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Abstract 57 

One Health seeks to integrate and balance the health of humans, animals, and environmental 58 

systems. These three spheres are intricately interconnected through microbiomes, which are 59 

universally present and exchange microbes and genes, influencing not only human and animal 60 

health but also key environmental, agricultural, and biotechnological processes. Preventing the 61 

emergence of pathogens as well as monitoring and controlling the composition of microbiomes 62 

through microbial effectors including virulence factors, toxins, antibiotics, non-ribosomal 63 

peptides, and viruses holds transformative potential. However, the mechanisms by which these 64 

microbial effectors shape microbiomes and their broader functional consequences in relation to 65 

host and ecosystem health remain poorly understood to date. Metaproteomics offers a novel 66 

methodological framework as it provides insights into microbial dynamics by quantifying 67 

microbial biomass composition, metabolic functions and detecting effectors like viruses, 68 

antimicrobial resistance proteins, and non-ribosomal peptides. Here, we document the potential 69 

of metaproteomics for elucidating microbial effectors and their impact on microbiomes, and 70 

discuss their potential for modulating microbiomes to foster desired functions.  71 
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1. Introduction 106 

The One Health concept is based on the close interconnection of human health, animals, 107 

agricultural and environmental ecosystems. The interactions between these dimensions are 108 

evident through examples such as zoonotic diseases, and the emerging spread of antibiotic 109 

resistance. A key factor linking human and animal health with environmental, agricultural, and 110 

biotechnological systems is their microbiomes. The exchange of species (including viruses) and 111 

genes between different microbiomes leads to (i) alterations in microbiome composition and 112 

function within a receiving system, (ii) the introduction of pathogenic species and genes, and (iii) 113 

the transfer of antibiotic resistance genes. In relation to the latter, globally, in 2019 alone, deaths 114 

related to antimicrobial resistance were estimated at 4.95 million [1]. Conversely, controlling 115 

microbiome composition holds transformative potential for healthcare and biotechnological 116 

applications. Identifying microbial effectors, such as virulence factors, toxins, antibiotics, non-117 

ribosomal peptides (NRP)s, and viruses from various environments, is crucial for precisely 118 

managing microbial communities [2, 3]. 119 

Although the clear potential exists to leverage microbiome-based effectors in the future, a more 120 

comprehensive understanding of the mechanisms by which these effectors influence 121 

microbiomes and their broader functional impacts is still needed. Metaproteomics [4] provides 122 

the toolbox to identify and monitor microbial effectors. Metaproteomics has proven valuable 123 

across diverse applications, including for characterizing the impact of antibiotic therapy on 124 

human gut microbiomes [5], antibiotic resistance in animals [6] and their manure [7], exploring 125 

alternative gene coding in human gut bacteriophages (phages) [8], and identifying the human 126 

gut virome [9] and bacteriophage populations within anaerobic digesters [10]. 127 

Recent advancements in high-resolution mass spectrometers and overall progress in the 128 

metaproteomics field have made it possible to identify microbial effectors at higher sensitivity 129 
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and specificity. Further improvements in the metaproteomic workflow promise meaningful 130 

contribution to study of microbial effectors and their impact on microbiomes. 131 

This current opinion discusses how metaproteomics provides insights into the occurrence 132 

of microbial effectors and how these interact with microbiomes. We focus on seven key 133 

challenges: (i) identification and quantification of low-abundance microbial effectors 134 

through metaproteomics, (ii) identification of non-canonical peptides and proteins (e.g., 135 

NRPs), (iii) search databases for microbial effectors, (iv) taxonomic and functional 136 

annotation of microbial effectors, (v) mapping of microbial effectors to their hosts and 137 

targets, and (vi) identification strategies to explore their interactions. To address these 138 

questions, we will first introduce the microbial effectors, followed by metaproteomics workflow 139 

and the required adaptations for microbial effector investigation, before focusing on their 140 

application in microbiomes and in the context of One Health.  141 
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2. Microbial effectors 142 

Microbial effectors comprise diverse biomolecules used by microorganisms to combat with other 143 

species or modify their environment (Figure 1 and Table 1). For instance, microorganisms 144 

produce virulence factors (Chapter 2.1) to infect hosts, evade immune defenses, and cause 145 

disease. Among these virulence factors, toxins (Chapter 2.2) are particularly potent, as they can 146 

damage host cells, disrupt biological processes, or induce toxicity. 147 

Additionally, several microbial species may synthesize antibiotics (Chapter 2.3) to inhibit the 148 

growth of competing species or eliminate them entirely. Furthermore, nearly all living organisms 149 

produce antimicrobial peptides (Chapter 2.4) as a defense mechanism against bacteria, viruses, 150 

fungi, and even tumor cells. These antimicrobial peptides can be classified into ribosomal 151 

peptides and NRPs. 152 

Another class of microbial effectors are viruses, such as phages (Chapter 2.5), which function as 153 

mobile, self-replicating genetic elements. While metagenomics reveals the genetic potential of 154 

microbial communities to produce these effectors, metaproteomics offers a unique advantage by 155 

confirming their actual presence, expressed function, and the involvement of specific protein 156 

machinery in their synthesis. 157 
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 158 

Figure 1: Overview of the role of microbial effectors in microbiomes and their interaction with the 159 

hosts.160 
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 161 

Microbial 
effector 

Definition Structure Producer Target Resistance 

Virulence 
factor 

Molecules or structures that 
enable pathogens to infect hosts, 
evade immune defenses, or cause 
disease. 

Enzymes, toxins, 
adhesins 

Bacteria, 
Archaea, Fungi, 
Viruses 

Hosts including 
animals and plants 

Usually slow, 
but fast 
adaptation  
by immune 
system 

Toxins Substances produced by 
organisms to damage host cells, 
disrupt biological functions, or 
cause toxicity. 

Complex metabolites 
(may contain amino 
acids) 

Bacteria, 
Archaea, Fungi, 
Viruses 

Hosts including 
animals and plants 

Usually slow, 
but fast 
adaptation  
by immune 
system 

Antimicrobial 
peptide 

Short peptides produced to 
defend against bacteria, viruses 
fungi and tumor cells 

Canonical amino acids All species broad range against 
bacteria, virus, fungi 
or parasites 

Rare 

Non- 
ribosomal 
peptide 

Peptides synthesized by non-
ribosomal peptide synthetase 
(NRPS) enzymes, not ribosomes. 

Peptide secondary 
metabolites 

Bacteria, 
Archaea, Fungi 

broad range against 
bacteria, virus, fungi 
or parasites 

Rare 

Antibiotics Chemical compounds that 
specifically inhibit bacterial growth 
or kill bacteria. 

Diverse small molecules 
(may contain amino 
acids) 

Bacteria, 
Archaea, Fungi 

Target microbial 
structures 

Frequently 

Viruses Infectious agents consisting of 
nucleic acids 

Nucleic acids (DNA/RNA) 
and proteins; sometimes 
lipids. 

Self-reproducing 
in hosts 

All domains Usually slow, 
but fast 
adaptation  
by immune 
system 

Table 1: Overview of microbial effectors 162 
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2.1 Virulence Factors 163 

Virulence factors of microorganisms are described as the molecules that support the 164 

colonization of the host at the cellular level [11], and can be either secretory, associated with the 165 

membrane, or cytosolic. Virulence factors include, amongst others, proteins like toxins, 166 

adhesins, pili, proteases, hemolysins, or proteins from secretion systems, organized often as 167 

pathogenicity islands and regulatory pathways [12]. Their function is to allow nutrient acquisition, 168 

protect from the host’s immune response, or enable adhesion, invasion, and intoxication of host 169 

cells [13]. The expression of these molecules is of outstanding importance for the health of 170 

humans, animals, and environmental systems. The transmission of virulence genes between or 171 

within species has the potential to create pathogen populations of enhanced virulence and favor 172 

the emergence of new diseases [14]. 173 

Transfer of DNA and thereby virulence factors is either accomplished by transduction through 174 

phages, conjugation through pili, or by uptake of naked, environmental DNA [15]. Environmental 175 

microbiomes from soils or glacial ice are reservoirs for clinically relevant virulence genes, and 176 

especially aquatic environments, such as wastewater treatment plants, are important drivers for 177 

the exchange and transmission of genes [16, 17]. Therefore, monitoring the presence of 178 

virulence factors in risky environments poses a crucial task in the One Health concept. The 179 

identification and quantification of virulence factors from microbial communities can be 180 

tentatively assessed using metagenomics and qPCR [18, 19], but the synthesis and secretion of 181 

virulence factors is prone to environmental influence, e.g., nutrient concentration or temperature 182 

[20, 21]. Therefore, proteomics and metaproteomics methods are more suitable to explore their 183 

synthesis and secretion. In practice, the production of several virulence factors was observed in 184 

different conditions with metaproteomics. For example, Graf et al. [22] identified several 185 

virulence factors, including staphylococcal leukocidin, in sputum samples of cystic fibrosis 186 

samples, and Messer et al. [23] observed protein virulence factors at marine plastic surfaces. 187 
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Thereby, metaproteomics is able to contribute to human health research and risk assessment, 188 

when dealing with environmental matrices. Furthermore, a number of studies used proteomics 189 

methods to quantify virulence factors, especially toxins [24].  190 

2.2 Toxins 191 

Toxins include a diverse set of bioactive compounds, including proteins, and are produced by 192 

microorganisms to establish a competitive advantage in their distinct environment and enhance 193 

survival [25]. They can be classified based on their biological effect on the target organism, e.g. 194 

into enterotoxins, cytotoxins, neurotoxins, leukotoxins, dermonecrotic toxins, and hemolytic 195 

toxins, and based on whether they are released to target cells (exotoxins) or cell-associated 196 

(endotoxins) [26]. Protein toxins are active in very low concentrations and can either act on the 197 

cell surface, by interfering with signal transduction, by damaging the membrane, or 198 

intracellularly, where they induce cell death, cytoskeleton alteration, or blockade of exocytosis 199 

[27]. 200 

Toxins produced by microorganisms can have severe or even life-threatening impacts on human 201 

and animal health, e.g., water- and food-borne intoxications, leading to diarrhea or septic shock 202 

syndrome, amongst others. Even probiotic strains are capable of producing hazardous toxins 203 

[28]. Transmission of toxins between environments is simple. For instance, toxins produced by 204 

microorganisms in an aquatic environment can accumulate in fish or seafood [29], or mycotoxins 205 

in contaminated food can accumulate in chicken tissue [30], which are then consumed by 206 

humans and animals impacting their health. Moreover, toxins produced by soil organisms can be 207 

washed into water and spread across a wide area. 208 

Notably, xenobiotics derived from microbial toxins are currently being explored for their use in 209 

cancer treatment [31]. Furthermore, microbiomes can be used for the remediation of toxin-210 

contaminated soils [32]. 211 
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Therefore, the identification of microorganisms producing toxins and the detection of toxins in 212 

complex matrices (environmental samples or body fluids) is of importance for the One Health 213 

concept. Recently established databases condensing information about microbial toxins and 214 

antitoxins, like Toxinome [33], or tools for the prediction of toxin genes from (meta-) genomic 215 

data, like PathoFact [19], will facilitate the in-depth exploration of these microbial effectors. 216 

Metaproteomics was used to identify metabolic changes in the gut microbiome in response to 217 

toxins [34] and could help in the optimization of microbiome degradation capability for soil 218 

remediation purposes. Additionally, meta-(proteomics) can be used to verify the expression of 219 

protein toxins, or proteins involved in the biosynthesis and regulation of toxins [35]. 220 

2.3 Antimicrobials 221 

Antimicrobials are capable of killing or inhibiting the growth of bacteria (antibiotics), or fungi 222 

(antifungals). The resistance of bacteria against antimicrobials represents a very significant 223 

public health concern [1]. Antibiotics are generally classified by their molecular targets, such as 224 

the bacterial cell wall (e.g., penicillins, cephalosporins), cell membranes, essential bacterial 225 

enzymes (e.g., rifamycins, quinolones, sulfonamides), or protein synthesis (e.g., macrolides, 226 

lincosamides, tetracyclines). Several databases are available for more detailed information on 227 

antimicrobials, including AntibioticDB [36], DrugBank [37], PubChem [38], and the ChEMBL [39] 228 

databases. Additionally, databases like CARD [40] and ResFinder [41] focus on collecting 229 

antimicrobial resistance genes. 230 

A multitude of studies were performed to better understand the mode of action of antibiotics as 231 

well as the biological basis of drug resistance and to screen bacteria for the presence of 232 

antibiotic resistance mechanisms. Proteomics is key to elucidating mechanisms of actions of 233 

new antibiotics, but also to unravel cellular mechanisms of microbial adaptations to antibiotics – 234 

i.e. resistance to antibiotics [42–44]. 235 
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Metaproteomics has been used to highlight changes in protein synthesis in specific bacteria 236 

resistant to antibiotics, i. a. to carbapenems [45]. While carbapenem resistance is genetically 237 

encoded in all the studied bacteria by genes encoding for the production of carbapenemase 238 

enzymes, more intricate proteome changes have been observed in the different genotypes 239 

(“New Delhi metallo-beta-lactamase”, “Klebsiella pneumoniae carbapenemase”, and “Imipenem-240 

Hydrolyzing β-Lactamase”), showing that bacterial resistance can include more complex cellular 241 

responses than expected from the known enzymatic mechanisms of resistance. For example, an 242 

increase in the production of outer membrane proteins (ompA) under meropenem exposure was 243 

found mainly for E. coli of the “Imipenem-Hydrolyzing β-Lactamase” genotype. In contrast, the 244 

“New Delhi metallo-beta-lactamase” genotype rather showed an increase in the synthesis of 245 

DNA HU binding proteins and of the chaperonin protein complex GroEL/GroES alongside a 246 

higher increase in differential proteome abundance overall. A new application of proteomics 247 

addresses persister cells, i.e., subpopulations of cells in which antibiotics act at a slower rate. 248 

Recent proteomic studies showed that these persister cells have an overall reduced metabolic 249 

activity but also show adaptations that enable them to survive stress better, e.g., through SOS 250 

response [46]. 251 

2.4 Antimicrobial peptides/ non-ribosomal peptides 252 

Antimicrobial peptides [47] are a subgroup of antimicrobials consisting of polypeptides of 12 to 253 

50 amino acids, produced as part of the innate immune system response in all higher 254 

eukaryotes but also microorganisms. They play a key role in defending against other microbial 255 

species and may even target cancer cells or fungi [48]. Antimicrobial peptides are synthesized 256 

either through ribosomal pathways, utilizing canonical amino acids, often followed by extensive 257 

post-translational modification as in the case of Ribosomally synthesized and post-translationally 258 

modified peptides (RiPPs) [49, 50], or via nonribosomal peptide synthetases (NRPS), giant 259 

multifunctional enzymes found in bacteria, fungi but also higher eukaryotes [51]. 260 
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While ribosomal antimicrobial peptides were mainly considered in the past to be linear, 261 

containing a few to several cationic amino acids, often showing membrane-interacting and pore-262 

forming activity, the identification of several new classes of RiPPs in the past 15 years has 263 

changed this dogma. Today, several highly complex RiPPs are known, which are so heavily 264 

post-translationally modified including via additional ring systems, epimerizations, 265 

hydroxylations, acylations, and/or C- and N-methylations that they can hardly be recognized as 266 

being of ribosomal biosynthesis origin. However, the big difference to NRPS-derived peptides is 267 

that RiPPs initially rely only on the 20 canonical amino acids while in NRPS-derived peptides 268 

more than 400 different amino acids have been described. While most of these are incorporated 269 

into the peptide during the assembly-line-like mechanism, where they can also be modified 270 

including by C- and N-methylation, hydroxylation, oxidation, dehydratation, heterocyclization, 271 

acylation, or formylation. The resulting peptide can also be further modified post-NRPS by 272 

glycosylation, phosphorylation, sulfation, or deacylation. Furthermore, NRPS can occur in 273 

combination with polyketide synthases (PKS), forming so-called NRPS-PKS hybrid enzymes, 274 

based on the shared biochemical mechanism, whereby all biosynthesis intermediates are 275 

covalently bound to a peptidyl- or acyl-carrier protein or thiolation (T) domain, ensuring an 276 

efficient combination of amino acids with (further functionalized) malonyl- or acetyl-units. The 277 

resulting gamma- (elongation with one) or epsilon- (elongation with two PKS units) amino acids 278 

can add to the complexity of NRPS-derived peptides beyond what is possible through RiPPs. 279 

The chemical diversity of NRPs and RiPPs with their several possible modifications, make their 280 

identification especially difficult, as they are highly stable against several proteases due to their 281 

D- or modified amino acids and cyclic structures. In most cases, where such complex peptides 282 

were identified, this was based on their good bioactivity (in the case of antibiotics) or after 283 

identification of the underlying biosynthetic gene cluster (BGC) encoding characteristic modifying 284 

enzymes (e.g., radical SAM-dependent enzymes), followed by heterologous production of the 285 

peptide. The identification of the classical linear AMPs is also very challenging, since although 286 
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they can be cleaved by proteases because of their linear structures, the presence of several 287 

cationic amino acid residues often results in peptides too small for definitive identification. The 288 

potential benefit of metaproteomics is that it enables quantifying even in communities the 289 

abundance of the NRP-producing enzymes and thus predicting their presence and structure, 290 

required for their targeted measurement. 291 

2.5 Bacteriophages and archaeophages 292 

Phages are viruses of bacteria (Figure 2) and archaea that selectively infect and rapidly kill cells 293 

shaping microbial population dynamics [52]. 294 

Following the absorption on the cell surface, phages inject their nucleic acid into the bacterial 295 

cytoplasm to immediately express early genes and manipulate DNA replication. They are divided 296 

into two groups, temperate and virulent phages. While temperate phages can integrate their 297 

genome into the genome of bacteria (prophage), chronic and virulent phages can only replicate 298 

within the bacterium and lysate cells for the viral progeny release. Phage release from cells 299 

occurs thanks to the production of holin and endolysin which target membranes and cell walls, 300 

respectively [53]. Bacteriophages are also able to target biofilm-embedded bacteria, by 301 

degrading extracellular matrix due to phage depolymerases, and to kill persister cells [54]. 302 

Phages are by their number the most abundant biological entities in the biosphere [55]. They 303 

and their protein components, involved in the interaction with bacterial cells, have been identified 304 

from different matrices (wastewater, soil, feces). Considering the small number of sequenced 305 

phages, most phage proteins cannot be identified yet, due to the scarcity of primary sequenced 306 

data. Thus, new phages should be isolated, and their genomes should be sequenced and 307 

compared to the metaproteomic data to discover new molecules and new effectors. 308 

In the past, phages were very well studied for horizontal gene transfer and transduction 309 

processes, especially for drug-resistant determinants and toxin genes. Now, they and their 310 
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proteins regain interest for their great antibacterial repertoire (including towards antibiotic-311 

resistant strains), their narrow host range, and ease to engineer phages. All these features may 312 

potentially allow not only to use of phages as adjuvant of the antibiotics for the treatment of 313 

infections caused by drug-resistant bacteria [56], but also to modulate pathogenic, commensal, 314 

and pathobiont bacteria of the microbiome, impacting host physiology and immune system in a 315 

One Health approach. 316 

One significant advantage of metaproteomics in phage research is its ability to confirm the 317 

expression of lysogenic phages and their associated proteins. For instance, Corynebacterium 318 

diphtheriae is a harmless bacterium unless it is infected by the prophage corynephage β, which 319 

encodes the diphtheria toxin responsible for causing diphtheria. 320 

Metaproteomics also offers the opportunity to study host-phage interactions over time, including 321 

the role of host immune systems (e.g., CRISPR and other mechanisms [57] in combating 322 

phages [58]. 323 

However, a key challenge for analyzing the interactions in time rows lies in tracking mutations 324 

that alter protein sequences. These variations necessitate the incorporation of diverse protein 325 

isoforms into databases to ensure accurate protein identification and analysis. 326 
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 327 

Figure 2: Overview of phage infections. The figure also shows the key molecules phages use 328 

for cell membrane lysis.  329 
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3. Overview of metaproteomic workflows and requirements for the 330 

analysis of microbial effectors 331 

Metaproteomics has achieved several major advances with respect to sample preparation 332 

(Chapter 3.10), mass spectrometry (Chapter 3.2), labeling (Chapter 3.3), bioinformatics (Chapter 333 

3.4), multi-omics data integration (Chapter 3.5), and model systems (Chapter 3.6), facilitating the 334 

identification of microbial effectors and their impact on microbiomes. However, several 335 

challenges also have to be considered while studying microbial effectors using metaproteomics 336 

(Figure 3). 337 
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 338 

Figure 3: Overview of metaproteomic workflow and key aspects that must be considered for studying microbial effectors 339 

and their impact on microbiomes. Abbreviations: RIPP: Ribosomally synthesized and post-translationally modified peptides, NRP: 340 

non-ribosomal peptides, AMP: antimicrobial peptides. SRM: selected reaction monitoring, PRM: parallel reaction monitoring, LOD: 341 
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limit of detection, LOQ: limit of quantification, DIA: data-independent acquisition, DDA: data-dependent acquisition, SIP: stable 342 

isotope probing, BONCAT: bioorthogonal non-canonical amino acid tagging. 343 
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3.1 Sample preparation for metaproteomics and considerations for the 344 

detection of microbial effectors 345 

The first challenge for metaproteomic analysis is sampling, where biomass should be collected 346 

for metaproteome analysis and, if necessary, for metagenomic analysis simultaneously [59]. 347 

Furthermore, samples must represent the investigated microbiome, which can be challenging if 348 

the studied environment consists of heterogeneous biomass (e.g., feces, or soil). Microbial 349 

samples also require microbiome preservation if transportation before sample workup is 350 

required. Various strategies have been investigated recently to address this challenge. The 351 

subsequent metaproteomic sample preparation can be time-consuming because it often requires 352 

extensive extraction and purification steps, depending on the complexity of the sample matrix 353 

[60–66]. Common metaproteomics workflows begin with homogenization, cell lysis, protein 354 

extraction, and purification steps, followed by proteolytic digestion of proteins and subsequent 355 

mass spectrometry-based proteomic analysis. While numerous protocols are available in the 356 

literature describing metaproteomics, these have been commonly adapted to the specific 357 

microbial complexity, types of impurities, biomass content, and the scientific questions being 358 

addressed (e.g., deep proteome coverage, focus on central metabolic pathways, or identification 359 

of extracellular enzymes). For instance, microbiomes from water samples generally contain 360 

fewer impurities and instead require concentration of the microbial populations before cell lysis 361 

and protein extraction. 362 

In contrast, soil or wastewater sludge samples contain high amounts of organic and phenolic 363 

compounds, polymeric substances, and inorganic compounds (including minerals), necessitating 364 

specialized purification and extraction protocols. Proteins can be adsorbed onto solid particles, 365 

such as clay minerals, which are often only partially reversible. The extracted proteome can be 366 

further fractionated to enable deeper proteome coverage and identification of low abundant 367 

microbial effectors, either before proteolytic digestion (e.g., via gel electrophoresis) or afterward 368 
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(e.g., ion exchange chromatography) [67]. However, direct analysis without fractionation and 369 

using 1D separation often provides sufficient coverage of the central metabolic pathways of the 370 

most abundant taxa [68]. This approach also saves significant time when analyzing large sample 371 

cohorts, such as in clinical studies. A particular challenge is posed by phages, hydrolytic 372 

enzymes or small peptides secreted into the extracellular environment. These require efficient 373 

extraction, concentration, and purification from often complex matrix components combined with 374 

enrichment of target molecules (e.g., antimicrobial glycopeptides) to achieve sensitive detection. 375 

Another challenge represents the detection of NRPs due to their complex and diverse structures. 376 

No general enrichment while sample preparation exists. However, possible NRPs can be 377 

predicted from genome information, and then targeted workflows for the detection of a subgroup 378 

of NRPs and their associated proteins can be developed [69–71]. 379 

3.2 Mass spectrometry for the detection of microbial effectors 380 

High-resolution tandem mass spectrometry is a key technology for generating peptide tags in 381 

partial amino acid sequences, which confirm the presence of proteins and enable accurate 382 

quantification of their abundance. Peptides generated from proteins via trypsin proteolysis are 383 

typically separated by their hydrophobicity using reverse-phase chromatography and then 384 

introduced into the mass spectrometer through a nanospray interface directly connected to the 385 

outlet of the chromatography column. After their molecular weights are determined, peptides are 386 

either isolated (in Data-Dependent Acquisition mode, DDA) or pooled (in Data-Independent 387 

Acquisition mode, DIA) and subsequently fragmented. The molecular weights of the resulting 388 

fragments are then measured. The initial peptide mass data helps to narrow down potential 389 

sequence candidates, while the fragmentation patterns enable precise identification of the amino 390 

acid sequence.  391 

Among a series of crucial parameters, those for the selection and fragmentation are paramount 392 

as they can significantly enhance the number of proteins identified and quantified. Compared to 393 

https://doi.org/10.26434/chemrxiv-2024-jg1mq ORCID: https://orcid.org/0000-0003-3280-9042 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-jg1mq
https://orcid.org/0000-0003-3280-9042
https://creativecommons.org/licenses/by/4.0/


 

 

traditional DDA setups, recent advances in DIA mode have shown increased sensitivity and 394 

broader protein coverage. Additionally, the recent introduction of a new generation of tandem 395 

mass spectrometers, specifically well adapted to address the complexity of metaproteomes, has 396 

significantly improved throughput and dynamic range [72, 73]. These instruments offer 397 

exceptional protein coverage, including of microbial effectors, and allow for deep 398 

characterization of dozens of samples or high-throughput monitoring of hundreds of samples in 399 

shorter time frames. Typically, 120,000 peptides can be identified and quantified within 30 400 

minutes [73]. Interestingly, within this landscape 12 proteins were associated with toxins and 14 401 

with phages. In contrast, a smaller number of proteins were linked to virulence (1 protein) and 402 

antibiotic-related function (2 proteins). The dynamic range observed in this dataset enables the 403 

identification and characterization of microorganisms comprising as little as 0.1% of the total 404 

biomass. Further fractionation of the samples can increase the dynamic range of this massive 405 

peptidome, allowing researchers to detect proteins from even low abundant organisms. 406 

Interestingly, NRPs can be characterized using the same experimental set-up, except that 407 

specific pre-enrichment should be carried out (e.g., for glycopeptides) [74]. Once the peptides 408 

are characterized, the monitoring of lowly abundant entities or cheap routine analysis of protein 409 

marker panels with targeted proteomics through selected reaction monitoring (SRM) mode can 410 

be straightforwardly developed for hundreds of samples. Fully harnessing the cutting-edge 411 

metaproteomics technology represents a major breakthrough for microbiome functional analysis, 412 

marking a transformative step forward in microbiome research [75].  413 

3.3. Labeling approaches to study the impact of microbial effectors 414 

Strategies to label proteins, such as protein-stable isotope probing (SIP), and click chemistry 415 

approaches, such as bioorthogonal non-canonical amino acid tagging (BONCAT), are additional 416 

tools to identify and quantify the impact of microbial effectors on the metabolic activities and 417 

nutrient fluxes of microbiomes. Newly synthesized proteins in actively growing cells are 418 
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detectable by incorporating labels, which cause a mass shift in the peptide spectra. Protein-SIP 419 

uses the incorporation of 2H, 13C, 15N, or 18O from respectively labeled substrates [76–78], 420 

whereas BONCAT is based on the incorporation of labeled amino acids tags such as l-421 

homopropargylglycine (HPG) and l-azidohomoalanine (AHA) [79]. Although BONCAT is often 422 

combined with high-resolution microscopy and spectroscopy [80], the combination with mass 423 

spectrometric analyses was recently shown in studying the replication of phages during microbe-424 

phage interactions [81], and the identification of effectors on bacterial pathogen infection [82, 425 

83]. Thus, response mechanisms on various microbial effectors and the resulting physiological 426 

mechanisms can be identified with both methods. Bottlenecks such as restricted use of single 427 

labeled substrates in Protein-SIP and possible growth inhibitions by reactive substrate analogs 428 

must be considered and tested beforehand.  429 

3.4 Bioinformatics  430 

In (meta)proteomics, standard protein identification involves compiling a protein FASTA 431 

database from established repositories such as UniProtKB or sample-specific metagenomes. 432 

This step is followed by in-silico digestion and fragmentation to generate theoretical spectra, 433 

which are then compared to the experimentally measured spectra. Peptide and protein 434 

identifications are validated by calculating the false discovery rate (FDR). To enhance the 435 

number of valid peptide identifications in metaproteomics, applying artificial error-based 436 

rescoring of the FDR is particularly beneficial [84, 85]. This approach refines the accuracy of 437 

peptide detection and reduces false positives. Once valid peptides and their associated proteins 438 

are identified, taxonomic and functional annotations are assigned from the original databases or 439 

sequence-based comparison against other repositories. 440 

Bioinformatic analysis for metaproteomics is challenging due to the usage of metagenomes for 441 

protein identification, the grouping of redundant protein identification from homologous proteins, 442 

and a comprehensive taxonomic and functional annotation. Therefore, several specific tools for 443 
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metaproteomics, like Unipept [86], MetaProteomeAnalyzer [87], and Metalab [88], were 444 

developed. These tools facilitate a better understanding of how microbial species contribute to 445 

resistance mechanisms across human, animal, and environmental health domains.  446 

As outlined above, metagenomes derived from the same or similar environments, often 447 

supplemented with protein sequences from repositories (e.g., Homo sapiens entries in UniProt 448 

for human microbiome studies), are typically used as databases for protein identification. These 449 

metagenomes are usually assembled, genes are predicted (gene calling), and frequently, 450 

metagenome-assembled genomes (MAGs) are constructed to define sample-specific taxonomic 451 

units. For microbial effectors, tools such as PATHOFact (for virulence factors and antimicrobial 452 

resistance) [19], antiSMASH (for secondary metabolite biosynthesis) [89] or Macrel (for 453 

predicting antimicrobial peptides) [90] can be employed to annotate genes and their associated 454 

proteins (e.g., polyketide synthases or resistance genes). Furthermore, VirHostMatcher [91], 455 

phageAI [92], What the Phage [93] and PHASTEST [94] can be used to identify potential 456 

bacteriophage hosts and target structures.  457 

A significant challenge in constructing metagenome databases for metaproteomics—particularly 458 

for cross-sample comparisons—is mapping genes and MAGs across different metagenomes or 459 

combined datasets. This task must accommodate the diversity of subspecies, mutations, and 460 

sequence variations while ensuring the database remains compact enough to support accurate 461 

FDR calculations. This issue is closely tied to proteogenomics, which combines genomic and 462 

proteomic data for deeper analysis [95]. In the context of metaproteomics, proteogenomics has 463 

demonstrated that phages can employ alternative genetic coding strategies [8]. Additionally, 464 

integrating a combined database or employing advanced tools enables a more detailed 465 

taxonomic and functional characterization of microbiomes from non-sequenced hosts [8]. 466 

Another major challenge in metaproteomics lies both in identifying non-tryptic peptides and in 467 

inferring homologous proteins across the vast diversity of microbial species. Due to the vast 468 
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diversity in microbial genomes and, thus, proteomes, traditional database-driven approaches 469 

often need help with incomplete or mismatched databases. Many proteins, especially those 470 

involved in resistance mechanisms, are poorly represented in existing databases. This challenge 471 

makes homologous protein identification a significant bottleneck, as the inability to match 472 

proteins accurately leads to gaps in understanding how microbial species express resistance. 473 

RiPPs and NRPs can be chemically highly complex from various modifications and therefore 474 

often lack predictable structures, making them difficult to detect and identify using conventional 475 

proteomics workflows. As a result, they still need to be explored despite their crucial roles in 476 

AMR. A potential solution to identify RiPPs and NRPs is to screen for not-identified high-quality 477 

spectra (e.g., ranked by SPEQ [96]) and to leverage de novo sequencing [8] and homology-478 

based searches [97]. These methods expand the search space beyond predefined peptide 479 

sequences and databases, allowing for the identification of non-tryptic peptides, homologous 480 

proteins, and NRPs. Moreover, integrating machine learning approaches and transfer learning 481 

can help refine peptide identification, making the detection of complex resistance mechanisms 482 

more accurate [98]. Another approach for NRPs or RiPPs for which the BGC has been identified 483 

is either heterologous production of the BGC or manipulation of the producer organism itself, 484 

followed by comparison of the respective expression, deletion or overproducing mutants with the 485 

wildtype strain. Although greatly facilitating the identification of compounds derived from these 486 

BGCs, this approach requires genetic tools for the desired peptide producer and knowledge 487 

about the biosynthesis pathway. 488 

To better understand the effect of microbial effectors, identified proteins can be assigned to 489 

metabolic networks and used subsequently as input data for modeling microbiomes to study 490 

their effect on their taxonomic and functional composition [99]. 491 
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3.5 Integration of further omics methods to enhance the identification 492 

of microbial effectors  493 

Although metaproteomics is a powerful tool for studying microbiomes and microbial effectors, its 494 

potential is greatly enhanced by integrating additional omics approaches (Figure 4). Cytomics 495 

enables monitoring and sorting microbial subpopulations, providing insights into cell-specific 496 

behaviors. Furthermore, cytomics can measure cell viability [100], which is of great importance 497 

e.g., to assess the response of microbiomes to antimicrobials and could even provide the 498 

potential to evaluate community structure, diversity, and metabolite exchange in response to 499 

microbial effectors [101]. 500 

Metagenomics is essential for generating sample-specific databases used in protein 501 

identification, while predicted genes from metagenomic data serve as input for taxonomic and 502 

functional characterization (e.g., antibiotic production or resistance) using sequence alignment 503 

tools. Metagenomics typically offers higher resolution, allowing for more detailed insights into the 504 

taxonomic and functional composition of the microbiome. It also enables a unique opportunity to 505 

study operon structures and surrounding genes as well the encoding of microbial effectors in the 506 

genome or in mobile genetic elements [19]. Liquid chromatography (LC)-MS/MS-based 507 

metabolomics is another valuable method for studying microbiomes, allowing researchers to 508 

quantify metabolite pools and identify novel antibiotics and NRPs. Metabolomics provides an 509 

advantage in studying microbial effectors by enabling the screening of a broader range of 510 

chemical compounds through different LC and gas chromatography (GC) systems for 511 

prefractionation of the analytes [102, 103]. A key challenge in multi-omics research is integrating 512 

diverse data types, requiring standardized identifiers and ontologies, such as UniProt IDs [104] 513 

or KEGG ontologies [105]. An effective approach is aggregating all data into a graph-based 514 

structure or linking it to a knowledge graph. The benefit of knowledge graphs lies in their ability 515 

to integrate heterogeneous data, apply graph algorithms [106], and facilitate connections with 516 
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large language models, enabling improved data exploration and predictive analysis. Another 517 

strategy for multi-omics data integration is the calculation of correlation factors between the 518 

different omics features, which could be nicely visualized as co-occurrence networks [107]. 519 

 520 

Figure 4: Strategies for combining metaproteomics with other omics tools. 521 

3.6 Model systems to study microbial communities for the validation 522 

of microbial effectors 523 

Researchers require controlled experimental models incorporating both in vitro and in vivo 524 

approaches to identify and validate novel microbial effectors and their impact on microbiomes. 525 

Synthetic microbial communities (SynComs), such as SIHUMIx, OligoMM, 14-SM, and other 526 

mock communities, represent gold-standard systems for studying microbial interactions and 527 

responses [108]. These models provide controlled environments that simulate natural microbial 528 

ecosystems, allowing for precise examination of effector molecules and their roles in community 529 

dynamics, signaling, and host interactions. SynComs offers a robust foundation for investigating 530 

https://doi.org/10.26434/chemrxiv-2024-jg1mq ORCID: https://orcid.org/0000-0003-3280-9042 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-jg1mq
https://orcid.org/0000-0003-3280-9042
https://creativecommons.org/licenses/by/4.0/


 

 

microbial functions within microbiomes by enabling direct observation of cause-and-effect 531 

relationships while minimizing confounding variables. SynComs also enhances metaproteomic 532 

research by using annotated genomes for each community member, which improves protein 533 

identification accuracy. This genomic information enables detailed insights into strain-level 534 

interactions, often unachievable in natural microbiomes due to similar protein sequences. 535 

Additionally, SynComs allow for the study of low-abundance species, such as keystone taxa 536 

[109, 110], which play essential roles within the microbiome but are often undetectable in 537 

conventional metaproteomic analyses. In vivo mouse models replicate human physiological 538 

responses for host-relevant microbial studies, providing insights into microbial-host interactions 539 

and discovering microbial effectors pertinent to disease. Emerging "lab-on-a-chip" microfluidic 540 

platforms complement these models by allowing precise control and monitoring microbial 541 

communities in high-throughput formats, enhancing our understanding of microbial dynamics 542 

under controlled conditions [111]. Fermentation systems, including the Simulator of the Human 543 

Intestinal Microbial Ecosystem (SHIME) [112] and the PEristaltic mixed Tubular bioReactor 544 

(PETR) [113], simulate gastrointestinal conditions, supporting long-term studies of microbial 545 

fermentation and gut ecology. Of particular interest for the fermentation are systems that enable 546 

co-cultures of microorganisms and human cells, such as HuMiX [114] or gut-on-chip [115], to 547 

ascertain the effect of different microbiota-expressed effectors on the human cells to ascertain 548 

the effect of different microbiota-expressed effectors on the human cells.  549 

Together, these models offer a comprehensive toolkit for assessing microbial effects on host 550 

health, advancing our understanding of microbial communities in health and disease. 551 

https://doi.org/10.26434/chemrxiv-2024-jg1mq ORCID: https://orcid.org/0000-0003-3280-9042 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-jg1mq
https://orcid.org/0000-0003-3280-9042
https://creativecommons.org/licenses/by/4.0/


 

 

4. Application of metaproteomics for studying microbial effectors and 552 

microbiomes in the One Health context 553 

To evaluate the potential for identifying and studying microbial effectors in the One Health 554 

framework, we assessed the current status of the field of metaproteomics in this context 555 

(Chapter 4.1), followed by a detailed characterization of usage of microbiomes in the clinical 556 

(Chapter 4.2) and non-clinical context (Chapter 4.3). 557 

4.1 Relevance of metaproteomics and microbial effectors in the 558 

context of microbiome research and One Health 559 

As a summary of the current research status about microbiomes, metaproteomics, One Health, 560 

and microbial effectors, we created a word cloud based on the abundance of the keyword in 561 

combination with “microbiome” in Pubmed NCBI (Figure 5) presenting the relevance of the terms 562 

based on the text size.   563 
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 564 

Figure 5: Word Cloud showing the abundance of keywords in combination with the 565 

‘Microbiome’ in Pubmed NCBI. As abundance values the rounded logarithm with the base of 2 566 

of hits were used and submitted to https://wordart.com/create. For ‘Microbiome’ the number 567 

without any combination was used for calculation.) The word cloud displays different aspects of 568 

microbiome research: (i) sources of microbiomes (green), (ii) interactions (purple), (iii) involved 569 

taxa (red), (iv) applied experimental approaches (blue), and (vi) societal effects and recent or 570 

future applications (grey). 571 

The word cloud highlights "microbiome" as a central term, primarily associated with human and 572 

animal habitats like the gut or skin, while also representing ecosystems across the biosphere. 573 

Advances in high-throughput sequencing have shifted microbiology from isolated studies to a 574 

holistic view of microbial communities. While research often emphasizes pathogenic effects, 575 

increasing evidence underscores the health-promoting roles of microorganisms and their 576 

complex interactions, essential for microbiome stability. 577 

Terms like "human," "gut," and "pathogen" reflect the focus on human disease, while 578 

"commensalism," "mutualism," and "syntrophy" highlight cooperative interactions, such as 579 

metabolite sharing, critical for microbiome functions. Conversely, terms like "phage," "antibiotic," 580 
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and "nonribosomal peptides" point to regulatory mechanisms preventing dysbiosis and 581 

supporting microbial diversity. 582 

Less frequent terms like "oceans" and "roots" indicate underexplored environmental 583 

microbiomes, aligning with the "One Health" approach. The prominence of "16S rRNA" and 584 

"cultivation" highlights a continued focus on community structure and species isolation, while the 585 

underrepresentation of "metaproteomics" suggests an experimental gap. Finally, terms like 586 

"probiotic," "prebiotic," and "biocontrol" reflect growing recognition of microbiomes’ societal and 587 

environmental benefits. 588 

4.2 Usage of microbiomes in the clinical context and potential for 589 

metaproteomics and microbial effectors 590 

Currently, over 2,400 clinical studies are investigating the microbiome's relationship with various 591 

health factors (https://clinicaltrials.gov/). Of these, over 1,000 focus on the microbiome's role in 592 

70 diseases, including autoimmune disorders, cancer, cardiovascular, digestive, and metabolic 593 

diseases (Figure 6). These efforts reflect the growing recognition of the microbiome as a key 594 

factor influencing disease diagnosis, prognosis, and treatment response.  595 

The importance of the microbiome extends beyond human microbiome and health to encompass 596 

the interconnected animal and environmental dimensions of the One Health approach. Microbial 597 

communities in animals and the environment actively shape human microbiome composition and 598 

functionality. Through direct exposure, shared ecosystems, and environmental reservoirs, these 599 

interactions influence the microbiome's clinical impact. For instance, zoonotic pathogens or 600 

antimicrobial resistance genes are often mediated by microbial exchanges between humans, 601 

animals, and their habitats, demonstrating the profound interplay within these domains. 602 

The high interest in the microbiome is particularly pertinent in diseases where immune and 603 

inflammatory mechanisms play a central role, as the microbiome may modulate both immune-604 
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suppressive and stimulatory pathways [116]. Furthermore, microbiome-host interactions extend 605 

beyond individual organs that are vital for maintaining homeostasis and influencing disease 606 

progression [117]. Therefore, the interrelationship between microbial communities colonizing 607 

different human surfaces provides the advantage of collecting highly informative profiles from 608 

more accessible microbiome samples in clinical contexts where pathology mostly affects less 609 

reachable organs. 610 

While different diseases are linked with different interactions between the microbiome and the 611 

host, key areas of investigation remain. These include understanding the microbiome's 612 

treatment response, metabolic consequences, underlying molecular pathways, and identifying 613 

microbiome components that enhance clinical status. To showcase the need of microbiome 614 

studies and the microbial effectors we showcase the following four clinical use cases: 615 

(i.) Recent studies have shown that microbial proteins, which accumulate under specific 616 

conditions, as well as their sequence diversity, structural features, and post-translational 617 

modifications (PTMs) like acetylations, deaminations, hydroxylations, methylations, 618 

nitrosylations, oxidations, and phosphorylations, are critical for priming immune cells effectively 619 

[88]. Understanding these variations in proteins, whose nature can be revealed through 620 

metaproteome analysis, combined with advanced computational methods such as protein 621 

structure prediction [118] and all-atom molecular dynamics (MD) simulations [119], provides 622 

insights into the role of microbial proteins in immune regulation. This insight could potentially 623 

guide the development of targeted therapeutic strategies 624 

(ii.) Cancer and infectious diseases, including HIV, underscore the importance of identifying 625 

specific microbiome-derived proteins that can boost immune function and mitigate inflammation 626 

while simultaneously managing antibiotic resistance in frequently hospitalized individuals [120]. 627 

Such patients often require repeated antibiotic cycles, which further complicates treatment by 628 

promoting resistance. 629 
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(iii.) Furthermore, the understanding of disease also requires a more holistic view. For example, 630 

Helicobacter pylori was until recently considered the strongest risk factor for the development of 631 

gastric cancer, which is the fifth most common cancer worldwide. However, recent advances in 632 

metagenomics and metaproteomics techniques demonstrated changes in the complete 633 

microbiome during gastric carcinogenesis rather than that of single microbes. Hypochlorhydria, a 634 

state of low hydrochloric acid levels that affect the stomach’s ability to digest and absorb 635 

proteins, induces changes in the complete microbiome (reducing diversity and abundance of 636 

commensal bacteria and promoting overgrowth of pathogenic and carcinogenic species) that 637 

might have a direct linked with gastric cancer [121]. This is further enhanced by the prolonged 638 

use of proton pump inhibitors which are widely used medications [122]. Thus, the risk of cancer 639 

could be identified by characterizing microbiome alterations in gastric juices and/or feces of 640 

patients. Monitoring microbial alterations could also help physicians and healthcare 641 

professionals assess the risks and benefits of using medications such as proton pump inhibitors, 642 

monitor medical care protocols, and optimize treatments for high-risk patients. 643 

(iv.) Preclinical and clinical trials suggest that the alterations in the gut microbiome are also 644 

linked with toxicities induced by chemotherapies [123], and immunotherapies [124]. It has also 645 

been suggested that modulation of the gut microbiome before and during chemotherapy in 646 

cancer patients could reduce the occurrence of adverse events and improve the effectiveness of 647 

treatments [125]. Recent studies also suggested that the gut microbiome, available via fecal 648 

material, constitutes a promising source of biomarkers to predict and monitor treatment 649 

outcomes and potentially related adverse events [126]. Furthermore, tongue swab 650 

metaproteomics has for instance enhanced our understanding of the mechanism behind specific 651 

tongue coating formation and its potential role as an indicator of gastric cancer [127]. 652 

In sum to these examples, clinical needs for microbiome research include (i.) accurate and 653 

timely diagnosis of microbiome functional alterations; (ii.) monitoring the disturbances in 654 
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microbial communities and their components (genes, transcripts, proteins, metabolites) triggered 655 

by clinical protocols; (iii.) evidence-based therapy to modulate the microbiome and regain its 656 

homeostasis; and (iv.) the identification of novel microbial effectors for targeted microbiome 657 

management. Metaproteomics can provide solutions to these critical domains, profiling how 658 

clinical traits shape the microbiome, identifying microbial effectors involved in variations of the 659 

microbial community structure and functions, and monitoring the outcome of experimental 660 

clinical protocols based on microbial modulators, including antimicrobial peptides and phages. 661 

For instance, the dynamics of the gut virome (i.e., phages) are strongly integrated with those of 662 

the gut bacteriome [128] and may impact disease together. Host environmental stimuli can play 663 

a role in the balance between inhibition or induction of viral replication by lysogenic phages. 664 

Metaproteomic studies can highlight the relative abundance variations of viral and bacterial 665 

proteins, establishing the possible correlation and leading to suggestions on the potential of 666 

specific phages to modulate the abundance and the protein functions in specific bacterial taxa. 667 

Further, metaproteomics can hold the promise to thoroughly investigate (i.) the potential use of 668 

phages as antibacterial agents in several clinical conditions, (ii.) to monitor the functional 669 

dynamics of their bactericidal effect and (iii.) to monitor therapy response due to the correlation 670 

of the bacteria and host proteins. Thereby the unique dimension provided by metaproteomics is 671 

that it monitors the functional products of gene expression and therefore reflects the functional 672 

dimension of a microbiome. 673 

Efforts to address these clinical needs, it is necessary to integrate metaproteomics-based 674 

analysis, bioinformatics, machine learning, and computational approaches to fully realize the 675 

potential of the microbiome in enhancing clinical outcomes. For example, machine learning 676 

models have been used to predict patient responses to microbiome-targeted therapies by 677 

analyzing complex microbial community data, offering insights into personalized treatment 678 

strategies [129]. 679 
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In conclusion, the active microbiome fraction that can be measured by state-of-the-art 680 

metaproteomics experiments holds immense potential in the clinical context, with significant 681 

strides being made in understanding its role across various diseases [130]. Despite promising 682 

results, unraveling the causal contributions of microbiome traits to host biology and translating 683 

microbiome-based biomarkers into clinical practice remains significantly challenging. Non-model 684 

gut commensals encode many traits, and the sample size in omics studies often lacks the power 685 

needed for functional monitoring of the microbiome in clinical contexts. Additionally, advancing 686 

the microbiome's clinical applications will require further well-designed clinical trials and the 687 

integration of multidisciplinary approaches. Metaproteomics, complemented with bioinformatics 688 

and machine learning, represents an essential toolbox for untangling the complex interactions 689 

between microbiome components and host health, thereby paving the way for novel therapeutic 690 

strategies. In this respect first assays for studying the drug response of microbiomes combined 691 

with metaproteomics were tested [131], highlighting the potential of pharmacomicrobiomics. 692 
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 693 

Figure 6. Summary of over 2,400 clinical studies exploring the microbiome's role in 694 

health, distributed by its relation to 70 diseases. Cases where multiple types of cancers or 695 

diseases are studied are detailed on the right. The figure was created using R programming 696 

language v.4.4.1, with core-base functions and in-house scripts. 697 
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4.3 Non-clinical microbiomes, metaproteomics, and microbial 698 

effectors in the One Health context 699 

The connection between microbiomes across environmental, agricultural, and biotechnological 700 

domains and the One Health framework extends beyond serving as a reservoir of novel 701 

microbial effectors for human therapeutics. Many microbial effectors developed for human use 702 

can also benefit pet and livestock health. 703 

In plant agriculture, microbial antimicrobials have several promising applications. For instance, 704 

cyclic lipopeptides produced by Pseudomonas strains can act as natural insecticides, effectively 705 

targeting insect larvae. Phages may be employed to combat plant pathogens like 706 

Pectobacterium atrosepticum, which causes potato soft rot [132], while seed coatings with 707 

antimicrobial agents offer protective benefits [133]. Additionally, antimicrobials can enhance food 708 

safety by reducing microbial contamination in produce and food supply chains [132, 134]. 709 

In environmental management, cyanophages could be harnessed to mitigate harmful algal 710 

blooms, thus safeguarding aquatic ecosystems like oceans, seas, and lakes [135]. Meanwhile, 711 

antibiotics and other antimicrobials might stimulate the growth of contaminant-degrading 712 

microbes in nutrient-limited environments, such as certain groundwater systems, aiding in 713 

bioremediation [136]. 714 

Within biotechnological applications, phages offer a targeted approach to controlling filamentous 715 

bacteria, including Microthrix parvicella and Nocardia species, which cause foaming issues in 716 

wastewater treatment plants [137]. Phages also have emerging applications as structural 717 

components in nanomaterials, presenting exciting opportunities in materials science [138]. 718 

While microbial effectors offer significant potential, it is crucial to consider potential unintended 719 

impacts on microbiomes, such as effects on non-target species and the development of 720 

resistance mechanisms. Additionally, stressors—including those from human activities—can 721 
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accelerate the release of phages within microbiomes, leading to self-amplifying cycles and other 722 

stress responses. For instance, exposure to pesticides has been shown to increase bacterial 723 

antibiotic resistance by activating efflux pumps, reducing outer membrane permeability, and 724 

inducing gene mutations [139]. 725 

5. Future potential of microbial effectors and metaproteomics in the 726 

One Health context (under construction) 727 

As the opposite of the spread of pathogenic species across different hosts (zoonoses), using 728 

microbial effectors from diverse environments holds transformative potential for treating 729 

diseases as well as monitoring and controlling microbiomes in biotechnological systems. Just as 730 

the "golden age" of antibiotic discovery opened new frontiers in medicine, broader screening of 731 

microbial effectors now offers the potential to treat pathogen-associated diseases. One 732 

advantage of many microbial effectors is their ability to target specific microorganisms, allowing 733 

for more precise treatment options and enhanced microbiome control. However, this specificity 734 

also increases the risk of resistance mechanisms, such as escape mutations, which require 735 

continuous adaptation of microbial effectors to maintain efficacy. 736 

In this context, metaproteomics plays a crucial role in advancing microbial effector research 737 

through two key contributions: (i.): Metaproteomics aids in identifying new antimicrobial effectors 738 

by enabling the selection of microbiomes with a high abundance of proteins associated with 739 

microbial effectors. Therefore, it should be applied across various environments to maximize the 740 

number of novel identified microbial effectors. Environments under selective pressure—such as 741 

reptile saliva, amphibian skin, hospital wastewater, and livestock enclosures—are particularly 742 

interesting for discovering novel compounds. (ii.) Because metaproteomics allows for the 743 

analysis of expressed proteins and phages, it is an ideal tool for examining the effects of 744 

microbial effectors.  745 

https://doi.org/10.26434/chemrxiv-2024-jg1mq ORCID: https://orcid.org/0000-0003-3280-9042 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-jg1mq
https://orcid.org/0000-0003-3280-9042
https://creativecommons.org/licenses/by/4.0/


 

 

In addition to the focus on microbial effectors, metaproteomics is an important method for 746 

monitoring microbiomes and implementing strategies for controlling them. As shown in several 747 

studies metaproteome is very predictive of temporal variations within microbiomes [140] and 748 

hence a crucial indicator of how/when one can intervene for example by altering substrate 749 

availability, physico-chemical parameters or by CRISPR-based community-wide 750 

engineering/editing [141, 142]. In clinical settings, metaproteomics provides valuable insights 751 

into the current state of a patient’s microbiome, facilitating the identification of dysbiosis and the 752 

prediction of drug-microbiome interactions. This approach also enables continuous monitoring of 753 

therapeutic progress. 754 

Beyond microbiome monitoring, metaproteomics data can inform microbial abundance 755 

estimates, which are essential for developing control algorithms to manage microbiomes 756 

effectively [99]. Using these algorithms, control variables such as nutrient supply, process 757 

parameters (e.g., temperature), or the introduction of microbial effectors can be adjusted to 758 

achieve the desired microbiome functionality. This concept of microbiome management is 759 

indeed in analogy to animal gastrointestinal tracts regulating their microbiomes. Closing the gap 760 

to the One Health concept, the most comprehensively studied system for microbiome 761 

management is the human gut, whose control mechanism (e.g. antimicrobial peptides) could be 762 

applied also to manage microbiomes in environment and biotechnological applications. 763 

Another application of metaproteomics lies in “pandemic preparedness” within a One Health 764 

framework. For example, tracking pathogen concentrations in wastewater treatment plants, as 765 

seen with COVID-19, enables early detection of disease outbreaks before hospitals or 766 

government agencies identify them. Sequencing methods with low detection limits (enabled by 767 

gene amplification) are primarily used for such monitoring. As demonstrated with the selective 768 

enrichment of COVID-19 peptides using advanced mass spectrometry (LC-MS/MS), proteomic 769 

methods could also play a valuable role in pandemic preparedness, offering timely and reliable 770 
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pathogen monitoring [143], enabling to monitoring the actual expression of the pathogens. 771 

Matching to this, tools such as PEPGM [144] have been developed to identify viruses from LC-772 

MS/MS-based peptide identifications. As a result, the holistic tracking of wastewater through 773 

metaproteomics emerges as a powerful approach for detecting emerging pathogens and 774 

microbiome dysbioses associated with human diseases. 775 
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