conditions affording the corresponding amide isomers in the expected ratio 

(vi). In contrast, the free oxime does not react with Zn(II) alone (vii), further supporting the essential 

role of TMDS in the rearrangement stage. Altogether, these experiments favor a mechanistic 

sequence involving the Beckmann rearrangement of a silyl oxime ether,45 wherein two multitasking 

reagents are required in all three stages. The Zn(II) ion is essential as an oxophilic Lewis acid 

promoting all three stages of oxime formation, rearrangement, and amide reduction.  In turn, the 

hydrosilane TMDS serves an essential role as a dehydrating agent in the stage of oxime formation, 

as an activator forming a silylated oxime to promote the second stage of rearrangement, and as the 

reductant in the final stage yielding the rearranged secondary amine product. A similar pathway 

involving the Stieglitz rearrangement of a silylated hydroxylamine may compete with certain 

substrates, as hinted in the reaction of alkyl-alkyl ketones that provide unrearranged primary amine 

as a minor side-product (vide supra).  
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Figure 6. A. Mechanistic control experiments to address the role of the reagents and the origin of 
the migration. B. Plausible MRA pathway featuring the multitasking reagents, Zn(II) and 
hydrosilane (TMDS). See Figure 3 legend for conditions. a Isolated yield. b 1H NMR ratio. 
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The likely intermediates formed after the rearrangement stage (amide/imidate, imine) were 

subjected to the reduction conditions (Figure 6B, left). Both produced the desired amine product, 

however the amide was not detected by 19F NMR during the standard one-pot reaction from 4-

fluoroacetophenone, implying that the reduction stage of this MRA reaction is not rate-limiting or 

proceeds via a zinc imidate. Summarizing all the data, a plausible pathway can be proposed through 

which the MRA operates (Figure 6B, right). After the free hydroxylamine is liberated from its 

hydrochloride salt upon heating in the presence of ZnO (amphoteric base) and ZnCl2 (accelerant 

and dehydrating agent), the ketone is converted into the oxime intermediate. Then, the addition of 

two equivalents of TMDS destroys the water by-product from the reaction in the form of hydrogen 

gas and polymeric siloxane species in a process likely catalyzed by Zn(II) salts. Subsequent 

addition of an excess of TMDS (3 equiv) leads to silylation of the oxime, followed by Zn(II)-

catalyzed rearrangement of the resulting oxime silyl ether. The final Zn(II)-catalyzed reduction 

stage by the excess TMDS is relatively fast and affords the expected amine product via the imine 

intermediate.46  

 

 

Conclusions  

The effective telescoping of three distinct chemical steps into a single one-pot reaction presents 

additional challenges in chemoselectivity that lie well beyond the usual concerns of functional 

group tolerance associated with individual chemical reactions. The migrative reductive amination of 

ketones developed herein provides a conceptually novel approach to rearranged secondary amines 

that complements classical reductive amination chemistry. Key to the simple experimental 

procedure is the use of two mutually compatible multitasking reagents, ZnCl2 and TMDS, which act 

in concert at each chemical stage to promote oxime formation and dehydrate the reaction medium, 

rearrange the oxime intermediate, and reduce the rearranged intermediate into the final amine 

product. The reaction is tolerant to many functional groups and is amenable to acyclic and cyclic 

aryl-aryl, aryl-alkyl, and alkyl-alkyl ketones, which are transformed in good to high yields into 

compelling secondary amine products that are isolated as salts, thus allowing a simple 

chromatography-free isolation and work-up procedure that meets many of the ideals of green 

chemistry. We anticipate that this work will inspire the design of new and more efficient one-pot 

reactions exploiting the judicious use and orchestration of multitasking reagents.  
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