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ABSTRACT

Machine learning has revolutionized the development of interatomic potentials over the past decade,
offering unparalleled computational speed without compromising accuracy. However, the perfor-
mance of these models is highly dependent on the quality and amount of training data. Consequently,
the current scarcity of high-fidelity datasets (i.e. beyond semilocal density functional theory) rep-
resents a significant challenge for further improvement. To address this, this study investigates
the performance of transfer learning (TL) across multiple fidelities for both molecules and materi-
als. Crucially, we disentangle the effects of multiple fidelities and different configuration/chemical
spaces for pre-training and fine-tuning, in order to gain a deeper understanding of TL for chemical
applications. This reveals that negative transfer, driven by noise from low-fidelity methods such as
a Density Functional Tight Binding (DFTB) baseline, can significantly impact fine-tuned models.
Despite this, the multi-fidelity approach demonstrates superior performance compared to single-
fidelity learning. Interestingly, it even outperforms TL based on foundation models in some cases,
by leveraging an optimal overlap of pre-training and fine-tuning chemical spaces.

1 Introduction

Spurred by the high computational costs of first-principles electronic structure methods, the development of ma-
chine learning (ML) interatomic potentials has enabled accurate atomistic simulations for previously inaccessible
systems.[1, 2, 3, 4] Early efforts are exemplified by the pioneering works of Behler and Parrinello[5], as well as the
Gaussian Approximation Potentials of Csányi and co-workers[6]. These involve the construction of rotationally in-
variant representations of atomic environments, combined with shallow neural networks or kernel regression methods.
Subsequently, graph neural networks were developed, which expand local environment representations via message
passing, such as in the SchNet[7], PhysNet[8], DimeNet[9], HDNN[10], and GemNet[11] models. Most recently,
equivariant networks such as NequIP[12], PaiNN[13], SpookyNet[14], NewtonNet[13], and MACE[15] have emerged
that currently represent the state-of-the-art in atomistic ML.

These methodological developments have led to remarkable improvements in accuracy, but also increased the com-
putational cost of training and inference.[15, 16, 17] Alternatively, instead of increasing model capacity by using
deeper or more complex architectures, accuracy can usually also be improved by increasing the amount of training
data[18]. For a given level of accuracy, the lower computational cost at inference time can thus be offset by increased
computational cost for training data generation. Unfortunately, this can itself be prohibitively expensive, e.g., when
highly accurate reference methods such as Coupled Cluster (CC) theory or Quantum Monte Carlo (QMC) are used.
In such contexts, transfer learning (TL) is commonly used,[19, 20, 21] meaning that a model that is pre-trained on
one large dataset (for example a general and/or low-fidelity one) is fine-tuned on another (for example a specialized

https://doi.org/10.26434/chemrxiv-2024-9734b ORCID: https://orcid.org/0000-0002-0862-5289 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9734b
https://orcid.org/0000-0002-0862-5289
https://creativecommons.org/licenses/by-nc/4.0/


or high-fidelity one). In the best case, beneficial features of the pre-trained model can be maintained throughout the
fine-tuning, leading to more accurate and robust models for a given training set size.

TL is an appealing idea and widely used in chemistry.[22, 23] It has for example been implemented by Hutchinson
et al. to increase the accuracy of experimental band gap predictions using comparatively cheaper Density Functional
Theory (DFT) band gaps for pre-training (transfer from low- to high-fidelity).[24] Similarly, Frey et al. found that a
MEGNet model, pre-trained on tens of thousands of 3D bulk crystals, could be fine-tuned to predict the properties of
2D materials in a highly data-efficient manner (transfer from one chemical space to another)[25, 26]. With the recent
advent of broadly applicable foundation models for materials and molecules, TL is becoming even more relevant.[27,
28, 25] However, there are two common issues that need to be avoided in this context. On one hand, negative transfer
can occur, meaning that features learned during pre-training can in some cases be detrimental to the task in the fine-
tuning step. On the other hand, catastrophic forgetting can occur, meaning that the fine-tuning essentially overwrites
all pre-trained information, rendering the pre-training step irrelevant.[19, 29, 23] Both of these are especially pertinent
when overlap between the pre-training and fine-tuning datasets is insufficient. In chemical applications, this idea of
dataset overlap relates both to the types of structures included in each set (i.e. how similar are bulk crystals and 2D
materials) and the fidelity of the reference data (i.e. how good is the agreement between low and high fidelity labels).

When foundation models are fine-tuned, the main focus is on structural overlap. Indeed, models like MACE-MP-
0[27] (for materials) and MACE-OFF23[30] (for molecules) extrapolate remarkably well to highly diverse systems
(including liquids, amorphous systems, and higher temperatures and pressures) despite being trained exclusively on
near-ground state structures of inorganic crystals and isolated molecules and clusters, respectively. Nevertheless, the
further the configurations of the intended application are from those in the pre-training dataset, the more additional
data will be required to obtain an accurate fine-tuned model. This explains the appeal of TL in a multi-fidelity set-
ting.[31, 32] Here, additional data can be generated cheaply, for exactly the kinds of structures that are of interest
for a given application (i.e. with perfect structural overlap between pre-training and fine-tuning sets). For this rea-
son, multi-fidelity approaches have been widely used in chemical applications, both in TL and other settings, such as
∆-learning[33, 34, 35, 36], multi-task learning[37, 38, 39, 40, 41], or meta-learning[42]. In principle, there is thus a
trade-off between structural overlap and fidelity overlap. In practice, both aspects are usually confounded however,
since pre-training is often performed with pre-existing databases (e.g. the Materials Project or SPICE datasets[43, 44])
with a predefined chemical space and level of theory. Meanwhile, the chemical space and level of theory for fine-tuning
are defined by the target application.

The goal of this paper is to systematically explore the impact of structural and fidelity overlap in TL. To this end,
we take advantage of the recently reported Periodic Table Baseline Parameters (PTBP)[45] for Density Functional
Tight Binding (DFTB) calculations, which enable us to generate data for molecular and materials datasets with low
computational cost. With this, we generate customized low-fidelity datasets for arbitrary configuration spaces, with
perfect structural overlap. The corresponding multi-fidelity TL (MFTL) models are compared with TL models based
on pre-trained foundation models, which by definition feature a lower degree of structural overlap, but are trained with
higher fidelity reference data.

2 Results and Discussions

Figure 1a illustrates the general MFTL workflow used herein. In the initial stage, DFTB is employed as an efficient
method for generating training labels for a large sample from the target configuration space. The interatomic potential
(e.g. MACE in this case) is pre-trained using this low-fidelity data. As discussed in the introduction, the key advantage
of the resulting models (compared to existing foundational models) is that they are trained on data with perfect struc-
tural overlap for the target application. The pre-trained low-fidelity model is subsequently fine-tuned using a smaller
but more accurate high-fidelity dataset. This fine-tuning step enhances the model’s predictive performance. In prin-
ciple, this fine-tuning process can be iteratively extended across multiple fidelities until the desired level of accuracy
for the final target is achieved, as demonstrated further below.[46] This MFTL approach is in contrast to configuration
space transfer learning as illustrated in Fig. 1b.

To demonstrate the benefit of MFTL, we first consider the QM7x dataset[47], which represents an extensive con-
figuration space of small organic molecules in equilibrium and non-equilibrium configurations. Specifically, QM7x
comprises approximately 4.2 million configurations based on the enumeration of small organic molecules containing
up to 7 heavy atoms (i.e. C, N, O, S, Cl). The molecular sizes span 4-23 atoms in total. For each configuration,
total energies and forces were calculated at the hybrid PBE0 level[48] with the many-body dispersion correction[49],
hereafter referred to as PBE0+MBD. To evaluate the impact of training set size, we randomly sampled training and
validation sets with sizes of 0.5k, 1k, 3k, 10k, and 50k configurations, respectively. An additional 50k configurations
were reserved as an independent test set for final evaluations.
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Figure 1: Schematic depiction of the MFTL approach, compared to TL in configuration space. In the former case (a),
data is sampled with different levels of fidelity from the same region of configuration space. The low computational
cost of lower fidelity methods allows more extensive sampling. In the latter case (b), the transfer occurs between one
highly sampled region of configuration space to a less sampled region at the same (or a similar) fidelity.

The performance of the low-fidelity DFTB method (using the PTBP parameters) compared to the target PBE0+MBD
method is shown in Fig. 2. For comparison, we also show the performance of the recent MACE-OFF23 foundation
model. Perhaps surprisingly, the foundation model displays similar error statistics as the PTBP model (root mean
squared errors (RMSEs) of 107.94 and 101.67 meV/atom for relative energies, respectively), despite it being trained
on similar organic molecules, whereas PTBP is a simple DFTB model fitted on inorganic solids. These deviations can
partially be attributed to the different levels of theory used for training MACE-OFF23 (ωB97M-D3) and for generat-
ing the QM7x data (PBE0+MBD). However, this does not explain the magnitude of the observed errors, since both
methods are dispersion-corrected hybrid DFT functionals, which should perform similarly on this data. A more de-
tailed investigation of the errors per molecule reveals that large deviations are exclusively observed for configurations
with close interatomic contacts and/or broken covalent bonds. These occur in QM7x, because the non-equilibrium
geometries are generated by normal mode sampling in rectilinear coordinates. In contrast, the SPICE set on which
MACE-OFF23 is trained uses molecular dynamics (MD) to generate non-equilibrium structures, where close inter-
atomic contacts or broken bonds are highly unlikely. As a consequence, the MACE-OFF23 RMSE is strongly impacted
by a small number of outlier structures with unphysical bonding configurations. This becomes apparent when consid-
ering the histogram of force errors (Fig. 2c), which reveals that there is a lower density of errors in the intermediate
range (around 1 eV/Å) for MACE-OFF23, but a tail of very large errors with low density. In contrast, the distribution
of PTBP force errors lacks this tail, highlighting the robustness of this simple physics-based model. Representative
configurations, for which MACE-OFF23 displays large errors are shown in Fig. 2d.

For initial MFTL tests on QM7x, new MACE models (using the MACE-OFF23 model architecture) were pre-trained
on 10k and 50k DFTB(PTBP) datapoints, and subsequently fine-tuned on 0.5k PBE0+MBD datapoints. For robust
statistics, each training was repeated three times with randomly initialized weights. In Fig. 3, the performance of these
MFTL models on the PBE0+MBD test set is shown, as a function of the number of epochs used for pre-training.
In all cases, errors initially decrease but quickly stagnate and even increase for longer training times. This trend
is particularly clear for the larger pre-training set, and when training on forces. Overall, this figure shows that the
MLTF concept is sound, since using more low-fidelity DFTB(PTBP) datapoints improves the performance for the
high-fidelity test set, even though the size of the high-fidelity dataset is constant. On the other hand, this analysis also
provides clear evidence of negative transfer, since training for more epochs increases the error on the high-fidelity data
(even when it still decreases the error on the low-fidelity data, see Fig. S1).

These results may appear somewhat counter-intuitive at first glance, since MFTL appears to benefit from more data but
not from more pre-training. However, they can be understood from the perspective of the widely used early-stopping
approach for model regularization.[50] Neural networks tend to learn more general (and thus more transferable) con-
cepts and features during early training epochs and more specific details in later epochs. In other words, fully con-
verging the pre-training teaches the model irrelevant (and indeed detrimental) details about the PTBP potential energy
surface, which cannot be corrected by the small fine-tuning dataset. Note that we use training epochs as a convenient
measure for the length of the training of a given model here. However, this metric is not meaningful when comparing
different training set sizes, since the number of weight updates per epoch increases with training set size.
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Figure 2: The performance of the MACE-OFF23 foundation model (a) and the semi-empirical DFTB(PTBP) model (b)
for 150k randomly sampled configurations from the QM7x database. Histograms of force errors (c) and representative
structures of MACE-OFF23 outliers (d).

Figure 3: High-fidelity performance for energies (a) and forces (b) of MFTL models based on 10k and 50k low-fidelity
training samples, respectively. The x-axis marks the maximum number of epochs allowed in pre-training, the y-axis
shows the accuracy of the final fine-tuned model on the high-fidelity test set. All models are fine-tuned on 0.5k high-
fidelity datapoints.

To investigate the influence of the size of the fine-tuning set, MFTL models trained on 50k DFTB(PTBP) samples over
200 epochs were fine-tuned on varying amounts of PBE0+MBD data (see Fig. 4). For comparison, we also trained
single-fidelity models from scratch on the same data, as well as fine-tuning the MACE-OFF23 foundation model.
We find that both TL approaches outperform the single-fidelity model, with the improvements being particularly
pronounced for the smallest high-fidelity training set (0.5k configurations). Here, the MFTL model performs best with
energy and force RMSEs of 6.1 meV/atom and 92.5 meV/Å, respectively, compared to 11.8 meV/atom and 195.0
meV/Å for single-fidelity learning.
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Figure 4: Learning curves for single-fidelity learning, foundation model TL, and MFTL on QM7x. The multi-fidelity
models are pre-trained on 50k DFTB(PTBP) samples.

Overall, the differences between the MFTL and fine-tuned foundation models are small but still significant (RMSEs of
7.17 meV/atom and 127.87 meV/Å with 0.5k configurations). This shows the benefit of pre-training on configurations
directly sampled from the target dataset. While MACE-OFF23 is certainly a better model than PTBP for describing
organic molecules in general, the MLFT model benefits from a better description of short interatomic distances. These
are important in QM7x but not included in the training of MACE-OFF23. Because of the efficiency of DFTB(PTBP)
(and semi-empirical models in general), generating such custom pre-training data only leads to a small computational
overhead relative to the generation of high-fidelity data.

Given the good performance of MLFT, it is also worth comparing with ∆-ML[33], which is perhaps the most straight-
forward multi-fidelity ML approach. Here, instead of targeting the full high-fidelity reference data, the difference
between high- and low-fidelity targets is learned. This difference typically displays lower variance and is thus easier
to learn than the full high-fidelity label. For QM7x, MLFT and ∆-ML display similar performance (see Fig. S2).
However, ∆-ML has the downside that the low-fidelity method needs to be evaluated for each prediction. While semi-
empirical methods are computationally efficient for small molecules, they display less favorable scaling with system
size than atomistic ML models. This makes MLFT a more versatile approach than ∆-ML overall.

Although QM7x is a highly diverse dataset, small organic molecules are generally a manageable task for ML potentials.
This is because of the highly systematic nature of organic chemistry, which can ultimately be reduced to a limited
number of atomic environments (functional groups). In contrast, interatomic potentials for materials involving various
surfaces, defects, and crystal structures can be more challenging. In particular, it was recently shown that transition
metals display many-body interactions that are difficult to describe with interatomic potentials.[51] We therefore next
investigate the performance of MFTL on a dataset containing 1.58k diverse configurations of elemental tungsten (i.e.
vacancies, low-index surfaces, gamma-surfaces, and dislocation cores), previously reported in Ref[52]. Energies and
forces for this dataset were computed with the PBE functional, which serves as the high-fidelity target.

Since the PTBP model was only fitted to simple crystals, its performance for the tungsten set is rather poor, with some
large outliers (see Fig. 5 and Fig. S3), leading to energy and force RMSEs of 251.15 meV and 5.28 eV/Å, respectively.
Nonetheless, it provides at least a qualitatively correct baseline in most cases. In contrast, the MACE-MP-0 foundation
model performs much better. In terms of energies, non-equilibrium structures are systematically overestabilized, con-
sistent with the previously reported mode-softening of MACE-MP-0 and other foundation models.[53] Nonetheless,
the predicted energies and forces show excellent correlation with the reference DFT calculations and no significant
outliers.

To develop MFTL models for this dataset, we isolated 1k structures each for validation and testing, and split the
remaining dataset into training sets of 0.1k, 0.3k, 1k, 2k, and 7.6k configurations. As for the QM7x dataset, we
observe negative transfer that can be mitigated by stopping the pre-training early. Indeed, we find that the best results
are observed when stopping after just 6 epochs in this case (see Fig. S4). This is much earlier than for QM7x,
likely due to the fact that the low-fidelity model is significantly noisier in this case. Learning curves for MFTL,
single-fidelity models, and the fine-tuned foundation models can be found in Fig. 6. As above, we find that MFTL
is highly beneficial for the smallest training set (100 configurations), with an almost four-fold improvement of the
energy RMSE, compared to the single-fidelity model. For larger datasets, the performance of single- and multi-fidelity
models is nearly indistinguishable, however.
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Figure 5: Performance of the foundation model MACE-MP-0 (a) and DFTB(PTBP) (b) for predicting relative energies
on the tungsten dataset.

Figure 6: Learning curves for single-fidelity learning, foundation model TL, and MFTL on the tungsten dataset. The
multi-fidelity models are pre-trained on 7.6k DFTB(PTBP) configurations.

Interestingly, the foundation model TL scheme is a much smaller improvement over single-fidelity learning for the
smallest dataset. In fact, the fine-tuned foundation model performs somewhat worse than the single fidelity model for
the larger training sets. This indicates that significant negative transfer is occurring here, despite the good performance
of the foundation model as is. This can be attributed to the fact that the MPTraj dataset used to train MACE-MP-0
only contains very few pure tungsten configurations. Specifically, the Materials Project only contains eight different
Tungsten samples, all of which are simple crystals. In contrast, the MFTL model is pre-trained on the full range of
atomic environments included in the dataset.

It should be emphasized that all examples discussed up to this point use the simplest TL strategy of retraining all pre-
trained weights on the new dataset. For MACE-MP-0, a multi-head TL approach was recently developed, which uses
separate read-out heads for the pre-training and fine-tuning data. Additionally, this approach retains a subsample of
the pre-training data during the fine-tuning step. This can mitigate both catastrophic forgetting and negative transfer.
We also applied this multi-head strategy to the tungsten set, finding much improved results, almost en par with MLFT
(see Fig. S5). This indicates that negative transfer is indeed the likely cause of the discrepancy between MLFT and
foundation model fine-tuning. For comparison, ∆-ML models were also developed for this dataset. As shown in
Fig. 7, exceptionally high errors (larger than for single-fidelity models) were observed for these models, however.
This can be attributed to the high level of noise in the DFTB(PTBP) baseline data. With early stopping during the
pre-training phase, MFTL is nevertheless highly robust, even under these circumstances.

So far, all MFTL examples we discussed used a single low fidelity level (DFTB) and a target high fidelity level (DFT).
As demonstrated by von Lilienfeld and co-workers in the ∆-ML context, quantum chemical data is also well suited
for developing models with more levels of fidelity, e.g. including highly accurate wavefunction methods like Coupled
Cluster (CC) theory.[54] To explore this idea further, we used the DFTB(PTBP) pre-trained and PBE0+MBD fine-
tuned models developed on the QM7x dataset (see above) as baselines for further TL on CCSD(T) targets from the
MD22 dataset[55].
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Figure 7: Learning curves for ∆-ML and single-fidelity learning on the tungsten dataset.

Figure 8: Learning curves for single-fidelity, double-fidelity, and triple-fidelity models on CCSD(T) data from the
MD22 set. The multi-fidelity models use 50k DFTB(PTBP) and 10k DFT datapoints for pre-training, respectively.

Specifically, we used a set of 4500 non-equilibrium configurations of Benzene, Malonaldehyde, and Toluene (1500
structures for each molecule), for which CCSD(T)/cc-pVDZ energies and forces are available. From this combined
dataset, we uniformly sampled training sets with 0.1k, 0.5k, 1k, and 3k configurations. Validation and test sets of
0.75k structures each were also generated. We then trained single-fidelity models (trained from scratch on CCSD(T)
data), double-fidelity models (TL from DFT to CCSD(T)), and triple-fidelity models (TL from DFTB to DFT to
CCSD(T)). Here, 50k DFTB and 10k DFT datapoints from the QM7x dataset were used as the pre-training samples.
The corresponding results are shown in Fig. 8.

This shows that using multiple levels of fidelity is indeed beneficial, as the triple-fidelity model performs best across
all training set sizes. Compared to the single-fidelity model, it achieves up to 59.75% and 45.09% improvement in
energy and forces error, respectively, yielding RMSEs of 0.49 meV/atom and 25.59 meV/Å with only 100 CCSD(T)
datapoints. Importantly, it even outperforms the double-fidelity model pre-trained on 10k DFT configurations. This
confirms that the extensive amount of DFTB data contains information relevant to the CCSD(T) learning task, beyond
what is provided by the DFT pretraining.

3 Conclusion

In this study, we have investigated the properties of MFTL models based on a robust DFTB(PTBP) baseline. By
drawing low- and high-fidelity configurations from the same datasets, the effects of structural and fidelity overlap
in quantum chemical TL could be disentangled. We find that noise in the low-fidelity labels can be detrimental in
both TL and ∆-ML settings. Early-stopping of the pre-training proved to be an efficient way to mitigate this issue,
however. With this approach, MFTL even outperforms the straightforward fine-tuning of high quality foundation
models, both for molecular and materials datasets. This is somewhat surprising, since the foundation models are
generally more accurate than the DFTB(PTBP) baseline. However, the lower structural overlap between pre-training
and fine-tuning datasets causes some negative transfer in the fine-tuning of the foundation models. For the challenging
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tungsten dataset, we found that this can be mitigated with a more sophisticated multi-head fine-tuning strategy for the
foundation model.

More broadly, our results indicate that the current approach of training foundation models to achieve the highest
possible accuracy on large single-fidelity databases is non-optimal from the perspective of fine-tuning for specific ap-
plications. In future work, multi-fidelity approaches and early-stopping should be investigated for foundation models
as well. Inexpensive electronic structure models like DFTB(PTBP) or small basis DFT would allow a massive ex-
ploration of materials configuration space[45, 56]. This could increase the applicability and robustness of the next
generation of foundation models.

Code and Data Availability: The dataset sets used in this work and training scripts can be found at https://
gitlab.com/mncui/ptbplus.git.

Acknowledgements: The authors gratefully acknowledge the Max Planck Computing and Data Facility (MPCDF) for
providing computing time.
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