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 10 

Abstract. The prediction of the geometry and strength governing small molecule-protein 11 

interactions remains a paramount challenge in drug discovery due to their complex and 12 

dynamic nature. A number of machine learning (ML) methods have been proposed to 13 

complement and improve on physics-based tools such as molecular docking, usually by 14 

mapping three dimensional features of individual poses to their closeness to experimental 15 

structures and/or to binding affinities. Here, we introduce Dockbox2 (DBX2), a novel 16 

approach that encodes ensembles of computational poses within a graph neural network 17 

architecture via simple energy-based features derived from molecular docking. The model 18 

was jointly trained to predict binding pose likelihood as a node-level task and binding 19 

affinity as a graph-level task using the PDBbind dataset and demonstrated significant 20 

performance in comprehensive, retrospective docking and virtual screening experiments. 21 

Our results encourage further exploration of ML models based on conformational 22 

ensembles to provide more accurate estimates of small molecule-protein interactions and 23 

thermodynamics. The DBX2 code is available at https://github.com/jp43/DockBox2. 24 
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Introduction 29 

Drugs exert their therapeutic effects by binding to specific biomolecular targets, typically 30 

proteins, and modulating their function, thereby inhibiting or restoring processes relevant 31 

for the treatment of various diseases. The initial step in the drug discovery pipeline 32 

involves identifying molecules binding to a target of interest with high affinity and 33 

specificity [1], making accurate prediction of both crucial for drug development [2]. Binding 34 

affinity, which reflects the strength of the interaction between a drug and its protein target, 35 

is commonly expressed in terms of dissociation constant (Kd), measurable via a plethora 36 

of experimental techniques [3]. However, these techniques are usually time-consuming 37 

and resource intensive [4], [5], especially at high throughput rates required to explore vast 38 

chemical spaces [6]. Consequently, in-silico screening methods have gained significant 39 

momentum, especially in the recent years [7]. 40 

Although accurate computational estimation of ligand-protein affinity and interactions is 41 

crucial, significant challenges arise due to the dynamic nature of these complexes. 42 

Molecular dynamics (MD) simulations provide valuable insights into the nature of these 43 

interactions, e.g., by considering an ensemble of bound conformations to generate 44 

thermodynamically accurate estimates of various energy contributions [8].  This is usually 45 

done by calculating the statistical properties of systems in thermodynamic equilibrium and 46 

estimating the time spent in the various microstates. Therefore, MD has the potential to 47 

connect the chemical world to physical observables, aiding in the determination of state 48 

variables (free energy, enthalpy, entropy, …), kinetics, and the exploration of biomolecular 49 

mechanisms driven by rare events [9]. Numerous studies have illuminated the remarkable 50 

performance of MD simulations in predicting experimental outcomes, showcasing their 51 

transformative potential to accelerate and economize the drug discovery process. For 52 

instance, the ligand gaussian accelerated MD (LGMD) method, an enhanced sampling 53 

technique pioneered by Miao et al. [10], was employed to forecast the binding affinity of 54 

nirmatrelvir with the coronavirus 3C-like protease, yielding predictions in striking 55 

concordance with experimental observations [11], [12]. Likewise, Wolf et al. [13]  56 

harnessed the power of Langevin simulations an extended MD approach that delves into 57 

the intricate low-frequency motions governing large conformational shifts [14],  to estimate 58 
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the binding affinity of the benzamidine-trypsin complex, achieving results that closely 59 

mirrored experimental findings. However, standard and biased MD methods require 60 

significant computational power that render these techniques unsuited for high-61 

throughput screening purposes. Consequently, faster and less accurate methods such as 62 

molecular docking and machine learning (ML) approaches have been proposed as 63 

alternatives.  64 

Molecular docking methods generate bound conformations of a ligand within a rigid 65 

binding pocket and then rank the poses using a scoring function to estimate the binding 66 

affinity [15]. Despite its simplicity, docking has shown great potential to identify active 67 

molecules from vast backgrounds of inactive compounds [17], [18],  with its impact 68 

extending across numerous therapeutic areas. A notable example is the work of Manglik 69 

et al., in which docking was used to screen over 3 million molecules against the μ-opioid 70 

receptor (μOR), leading to the discovery of PZM21, a G protein-biased μOR agonist [19]. 71 

This compound not only demonstrated remarkable analgesic efficacy but also lacked the 72 

severe side effects associated with traditional opioids, marking a significant milestone in 73 

pain management. Beyond its therapeutic promise, PZM21 exemplifies a new class of 74 

μOR agonists with enhanced specificity [20]. Zernov et al., for instance, discovered an 75 

anti-Alzheimer's compound targeting the transient receptor potential cation channel 6, 76 

with in-vitro studies confirming its efficacy, stability, and target specificity without adverse 77 

effects [21]. Docking has also been key in identifying treatments for infectious diseases. 78 

Agnihotri et al. identified potent inhibitors of γ-glutamylcysteine synthase for treating 79 

leishmaniasis, with four out of five candidates showing strong specificity and low toxicity 80 

in human cells [22]. Amid the global urgency of the COVID-19 pandemic, Wang et al. 81 

screened 2,467 compounds against the SARS-CoV-2 spike protein, yielding promising 82 

antiviral leads through docking [23]. Stein et al., for instance, employed docking to screen 83 

over 150 million molecules targeting melatonin receptor 1 (MT1) in the search for 84 

therapeutics addressing sleep disorders and depression. Despite numerous in-vivo 85 

studies aiming to identify selective MT1 ligands, few have demonstrated significant 86 

selectivity [24], [25]. Interestingly, docking identified a novel chemotype with selective 87 

MT1 agonist activity, later validated experimentally, underscoring the robustness of 88 

docking in discovering new chemical scaffolds for neurological disorders [26]. Additionally, 89 
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Fink et al. identified promising α2A-adrenergic receptor (α2AAR) agonists with fewer 90 

adverse effects compared to earlier treatments. Screening over 300 million compounds 91 

via docking, their findings were corroborated through experimental validation, confirming 92 

both the efficacy and favorable pharmacokinetics of these compounds [27]. These studies 93 

underscore the vital role of docking in advancing drug discovery. 94 

While molecular docking continues to be a transformative tool in drug discovery, several 95 

limitations remain due to the approximative nature of scoring functions and the neglection 96 

of flexibility, among others [15], [28]. Machine learning (ML) methods, on the other hand, 97 

have been introduced in the last decade to tackle molecular docking challenges [15]. For 98 

example, Graph Neural Networks (GNNs) have been widely explored to characterize 99 

ligand-protein interactions [29]. Several GNN models have been used for ligand-protein 100 

affinity prediction, such as CurvAGN [30], PIGNet [31], GenScore [32] and SS-GNN [33], 101 

reporting strong correlations between predicted and experimental affinities [29], [34], [35]. 102 

Additionally, GNNs have been applied in generative settings to replace physics-based 103 

sampling and generate and score potential ligand-protein poses, such as in DiffDock [36] 104 

and MedusaGraph [37]. Although these architectures have shown promising results, an 105 

increasing number of studies suggest that GNNs tend to memorize ligand and protein 106 

patterns instead of learning the true interactions between them [29], [35]. Moreover, single 107 

pose graphs are generally mapped to binding affinities, potentially missing the opportunity 108 

to capture the full thermodynamic profile and dynamics of ligand-protein interactions that 109 

depends on multiple conformations [29].  110 

Recent efforts have been made to consider multiple conformations in training GNNs for 111 

binding affinity predictions, such as Dynaformer [38]. However, this method utilizes a data 112 

augmentation strategy that still relies on individual graphs for each binding conformation, 113 

derived from costly MD simulations, to predict affinities. In this work, we introduce 114 

DockBox2 (DBX2), a GNNs framework that enables to encode multiple ligand-protein 115 

conformations derived from docking within single graphs to leverage ensemble 116 

representations, for predicting simultaneously near-to-native binding poses and binding 117 

affinities. In a series of retrospective experiments, DBX2 demonstrated significant 118 

improved performances both for docking and virtual screening (VS) tasks compared with 119 
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physics-based and ML methods, warrantying further investigation of ensemble-based ML 120 

models in computer-aided drug discovery.   121 

 122 

Material and Methods 123 

Datasets 124 

The DBX2 model was trained and evaluated using the PDBbind database [39]. The 125 

refined set of PDBbind version 2016 (4,057 complexes) [40] was used to train the model. 126 

The hold-out test set from Volkov et al [35], which consists of 3,393 complexes, were 127 

used as test sets. A subset of the LIT-PCBA database [41] was used to perform 128 

retrospective VS experiments. 129 

Protein and ligand preparation 130 

Complexes from PDBbind were prepared following the same procedure of our previous 131 

work [42]. For retrospective VS, dominant protonation and tautomerization state was 132 

computed from the small molecule SMILES using Openeye ’s QUACPAC [43]. Resulting 133 

SMILES strings were then converted into low-energy 3D conformations (mol2 format) 134 

using Openeye ’s OMEGA tool [43]. The target proteins were prepared as follows: 135 

redundant protein chains, along with non-essential ions, waters, and heteroatoms, were 136 

removed. The resulting protein structures were prepared using the Molecular Operating 137 

Environment (MOE) QuickPrep tool [44], by automatically adding missing loops in the 138 

structure and assigning the proper conformation to the residues with alternate orientation. 139 

Subsequently, protonation states were generated and optimized using the Protonate 3D 140 

tool from MOE (at pH 7.4). Finally, the structures were energy-minimized using the 141 

AMBER10:EHT forcefield implemented in MOE , and saved in pdb format. 142 

Molecular docking and rescoring 143 

The first Dockbox package (DBX) [42] was utilized to generate binding poses with 144 

AutoDock [45], AutoDock Vina [46] and DOCK 6 (DOCK) [47], and rescore with their 145 

scoring function in addition to Gnina [48] and DSX [49]. The DBX configuration file used 146 

for generating binding pose from PDBbind v2016 and the test sets is illustrated in Figure 147 
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S1; a maximum of 140 binding poses were generated for each system, 60 from AutoDock, 148 

20 from Vina, and 60 from DOCK.  For AutoDock, grid spacing was set to 0.3 Å, and the 149 

Lamarckian genetic algorithm [50] was employed to generate poses. For Vina, the energy 150 

range for final poses was set to 3 kcal/mol. In DOCK, a grid-based scoring method was 151 

applied with a spacing of 0.3 Å. Docking with any of the above programs was followed by 152 

energy minimization, starting with 500 steps of the steepest descent method followed by 153 

1,000 steps combining steepest descent and conjugate gradient methods. Energy 154 

minimization was performed using AmberTools 17 [51] to prevent structural clashes and 155 

ensure appropriate rescoring with different programs. Rescoring was then conducted with 156 

AutoDock, Vina, DOCK, and DSX scoring functions.  157 

Dockbox2 architecture 158 

   159 

Figure 1: Architecture of DBX2. (A) Binding poses are represented as nodes. Two pose 160 

nodes are connected by an edge based on the root mean square deviation (RMSD) 161 
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between them. Docking-derived energies and categorical features of each binding pose, 162 

here referred as s1, s2, s3…, are used as node features. (B) DBX2 model showing the 163 

different layers involved. Pose correctness and pKd are jointly learned as node- and 164 

graph-level tasks, respectively. 165 

 166 

DBX2 architecture is based on the GraphSAGE model [52] as shown in Figure 1. The 167 

ensemble of poses generated by docking a given ligand-protein pair is used to construct 168 

a graph (Figure 1A), with each node encoding an individual binding pose represented by 169 

categorical and energetic features, listed in Table S1. Two nodes are connected by an 170 

edge if the root mean square deviation (RMSD) between the two poses is below a 171 

predefined threshold (usually 5Å or more) while the RMSD value is kept as edge feature. 172 

Graphs may be generated using the create_graphs script available in the DBX2 package. 173 

In the shared layers, the DBX2 model uses message passing (MP) [53], i.e., for each 174 

node i, information from its neighbors 𝒋 ∈ 𝓝(𝒊) is gathered and aggregated using the 175 

symmetric mean (symmean) aggregation (capturing averaged features of node’s 176 

neighborhood): 177 

𝒎𝒩(𝑖)
(𝑘−1)

= 𝑆𝑌𝑀𝑀𝐸𝐴𝑁{𝒔𝑗
(𝑘−1)

⊕𝑅𝑀𝑆𝐷𝑖𝑗, ∀𝑗 ∈ 𝒩(𝑖)},   (1) 178 

where 𝒎𝒩(𝑖)
(𝑘−1)

is the aggregated message for node i from its neighbors, 𝒔𝑗
(𝑘−1)

 is the feature 179 

vector of neighbor node j,  𝑅𝑀𝑆𝐷𝑖𝑗 is the RMSD between node i and j. The feature vector 180 

is concatenated with the RMSD between nodes i and j. The aggregation function then 181 

combines these concatenated vectors to produce a single aggregation message vector. 182 

The node feature vector is then updated: 183 

𝒔𝒊
(𝒌)
= 𝝈(𝑾𝒔𝒆𝒍𝒇

(𝒌)
𝒔𝒊
(𝒌−𝟏)

⊕𝑾𝒏𝒆𝒊𝒈𝒉
(𝒌)

𝒎𝓝(𝒊)
(𝒌−𝟏)

),    (2) 184 

where si
(k-1) is the feature vector of node i at layer k. 𝒔𝒊

(𝒌−𝟏)
 is the feature vector of node i 185 

from the previous layer k-1.  𝑾𝒔𝒆𝒍𝒇
(𝒌)  and  𝑾𝒏𝒆𝒊𝒈𝒉

(𝒌)
 are learnable weight matrices that apply 186 

to the feature vector of the current node and to the aggregated message vector from 187 

neighbor nodes, respectively. 𝒎𝓝(𝒊)
(𝒌−𝟏)

 is the aggregated message from the neighbors 𝓝(𝒊) 188 
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of node i. The MP layers are followed by multilayer perceptron (MLP) layers to predict 189 

pose correctness (node-level task) and the pKd/pKi (graph-level task) as illustrated in Fig. 190 

1B. For node-level predictions, aggregated information from the MP layers is passed to 191 

an MLP with Rectified Linear Unit (ReLU) and sigmoid activation function for hidden layers 192 

and final layer of MLP, respectively. For graph-level predictions, aggregated information 193 

is passed to a readout layer corresponding to a MeanMax pooling and then passed to a 194 

two-layers MLP, with ReLu activation function for the hidden layer and linear activation 195 

function for the output layer. This allows MLP to leverage energetic information from 196 

ensembles of binding poses for ligand-protein affinity predictions.   197 

Model training and evaluation 198 

The total loss function of DBX2 consists of three components 𝑳𝒐𝒔𝒔𝒏, 𝑳𝒐𝒔𝒔𝒈, and 199 

𝑳𝒐𝒔𝒔𝒓𝒆𝒈 as in eqn (3): 200 

𝑻𝒐𝒕𝒂𝒍 𝒍𝒐𝒔𝒔 =  𝑳𝒐𝒔𝒔𝒏 +𝒘𝟏 𝑳𝒐𝒔𝒔𝒈 +𝒘𝟐 𝑳𝒐𝒔𝒔𝒓𝒆𝒈   (3) 201 

𝑳𝒐𝒔𝒔𝒏 is the loss function for node-level task, where the binary focal cross entropy [54] is 202 

used as loss function for node-level task: 203 

𝑳𝒐𝒔𝒔𝒏 = −𝜶 ∙ (𝟏 − 𝒑𝒕)
𝜸 ∙ 𝒍𝒐𝒈(𝒑𝒕)    (4) 204 

where α is a weighting factor, 𝛾 is the focusing parameter and 𝒑𝒕 is an estimate of the 205 

probability for the true class, typically given by the number of correct poses over the total 206 

number of poses in the training set. Minimizing 𝑳𝒐𝒔𝒔𝒏 enables the model to correctly 207 

predict the likelihood of binding pose. 𝑳𝒐𝒔𝒔𝒈 and 𝒘𝟏 are the loss function and weight for 208 

graph-level task, respectively, where 𝑳𝒐𝒔𝒔𝒈  corresponds to the root mean square error 209 

(RMSE) [55]: 210 

𝑳𝒐𝒔𝒔𝒈 = √
𝟏

𝑵
∑ (𝒚𝒊 − ŷ𝒊)𝟐
𝑵
𝒊=𝟏      (5) 211 

Here 𝑵 denotes the total number of ligand-protein complexes, 𝒚𝒊 is the actual value of 212 

binding affinity for each complex and ŷ𝐢 is the predicted binding affinity for each ligand-213 

protein complex. Minimizing 𝑳𝒐𝒔𝒔𝒈 contributes to correctly predicting the ligand-protein 214 
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affinity. 𝑳𝒐𝒔𝒔𝒓𝒆𝒈 and 𝒘𝟐 are the regularization loss and weight, respectively, while L2 215 

regularization loss [56] was here used to prevent overfitting of model:  216 

𝑳𝒐𝒔𝒔𝒓𝒆𝒈 =
𝟏

𝟐
∑ 𝒕𝒊

𝟐𝒏
𝒊=𝟏        (6) 217 

where 𝒕𝒊 represent the model parameter, 𝒏 is the number of model parameter. The model 218 

was trained by using traindbx2 routine (example of a configuration file for traindbx2 in the 219 

INI format is provided in Figure S2). Training was performed with a maximum of 200 220 

epochs and early stopping was used by monitoring the total loss on the validation sets for 221 

3 consecutive epochs. The model was trained with mini-batch gradient descent (batch 222 

size of 100) and the adaptive moment estimation (ADAM) optimizer with a learning rate 223 

of 5e-4 and a decay rate of 0.99.  224 

Hyperparameter optimization was performed using a grid search, considering RMSD 225 

cutoff value to define an edge (RMSD cut-off), number of adjacent nodes to randomly 226 

sample for aggregation (nrof-neigh), and graph loss weight (lossg weight) as 227 

hyperparameters, for a total of 30 combinations (Table S2). Training and validation sets 228 

were prepared by using the split_train_val_dbx2 routine of the DBX2 package. The 229 

graphs generated from PDBbind 2016 complexes were split as follows: the graph was 230 

created with the number of nodes per graph of 140. Then, the data was split for stratified 231 

5-fold cross-validation (90% training, 10% validation), with each fold maintaining a 232 

consistent distribution of protein families (e.g. T4 lysozyme, β-galactosidase, etc.) across 233 

all folds. Node and edge features for each graph were normalized using standard scaler. 234 

For node-level predictions, success rate, accuracy, and area under the curve (AUC) were 235 

used as evaluation metrics. For graph-level predictions, RMSE, and R-squared (R2) were 236 

used. The predictive power of DBX2 was further assessed by calculating the Pearson 237 

correlation coefficient (Rp) between experimental Kd and graph-level predicted Kd.  238 

Model testing 239 

Models were tested on the test sets and compared for docking and scoring tasks with 240 

other docking software. Several metrics were employed to evaluate performance. To 241 

evaluate docking power, the success rate was used to measure the likelihood that the 242 

top-ranked pose as determined by a given scoring function corresponds to the native 243 
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pose. Specifically, the top-ranked pose was compared to the minimized experimental 244 

structure, with a pose deemed successful if its RMSD was less than 2 Å. For DBX2, the 245 

success rate was evaluated using top-ranked poses from node-level predictions. 246 

Next, the scoring power was assessed to evaluate the model's ability to predict and 247 

reproduce experimental binding constants using linear and multiple linear regression. The 248 

correlation between experimental binding affinities and scores of the best-poses from 249 

different scoring functions was analyzed through linear regression, and the R2 values 250 

were calculated to assess the quality of the fitting. For DBX2, graph-level predictions were 251 

utilized to evaluate the correlation with experimental binding affinities. Additionally, 252 

multiple linear regression was conducted to correlate experimental binding affinities with 253 

predicted values derived from various linear combinations of scoring functions, as 254 

described in a previous study [42].  255 

Scoring power was also evaluated using the Pearson correlation coefficient (RP) and the 256 

predictive index, as described in a prior study  [42]. Proposed by Pearlman et al. [57], the 257 

predictive index measures the reliability of a scoring function in accurately distinguishing 258 

the most potent binder between two compounds. It is calculated as follows: 259 

𝑷𝑰 = ∑ ∑ 𝒘𝒊𝒋𝑪𝒊𝒋𝒊𝒋>𝒊      (7) 260 

With 261 

𝒘𝒊𝒋 = |𝑬𝒋 − 𝑬𝒊| 262 

𝑪𝒊𝒋 =

{
 
 

 
 𝟏         𝒊𝒇   

𝑬𝒋 − 𝑬𝒊

𝑺𝒋 − 𝑺𝒊
< 𝟎

−𝟏      𝒊𝒇 
𝑬𝒋 − 𝑬𝒊

𝑺𝒋 − 𝑺𝒊
> 𝟎

𝟎         𝒊𝒇   𝑺𝒋 − 𝑺𝒊 = 𝟎

 263 

Where 𝑬𝒊 is the experimental binding affinity of compound 𝑖, and 𝑺𝒊 is the score of 264 

compound 𝑖. Predictive index gives values in range from -1 (wrong prediction) to 1 (perfect 265 

prediction), with 0 being random prediction. 𝒘𝒊𝒋 is the weighting term which underscores 266 

the accurate ranking of compounds exhibiting substantial disparities in experimental 267 

binding affinities. 268 
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Retrospective virtual screening 269 

The VS experiment was conducted on three target proteins from the LIT-PCBA database 270 

[41] that were not present in the training set: Flap structure-specific endonuclease 1 271 

(FEN1, PDB id: 5FV7) [58], Glucocerebrosidase (GBA, PDB id: 2XWE) [59], and 272 

Mammalian Target of Rapamycin Complex 1 (MTORC1, PDB id: 5GPG) [60]. As a first 273 

step, Vina was used to screen active-inactive sets from LIT-PCBA against each 274 

corresponding structure. The top 20,000 compounds based on the Vina ranking were then 275 

docked also with AutoDock. 80 binding poses (60 from AutoDock and 20 from Vina) were 276 

generated for each ligand-protein complex (Figure S3). Rescoring was performed with 277 

AutoDock, Vina, DOCK, and Gnina (Gnina rescoring was done by selecting the best pose 278 

by CNNScore, then considering its CNNAffinity) [48]. VS performance was evaluated by 279 

calculating logarithmic area under the curve (logAUC) [61], enrichment factors (EF) and 280 

Boltzmann-Enhanced Discrimination of ROC (BEDROC) with adjust parameter (α) values 281 

of 20 and 80.5 using the CROC Python package [62], [63], [64].  282 

The logAUC quantifies the overall performance of a virtual screening (VS) method by 283 

assessing its ability to distinguish active compounds from decoys across the ranked list. 284 

By applying a logarithmic scale to false positive rates, it places greater emphasis on the 285 

early retrieval of active compounds, which is critical for the efficiency of screening 286 

methods. 287 

EF measures how effectively the VS method identifies active compounds within a specific 288 

fraction of the ranked list [65]. EF at a given cutoff (𝒙) is calculated from the proportion of 289 

true active compounds in the selection set in relation to the proportion of true active 290 

compounds in the entire dataset: 291 

𝑬𝑭(𝒙) =
𝑻𝑷 𝑻𝑷+𝑭𝑷⁄

𝑻𝑷+𝑭𝑵 𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵⁄
=

𝑵×𝒏𝒔

𝒏×𝑵𝒔
     (8) 292 

Where 𝑻𝑷 and 𝑻𝑵 are true positive and true negative, 𝑭𝑷 and 𝑭𝑵 are false positive and 293 

false negative. 𝑵 is a total number of compounds in the entire dataset, 𝑵𝒔 is a total number 294 

of predicted active compounds in the selection set (𝒙), 𝒏 is a total number of true active 295 

compounds in the entire dataset, 𝒏𝒔 is the number of true active compounds in the 296 
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selection set (𝒙). The top 2% of the ranked compounds for each scoring functions and 297 

both graph-level and node-level predictions by DBX2 were calculated to assess EF (EF2). 298 

Normalized enrichment factor (NEF) is calculated to rescale the EF values into a range 299 

from 0 (bad prediction) to 1 (perfect prediction) [66], with the goal of standardizing 300 

comparison across different datasets. NEF is calculated with following: 301 

𝑵𝑬𝑭(𝒙) =
𝑬𝑭(𝒙)

𝑬𝑭(𝒙)𝒎𝒂𝒙
     (9) 302 

With 303 

𝑬𝑭(𝒙)𝒎𝒂𝒙 =
𝒎𝒊𝒏{𝒏𝒔, 𝑵 × 𝒙}

𝒏 × 𝒙
 304 

Where 𝑬𝑭(𝒙)𝒎𝒂𝒙 denotes the maximum enrichment factor achievable within a selection 305 

set (𝒙).  It serves as a quantitative measure of the highest potential efficiency of a virtual 306 

screening method in identifying active compounds from a selection set. 𝒏𝒔 is the number 307 

of true active compounds in the selection set (x). 𝑵 is a total number of compounds in the 308 

entire dataset.  309 

BEDROC is used to emphasized the concentration of active compounds at several range 310 

of ranked data sets [63], [66] through a scaling function (α). This metric is defined as: 311 

𝑩𝑬𝑫𝑹𝑶𝑪 =
𝑹𝑰𝑬−𝑹𝑰𝑬𝒎𝒊𝒏

𝑹𝑰𝑬𝒎𝒊𝒏−𝑹𝑰𝑬𝒎𝒂𝒙
     (10) 312 

With 313 

𝑹𝑰𝑬𝒎𝒊𝒏 =
𝟏 − 𝒆𝜶𝑹𝜶

𝑹𝜶(𝟏 − 𝒆𝜶)
 314 

𝑹𝑰𝑬𝒎𝒂𝒙 =
𝟏 − 𝒆−𝜶𝑹𝜶

𝑹𝜶(𝟏 − 𝒆−𝜶)
 315 

𝑹𝑰𝑬 =

𝟏
𝒏
∑ 𝒆𝜶𝒙𝒊𝒏
𝒊=𝟏

𝟏
𝒏 (

𝟏 − 𝒆𝜶

𝒆𝜶
𝑵−𝟏
⁄

)
 316 
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Where 𝑹𝑰𝑬 is robust initial enhancement which proposed by Sheridan et al [67], 𝒙𝒊 is a 317 

relative ranking of active compound i. 𝑹𝜶 is the fraction of active compound (𝑹𝜶 = 𝒏/𝑵), 318 

𝜶 is the scaling function. 319 

Baseline models 320 

The performance of our DBX2 model in predicting ligand-protein binding affinity and 321 

retrospective virtual screening was estimated using the following approach: 322 

• AutoDock, Vina, DOCK6, and DBX2 were compared both in terms docking/scoring 323 

power and retrospective virtual screening. 324 

• Gnina and DBX2 were compared only for retrospective virtual screening. 325 

• DSX and DBX2 were compared only for docking/scoring power. 326 

To demonstrate the accuracy of DBX2, docking and scoring performances were evaluated 327 

using a temporal split hold-out test set from Volkov et al [35]. This dataset was carefully 328 

curated to eliminate latent biases, such as patterns in ligands or proteins, which can lead 329 

neural networks to depend on memorization rather than genuine protein-ligand interaction 330 

learning. As highlighted in previous studies [29], [35], this memorization  often arises from 331 

significant redundancies between training and test sets, resulting in data leakage.  332 

 333 

Results and Discussion 334 

Hyperparameter optimization 335 

The results of hyperparameter optimization for the DBX2 model are summarized in Table 336 

S3. The best-performing hyperparameters were an RMSD cut-off of 10 Å, nrof-neigh of 337 

30, and a loss graph weight of 0.02, yielding a success rate of around 60%. This 338 

underscores the significance of a higher RMSD cut-off and wider neighborhood size in 339 

enhancing model accuracy.  340 

Docking and scoring power 341 

To evaluate the effectiveness of predicting the correct binding pose in DBX2 and other 342 

docking programs, we compute the success rate on the hold-out test set as described in 343 
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the Material and Methods section (Figure 2A). As expected, rescoring ensembles of 344 

docking poses with different scoring functions led to significantly improved performances 345 

for all the scoring functions likely due to enhanced pose sampling, as observed in previous 346 

studies [42]. Noticeably, the node-level pose classification method implemented in DBX2 347 

significantly outperformed all docking and rescoring schemes while considering the same 348 

pool of poses. These findings suggest that by leveraging neighbor information via the 349 

GNN framework, DBX2 offers a significant advantage in accurately identifying native 350 

near-to-native ligand binding poses compared with docking methods that score each pose 351 

individually. Figure 2B illustrates an example of successful application of DBX2 for 352 

identifying the native pose of the potent TER-117 inhibitor bound to its target, the human 353 

Glutathione S-Transferase P1-1 (PDB id: 10gs) [68].  354 

 355 

 356 

 357 

Figure 2: (A) Success rate of identification of the pose correctness on hold-out dataset 358 

comparison between AutoDock, DOCK, Vina, DSX, and DBX2, comparing docking and 359 

rescoring strategies. Rescoring improved the performance of each docking program 360 
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compared to standard docking alone, emphasizing the advantage of refining initial pose 361 

predictions by evaluating them with additional scoring functions. DBX2 node-level 362 

classification outperformed all the other tested methods (B) Crystal structure of human 363 

glutathione S-transferase (PDB id: 10gs) with bound TER117 inhibitor (cyan). The binding 364 

pose predicted by DBX2 (orange) aligns closely with the crystallographic structure, in 365 

contrast to the poses predicted as native by other docking software (grey). 366 

 367 

Next, we evaluated the ability of the scoring functions to reproduce experimentally 368 

determined binding constants in the hold-out test set (Table 1). DBX2 directly computes 369 

the binding affinity from an ensemble of poses, so it does not require selecting a specific 370 

docking pose as input, unlike other scoring functions. For traditional scoring functions, 371 

since DOCK showed the best success rate among classical docking programs, we 372 

focused only on poses with the best DOCK scores (after rescoring) in order to compute 373 

binding affinities with docking scoring functions, similarly to our previous work [42]. Linear 374 

regression was performed to compare experimental binding affinities from the hold-out 375 

dataset with the scores of the best poses from DOCK using different scoring functions 376 

and their linear combinations [42]. For DBX2, the affinity values for each protein-ligand 377 

complex in the hold-out dataset were predicted as graph–level tasks, hence as readouts 378 

of ensembles of poses generated for a system rather than relying on a single pose.  379 

Table 1: R2, Pearson correlation coefficients and predictive index values between 380 

experimental binding affinities and the scores provided by multiple scoring functions. 381 

Number of 

functions 

Scoring function/combination R2 Pearson 

coefficient 

Predictive 

index 

1 DBX2 0.38 0.61 0.79 

1 AutoDock 0.20 0.45 0.45 

1 DOCK 0.16 0.41 0.42 

1 Vina 0.25 0.52 0.48 

1 DSX 0.22 0.47 0.46 

2 AutoDock, Vina 0.25 0.50 0.49 
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3 AutoDock, Vina, DOCK 0.18 0.44 0.43 

3 AutoDock, Vina, DSX 0.23 0.49 0.48 

4 AutoDock, Vina, DSX, DOCK 0.22 0.47 0.47 

 382 

 383 

Our results showed that DBX2 exhibited the highest correlation with experimental binding 384 

affinities on the hold-out dataset, outperforming other scoring functions. In contrast, 385 

DOCK, despite showing the best prediction of binding poses, had the lowest correlation 386 

(R² = 0.16). DBX2 scoring function also displayed a significantly higher predictive index 387 

(0.79) than other methods, indicating its potential suitability in ranking active molecules 388 

based on their binding affinities to a target of interest. Likewise, the Pearson coefficient 389 

of DBX2 (0.61) indicated a good predictive power based on pharmaceutical industry 390 

standards [69]. Nevertheless, the R² value, while indicating positive correlation as well as 391 

an improvement compared with physics-based methods, remained low (0.38). While our 392 

results suggest that docking poses ensembles are more suitable than single poses for 393 

binding affinity predictions, they likely fail to provide a comprehensive thermodynamic 394 

picture of binding processes, due to the approximations (especially, neglection of protein 395 

flexibility and water) necessary to ensure the high throughput required in VS. Correlations 396 

of experimental values versus computational scores are shown in Figure S4.  397 

Moreover, the scoring power on the hold-out set of DBX2 was compared with published 398 

state-of-the-art methods that were trained and tested on the same splits or supersets of 399 

them. Thus, DBX2 was compared with GNN-MP neural network (MPNN) models from 400 

Volkov et al [35] and Pafnucy model from Stepniewska-Dziubinska et al [70]. The first 401 

class of models are GNNs with a customizable hidden size and a two‐layer dense module, 402 

which map protein- (P), ligand- (L) and protein-ligand interactions (I) graph 403 

representations to ligand-protein affinities. The Pafnucy model is a state-of-the-art 404 

convolutional neural network utilizing 3D convolution to produce a feature map for protein 405 

and ligand atoms to predict ligand-protein affinity. Notably, these models were already 406 

trained and tested on the same datasets as used in DBX2 (PDBbind v2016 dataset and 407 
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the hold-out test set, respectively) as reported in the previous studied [35]. The 408 

comparison of Rp and RMSE on all models is summarized in Table S4. 409 

Even though the number of entries in the training set for DBX2 was lower than other 410 

models, it exhibited significantly improved performances in predicting binding affinity 411 

against hold-out set with respect to GNN-MPNN pure interaction (I) models from Volkov 412 

et al [35] and Pafnucy model [70], as evident from the Rp and RMSE values, and 413 

comparable performances with GNN models that include protein and ligand structural 414 

information explicitly. Importantly, DBX2 is entirely based on energetic ensemble 415 

representations that do not consider any structural information about ligand and/or protein 416 

structures, differently than the models from [35] and [70]. This observation suggests that 417 

DBX2 could (at least partially) overcome the hidden biases causing memorization of 2D 418 

molecular patterns that these models display, as described in the study by Volkov et al 419 

[35], while significantly outperforming the success rate of generalizable pure interaction 420 

models.  421 

Retrospective virtual screening 422 

LIT-PCBA is a chemical dataset designed to eliminate hidden chemical biases. Derived 423 

from bioassays, it mimics experimental screening decks, spans diverse protein targets, 424 

and has been validated across multiple screening methods, making it suitable for both 425 

structure- and ligand-based virtual screening experiments [41]. In order to test the VS 426 

power of DBX2 in realistic scenarios, we focused on three LIT-PCBA targets that were 427 

not present in our training set: FEN1, GBA, and MTORC1. The numbers of active and 428 

inactive compounds for each LIT-PCBA protein target at the beginning of the retrospective 429 

VS experiment and after the first round of Vina docking (with the top 20,000 molecules 430 

brought forward) are reported in Table S5.  431 

After generating additional poses with AutoDock for molecules endowed by the Vina 432 

docking step, rescoring with different scoring functions (including DBX2) was performed 433 

and the result evaluated by computing top-100 hit rate, EF2, and NEF (Figure 3A, 3B, 434 

and 3C). DBX2 demonstrated superior performance across all metrics (EF2, NEF, and 435 

top-100 hit rate) when compared to other scoring functions for the three target proteins. 436 

DBX2’s node-level predictions, which assess the likelihood of each binding pose within a 437 
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specific graph, consistently matched the screening power of graph-level predictions of 438 

binding affinities. Interestingly, Gnina, another ML-based tool that recently demonstrated 439 

state-of-the-art performance in prospective drug discovery challenges [71], also 440 

performed well, further validating the potential of data-driven models in VS tasks. 441 

 442 

Figure 3: Retrospective VS results of different scoring functions on LIT-PCBA database 443 

(A) top-100 hit rate (B) EF2 (C) NEF. Higher values in top-100 hit rate, EF2 and NEF 444 

corresponding to superior performance in identifying active compound at top-ranked.  445 
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Enrichment plot comparison between DBX2 graph-level (magenta), DBX2 node-level 446 

(red), Gnina (purple), AutoDock (blue), Vina (green), and DOCK (yellow) on (A) FLAP 447 

Endonuclease (FEN1) protein, (B) Glucocerebrosidase (GBA) protein, and (C) 448 

Mechanistic target of rapamycin (MTORC1).  449 

Additionally, logAUC was plotted (Figure 6D, 6E, 6F) and BEDROC were calculated 450 

(Table S6) to assess each scoring functions’ ability to distinguish between active and 451 

inactive compounds. DBX2 demonstrates superior performance across both logAUC and 452 

BEDROC with the two scaling functions, suggesting a robust efficacy in prioritizing active 453 

compounds throughout top and broad ranks of compounds. Notably, node-level 454 

predictions show the highest performance, followed by graph-level predictions and 455 

Gnina’s CNNAffinity scoring function. 456 

 457 

Conclusions 458 

We introduced DBX2, a novel GNN framework that enables to learn computational 459 

ensembles of small molecule-protein conformations as single graphs to predict binding 460 

modes and affinities. The model relies solely on simple energetic features derived from 461 

docking, without incorporating ligand and protein structural information that render 462 

conventional GNNs prone to memorization and consequently, poor generalization. We 463 

comprehensively evaluated DBX2 across various metrics for docking and VS tasks, 464 

underscoring its effectiveness as a robust tool for binding affinity prediction and virtual 465 

screening compared to conventional scoring functions and ML models based on single 466 

poses. At the same time, some caveats associated with the ensemble-based method 467 

emerged, especially reflected in the poor correlation between graph-level predicted and 468 

experimental binding affinities. We reasoned that these constraints can be ascribed to the 469 

limitations of the data generating process, i.e., docking, both in sampling the free energy 470 

landscape of binding and in quantitatively estimate binding energy contributions. 471 

Nevertheless, the significant performances observed for DBX2 not only advocate for its 472 

adoption in prospective drug discovery campaigns relying on high throughput VS but 473 

encourages also further exploration of ML models suitable for learning from 474 

computationally generated ensembles better representing binding thermodynamics than 475 
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single poses. In this context, an exciting venue for further investigation could be the 476 

adaptation of the DBX2 architecture to MD-derived conformational ensembles of small 477 

molecule-protein complexes, to take into consideration also protein flexibility and induced 478 

fit as well as solvation. 479 
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