
Complex-valued intermolecular coupling

enables directional exciton transport in

excitonic circuits

Maria A. Castellanos and Adam P. Willard∗

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139,

USA

E-mail: awillard@mit.edu

Abstract

Molecular systems capable of directing the flow of excitons are key to the develop-

ment and optimization of optoelectronic materials. The transport of excitons across

multiple molecules is governed by the intermolecular electronic coupling network. In

this manuscript, we consider the effects of complex-valued intermolecular electronic

coupling on exciton transport. We present a molecular motif capable of generating

complex-valued coupling under excitation with circularly polarized light. We use the-

oretical modeling and simulation to illustrate how complex coupling can be leveraged

to drive the rotational flux of excitons in cyclic molecular networks and direct exciton

population at branched molecular networks.

1 Introduction

A system of semiconducting moieties, such as organic dye molecules, conjugated oligomers,

or quantum dots, can be arranged to form a circuit capable of conducting the flow of excited
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electron-hole pairs, otherwise known as excitons. The tendency of excitons to migrate or

delocalize within such a circuit is mediated by the intermolecular electronic coupling network.

In principle, unique modes of control over exciton dynamics can be achieved when elements

of this network are complex-valued. This includes the ability to direct the flow of excitons

to turn in specific directions within cyclic or branching circuits. Currently, however, little is

known about how to generate complex-valued coupling (CVC) in realistic multichromophoric

excitonic systems. In fact, standard models of intermolecular electronic coupling, such as

Förster theory, appear to exclude the possibility of realizing CVCs.1,2

In this manuscript, we present a strategy for designing excitonic circuits that exhibit

complex-valued coupling elements. We demonstrate the physical viability of such circuits by

proposing a simple molecular motif capable of yielding CVCs, and we suggest a strategy for

producing and observing their effects in a laboratory setting. We then highlight the unique

capabilities of circuits with CVCs to direct the flow of excitons using a simplified site-based

model.

Control over exciton dynamics is important for enabling the transport and conversion

of optical excitation energy in semiconducting systems. Excitonic circuits are molecular

systems that provide this control. Natural photosynthetic systems have evolved to include

excitonic circuits that efficiently shuttle the energy of absorbed sunlight from light-harvesting

complexes to the reaction center (where the water-splitting reaction is catalyzed).3,4 In ar-

tificial system, excitonic circuits can be designed to improve the performance of the broad

array of technologies that utilize the properties of excitons. This includes applications in

photovoltaics,5,6 photocatalysis,7 imaging,8,9 signal processing,,10 solid state lighting,11,12

and quantum information processing.13,14

In this study, we limit our focus to excitonic circuits made up of multiple organic dye

molecules, which we herein refer to as chromophores. In close contact, certain species of chro-

mophores can couple strongly enough to permit exciton delocalization and diffusion across

∼10s or ∼100s of molecules within typical exciton lifetimes.15,16 While the general tendency
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for exciton diffusion can be tuned via the intermolecular coupling strength, the directional-

ity of diffusion is less easily controlled.14 The most reliable strategy for generating direction

exciton transport is to design circuits with internal energy gradients. This strategy is effec-

tive, but necessitates performance loss in applications that require high energy conversion

efficiency.17 By utilizing CVCs, excitonic circuits can be designed to promote directional

transport without necessitating dissipative energy loss.

Our approach to generating CVCs relies on control over the phase of the excitonic wave-

function. When the state of an exciton has a distinct phase, its coupling to other excitonic

states can depend on this phase. Through this dependence, the coupling elements between

excitonic states can be complex-valued. The challenges we address in this work are thus to

determine (1) how to design systems of chromophores that support excitons with controllable

phase, and (2) how to formulate the intermolecular coupling so that it includes the effects

of this phase.

This manuscript is organized as follows. We begin, in the next section, with a brief

review of the topic of phase in quantum systems. Then, in Sec. 3 we introduce a system of

two chromophores capable of generating CVCs. We formalize this system using the Frenkel-

Dovydov model and simulate the emergence of CVC via optical excitation with circularly

polarized light. In Sec. 4, we present several model systems capable of manipulating the

directional flow of excitons with CVCs. Finally, prior to concluding, we discuss some effects

of non-ideality on the performance of these systems.

2 Phase in quantum systems.

The ability of quantum mechanical objects, such as electrons or excitons, to interfere is

determined by the relative phase of their wavefunctions. In the simple case of a quantum

two-level system, this phase can be defined by a single angle, ϕ, which specifies the longitu-

dinal orientation of the wavefunction as represented on the Bloch sphere. This phase angle
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constitutes the complex character of the wavefunction,

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩, (1)

where |0⟩ and |1⟩ are the two states (e.g., spin-up and spin-down) and θ defines the latitudinal

orientation of the vector representing the wavefunction on the Bloch sphere.

Similarly, the complex-valued components of electronic wavefunctions are associated with

phase angles, and likewise are responsible for electronic interference, such as exhibited in

electron diffraction patterns.18 The phase of an electronic wavefunction can be externally

manipulated via electromagnetic potentials. For instance, the Aharonov–Bohm (AB) effect

describes how an electron experiences a phase shift when circulating in the presence of

a magnetic field.19 This particular effect has been utilized to enable quantum computing

operations and information storage on multi-spin systems20,21 and semiconductor quantum

rings,22,23 and to increase the efficiency of electron transport in light-harvesting models.24–26

An exciton comprises an electron and a hole. The electron and hole wavefunctions both

contain spatially varying phases, reflecting the nodal symmetries of the frontier molecular or-

bitals, the LUMO and HOMO, respectively. This phase variation is evident in the renderings

of HOMO and LUMO orbitals that are often produced from molecular electronic structure

calculations. This spatially varying phase is responsible for certain excitonic phenomena,

such as the strong sensitivity of charge-transfer coupling to intermolecular twist angle in

π-stacked homo-dimers.27,28

An exciton can also acquire phase during delocalization, whereby the wavefunction oscil-

lates between different exciton basis states. This phase can be formulated within a complex

superposition of basis states and is notably distinct from that which characterizes molecular

orbital structure. Our approach to generating CVCs utilizes this kind of complex superpo-

sition phase. In particular, we leverage a superposition state that arises when certain highly

symmetric chromophores are excited with circularly polarized light. As we describe in the

4

https://doi.org/10.26434/chemrxiv-2024-6v2jn ORCID: https://orcid.org/0000-0002-0934-4737 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-6v2jn
https://orcid.org/0000-0002-0934-4737
https://creativecommons.org/licenses/by/4.0/


following section, the phase associated with this superposition can dress the intermolecular

electronic coupling to external chromophores, and thereby yield CVCs.

3 A dimer system for generating complex-valued cou-

plings

In this section, we present a two-chromophore system capable of generating CVCs under

excitation with circularly polarized light. We formalize the excitonic properties of this system

using the Frenkel-Davydov (FD) model. In this model, the exciton is described in a reduced

basis of interacting states via the excitionic Hamiltonian,

Hex =
N∑

n=1

En|n⟩+
N∑

n̸=m

Vnm|n⟩⟨m|, (2)

where |n⟩ denotes the nth basis state, En is the energy of the exciton in that state, and

Vnm is the coupling between states |n⟩ and |m⟩.29,30 Despite its formal simplicity, the FD

model has been repeatedly shown to accurately reproduce experiments across a wide range

of chemical systems.16,31,32

In typical applications of the FD model, each basis state is chosen to represent the lowest

energy singlet excitation of a given chromophore, with all other chromophores assumed

to be in their electronic ground state. With this choice of basis, the parameters En and

Vnm are easily interpretable as the excitation energy of chromophore n and the electronic

coupling between chromophores n and m, respectively. These parameters depend on the

atomistic details of the system and can be derived from theory or computed via first-principles

calculation.14,33

Our two-chromophore system for generating CVCs comprises one standard chromophore,

such as a Cy3 dye molecule, contributing a single exciton basis state, and one high-symmetry

chromophore, such as a metal-porphyrin, contributing a degenerate pair of exciton basis
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states. For the standard chromophore, the exciton state represents a typical HOMO-to-

LUMO (π → π∗) electronic transition. We will refer to this type of chromophore as a linear

chromophore because the transition dipole vector (TDV) tends to align with the long axis

of the conjugated system of atoms. For the high-symmetry chromophore, we consider a

molecule with a π-electron system that is both cyclic and symmetric, specifically, possessing

DNh symmetry. We will refer to this type of chromophore as a circular chromophore due to

the cyclic nature of the conjugated system of atoms. In an idealized nuclear configuration,

the LUMO level of a circular chromophore contains a pair of degenerate π∗ orbitals. The

TDVs associated with these two π → π∗ electronic excitations are orthogonal and oriented

within the plane of the π system. We hereby allow these vectors to define the orientation of

the x and y axes.

We label the single state of the linear chromophore as |L⟩ and the two states defined by

the TDV of the circular chromophore as |x⟩ and |y⟩. The excitonic Hamiltonian of the dimer

comprising one linear and one circular chromophore, in matrix form, is thus given by,

H(xy)
ex =


EL VLx VLy

VxL EC 0

VyL 0 EC

 , (3)

where EC = Ex = Ey and the coupling between states |x⟩ and |y⟩ is zero by orthogonality.

The values of VLx and VLy in this matrix represent the Coulomb interaction between the

transition densities of state |L⟩ and state |x⟩ or |y⟩ and would therefore be real-valued.

Within the point-dipole approximation, the coupling can be expressed in terms of the relative

orientations of the linear and cyclic chromophores. For instance,

VLx = Vx [µ̂L · µ̂x − 3(µ̂L · r̂)(µ̂x · r̂)] , (4)

where µ̂L and µ̂x are the unit vectors indicating the orientations of the TDVs of |L⟩ and
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|x⟩, r̂ is the unit vector of the center-to-center separation between the linear and circular

chromophores, and Vx parameterizes the effective coupling strength, which depends on both

the separation and relative orientations of the TDVs. An analogous expression describes VLy.

To further simplify the formalism, we will assume that r̂ = ẑ (i.e., that the dimer pair is

separated along the z-axis, and that µ̂L · ẑ = 0). With these assumptions, the couplings each

reduce to a simple function of single angular coordinate,

VLx = Vx cos(θ), (5)

and

VLy = Vy sin(θ), (6)

where θ is the angle between µ̂L and the x-axis, as illustrated in Fig. 1B.

Notably, the dipole approximation invoked above, nor the assumption that the two chro-

mophores are aligned along the z axis, is necessary to model this dimer system. Indeed, the

value of VLx and VLy could be determined more accurately from first-principles calculation.

However, the above approximations allow us to generate simple expressions to guide intu-

ition and enables a straightforward (albeit approximate) examination of how changes in the

geometric arrangement of the dimer pair modify the effects of CVCs.

In this system, CVCs emerge under excitation with circularly polarized light. Under this

excitation condition, the basis states |x⟩ and |y⟩ are not independently excitable. Rather,

circularly polarized photons excite complex superpositions of the |x⟩ and |y⟩ states. This

has been demonstrated for Mg-porphyrin (possessing D4h symmetry).34–36 The appropriate

basis states for describing these superpositions are the eigenstates of the angular momentum

operator, |+⟩ and |−⟩, defined as,

|±⟩ = 1√
2
(|x⟩ ± i|y⟩) . (7)
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Figure 1: (A) A circularly polarized pulse propagating in the z axis acts on a molecule with DNh symmetry
(circular molecule), populating one of two delocalized excitations. Here the pulse is depicted as RCP and creates
an exciton localized in the |+⟩ state. (B) Schematic representation of the pulse acting on a molecule, which
populates the first excited state. Unlike the circular molecule, the x and y components of the linear molecule’s
dipole moment, µL, are not symmetric and will interact with the corresponding components of the circular pulse
(εx and εy, respectively) separately, according to the dipole angle with respect to the x axis, θ. (C) Time evolution
of populations and (D) coherences of an exciton shared between a porphyrin and Cy3 molecules, after a RCP
circularly polarized pulse is applied, as described in the text. Solid lines correspond to a choice of θ = 0 and
dashed lines to θ = π/2. (E) A DNh symmetric molecule when the molecular (xy) plane is not orthogonal to
the axis of propagation. The deviation is quantified by the angle ϕ. (F) Time evolution of the coherences for the
dimer wavefunction when θ = 0 and ϕ = 0 and π/3 (solid and dashed lines, respectively).

To model excitons generated from circularly polarized light, we thus perform a change of

basis from the states (|L⟩, |x⟩, |y⟩) to (|L⟩, |+⟩, |−⟩). The resulting FD Hamiltonian is,

H(±)
ex =


EL VL+ VL−

V+L EC 0

V−L 0 EC

 , (8)

where the elements VL+ and VL− represent the coupling between |L⟩ and |+⟩ and |−⟩, respec-

tively. The values of these coupling elements can be expressed as VL+ = 1√
2
(VLx + iVLy) and

VL− = 1√
2
(VLx − iVLy). Substituting Eqs. 5 and 6 yields expressions that contain a phase

angle,

VL+ =
1√
2
(Vx cos(θ) + iVy sin(θ)) , (9)
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and,

VL− =
1√
2
(Vx cos(θ)− iVy sin(θ)) , (10)

with V+L and V−L equal to the complex conjugates of VL+ and VL−, respectively.

Note that the phase will only appear in the interaction when the circularly-polarized

molecule is coupled to a low-symmetry molecule. For a pair of circularly-polarized high-

symmetry molecules, the frame of reference for the dipole moments is indistinguishable,

which leads to phase cancellation, while two linear molecules excited through circularly

polarized light do not yield a complex-valued superposition excited state.

3.1 Simulating the optical excitation of the CVC dimer system.

The expressions in Eqs. 9 and 10 reveal that CVCs can emerge when exciton states are

initialized with circularly polarized light. In this section, we carry out a simulation to verify

that the |+⟩ and |−⟩ states can be selectively populated when the circular-linear dimer

system is subject to a pulse of circularly polarized light.

To model photoexcitation, we utilize a FD model that is extended to include the electronic

ground state. We denote the ground state as |G⟩ and the three exciton basis states as we

have previously, i.e., |L⟩, |+⟩, and |−⟩. Following the model described in Ref. 34, we write

the wavefunction for the 4-state exciton system as,

|Ψ(t)⟩ =cG(t)|G⟩

+cL(t)|L⟩e−iELt/ℏ

+c+(t)|+⟩e−iECt/ℏ

+c−(t)|−⟩e−iECt/ℏ. (11)

We study the evolution of |ψ(t)⟩ when the system is perturbed by a circularly polarized laser

field ε±(t). We simulate the evolution via the time-dependent Schrödinger equation under
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the dipole approximation,

iℏ|Ψ̇(t)⟩ =
(
H(±)

ex − µ̂ · ε±(t)
)
|Ψ(t)⟩, (12)

where µ̂ is the dipole moment operator. The right/left circularly polarized pulse (RCP/LCP)

is described in terms of its Cartesian components,

ε±(t) = ε0s(t)[cos(ωt+ η)êx ± sin(ωt+ η)êy], (13)

with field amplitude ε0, carrier frequency ω, phase η, unit vectors êx and êy along the x- and

y-axes and shape function s(t) = sin2
(

πt
tp

)
, with tp the duration of the pulse.

We assume the circularly polarized light pulse propagates along the z-axis and that the

circular chromophore is oriented perpendicular to the pulse (i.e., aligned with the xy-plane).

The linear chromophore is positioned with its TDV oriented in the xy-plane and rotated

by an angle θ relative to the x axis. We then derive expressions for the coefficients ci(t)

in the presence of a RCP with frequency resonant to the excitation energy of the circular

chromophore, ωC = EC/ℏ. The derivation, presented in full detail in the SI, results in the

following expression,

ċG(t) =
i

ℏ
ε0s(t)

(
|µL| cos(θ − ωCt)cL(t)e

−iωLt + µCc+(t)
)
, (14a)

ċL(t) =
i

ℏ
ε0s(t)

(
|µL| cos(θ − ωCt)cG(t)e

iωLt
)
, (14b)

ċ+(t) =
i

ℏ
ε0s(t)µCcG(t), (14c)

ċ−(t) = 0, (14d)

where ωL = EL/ℏ. From this system of ODEs, we note that the dipole angle, θ, adds a phase

to the circularly polarized field acting on the linear exciton, with the coefficient evolving as

cL(t). When the same pulse interacts with the linear chromophore, the equal-magnitude x

and y components of the field interact with the components of the dipole vector separately,
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weighted by the relative angle of the dipole, θ, as described by Equations 5 and 6.

The ODE system in Eq. 14 does not have a straightforward analytical solution, therefore

we provide a numerical solution for the system of equations using the molecular and pulse

parameters from Ref. 34: ε0 = 2.20 × 109 Vm−1 and s(t) = sin2
(

πt
tp

)
, with tp = 9.67 fs the

duration of the pulse. The circular molecule is chosen to be Mg-Porphyrin, with µC = −1.84

ea0 and ℏω = 2.21 eV, and the linear molecule to be Cy3 (µL = 5.04 ea0 and ℏω = 2.27

eV). The resulting populations, |ci|2, and coherences as given by the imaginary components

of cicj, i.e., I[cicj], between the four states are shown in Fig. 1C and D, for θ = 0 (solid)

and θ = π/2 (dashed). As our model indicates, the phase will almost exclusively affect the

formation of the linear exciton state, |L⟩. This effect is especially apparent in the exciton

coherences (Fig. 1D). Note that in our model the linear exciton state populates more than

the circular due to the linear chromophore having a larger transition dipole.

In the model presented above, we assumed an idealized geometry in which the axis of

light propagation is perpendicular to the plane of the circular chromophore. To explore the

effects of the relative alignments of the light pulse and the circular chromophore, we consider

an expanded model in which the linear chromophore is tilted out of the xy-plane by an angle

ϕ, as depicted in Fig. 2. With this model, derived in full detail in the SI, the evolution of

the excitonic wavefunction is given by the following system of equations.

ċG(t) =
i

ℏ
ε0s(t)

(
|µL| cos(θ − ωCt)cL(t)e

−iωLt + µCe
iϕc+(t)

)
(15a)

ċL(t) =
i

ℏ
ε0s(t)

(
|µL| cos(θ − ωCt)cG(t)e

iωLt
)

(15b)

ċ+(t) =
i

ℏ
ε0s(t)µCe

−iϕcG(t) (15c)

ċ−(t) = 0 (15d)

In these equations, we find that the effect of the alignment angle ϕ is to impose a global

phase on the evolution of the |+⟩ basis state. Excitation with a LCP pulse imposes an

analogous phase shift on the |−⟩ basis state. Numerical solutions to these equations for
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θ = 0 and θ = π/3 are presented in Fig. 1F as dashed lines. The coherences, I[cicj] for

ϕ = π/3 compare to those for a perfectly aligned system with ϕ = 0 and θ = 0. Populations

|ci|2 for an arbitrary alignment given by ϕ will be identical to those of the ϕ = 0 dimer.

These findings show that in a linear-circular excitonic circuit, the population dynamics only

depend on the relative geometry of the linear chromophore, as defined by angle θ. The

relative orientation of the circular chromophore does not affect population dynamics.

4 Exciton dynamics in CVC-containing model systems

4.1 Two-chromophore model system

To evaluate the influence of CVCs on excitonic circuits, we first consider the dynamics of an

exciton on a dimer pair with CVC. To simplify the modeling and interpretation, we consider

a FC model with only two excitonic basis states, effectively isolating |+⟩ or |−⟩ into a single

active state. The corresponding Hamiltonian matrix is given by,

Ĥdimer =

EL VLC

VCL EC

 (16)

where VLC = VL+, when a RCP pulse is applied, and VL−, when a LCP pulse is used, as

defined in Eq. 9 and 10, respectively. We also note, VCL = V ∗
LC. As before, we choose

EC = ℏωC to be the excitation energy of Mg-Porphyrin and EL = ℏωL that of a Cy3 dye.

Arbitrary values for the real components of the coupling are set to be proportional to the

energy difference between the two Frenkel exciton states, Vx = ∆ELC/2 and Vy = 3∆ELC/4,

with ∆ELC = EL −EC. The dimer system is illustrated in Fig. 2A. Note that we set Vx and

Vy to different values, as the system described by Vx = Vy = |V | evolves independently to

the angle θ (Figure S1).
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Figure 2: (A) Representation of a dimer with imaginary excitonic coupling. A coupled pair comprising an aromatic
ring with DNh symmetry and a molecule with a linear transition dipole vector µL is excited via a circularly polarized
pulse resonant with the first excitation of the first molecule, ωC = EC/ℏ. (B) Exciton populations for the dimer
as the phase angle θ is varied. The normalized excitonic flux, F 01, is shown for a (C) RCP and (D) LCP incident
pulse.

We simulate the evolution of an exciton via the Liouville equation,

ρ̇ = − i

ℏ

[
Ĥ, ρ(t)

]
(17)

where ρ is the density matrix describing the state of the closed system. To model the dimer

system, we use Ĥdimer as the Hamiltonian in Eq. 16. The expression above leads to a system

of ODEs for the matrix elements of the density matrix, which can be solved to obtain the

population dynamics of the exciton (i.e., the diagonal elements of the density matrix ρ).

The resulting system of equations can be found in the Supporting Information. We initialize

the system with the exciton fully localized on the circular chromophore (i.e., ρ11 = 1 and

ρ22 = 0). Figure 2B contains a plot of the population on the circular chromophore over time

for a range of different inter-chromophore angles, θ.

The populations ρii(t) provide information about the occupation of the exciton at a given
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time but do not report on the process of coherent exciton transfer between the chromophores.

For instance, if we treat the coupling as a global phase VLC = |V0|eiθ (i.e., corresponding

to the case where Vx = Vy = V0), the populations are predicted to be independent of the

phase angle. As expanded upon in the Supporting Information, when the initial state of the

system is localized on one of the molecules, the factor will merely act as an overall phase in

the evolution of the site-basis probability amplitudes, ci(t). On the other hand, the imaginary

part of the off-diagonal elements of the density matrix, I[ρij], contains information about

the quantum coherence and therefore the direction of the exciton flux. As seen in Fig. S1,

the coherences for the Vx = Vy case do depend on the phase θ.

To define the directionality of flow in exciton population, we compute the quantity,

Fmn = 2VmnI[ρmn], (18)

which quantifies the exciton flux between molecules m and n.37 In this expression, the sign

of Fmn specifies the direction of the coherent exciton transfer, with Fmn > 0 indicating

transfer from m to n. The exciton flux is normalized by scaling each value to its maximum

magnitude, Fmn, and calculated for the dimer as a function of θ for both RCP and LCP

light as plotted in Fig. 2B and C, respectively. We observe, except in the limiting cases of

θ = 0 and θ = π, that F (RCP)
mn (t) ̸= −F (LCP)

mn (t), indicating that inverting the polarization

of the pulse will not simply shift the direction of the exciton flux, but will also affect the

magnitude of flux at a given time.

Environmental noise tends to have a detrimental effect on processes that rely on exciton

coherence. To assess the role that noise may play in our system, we applied Redfield theory

to simulate the behavior of the dimer system when it is weakly coupled to a bath.38 Following

the equations outlined in Sec. S4.1, we choose parameters for the Redfield equation within

a range observed typically for organic chromophores systems at 300K. For the bath spectral

density (Eq. S17) we set λ = 100 cm−1 and Ωc to be proportional to λ by 2λ/(βΩ2
c) = 1.2.14
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A B

Figure 3: (A) Exciton population for the dimer depicted in Fig. 2 when the system is in contact with a harmonic
bath, at different angles of alignment θ. (B) Normalized flux F̄01 for the same system. Here all chromophores
are coupled to a bath with dephasing rate γ=0.1

Figure 3 shows the populations for the dimer when each chromophore interacts with a

separate harmonic bath with a dephasing rate γ = 0.1. As expected, the oscillations in the

dimer populations and excitonic fluxes are damped out by the bath within the first ∼ 100

fs.

A B

VLL

Va
LC

Vb
LC

RCP

LCP

t (fs)

31

2

ωC = εC/ℏ

Figure 4: (A) The three-chromophore cycle system described in Eq. 19. One chromophore with DNh symmetry
is excited with circularly polarized light (red circle) and is coupled with two of low-symmetry (a and b). (B)
For two linear chromophores with different relative orientations with respect to the circular molecule, θa ̸= θb,
inverting the direction of the light will change the order at which an exciton initially localized at 1 populates the
other two sites.
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4.2 Three-chromophore cyclic circuit.

We now consider the dynamics of an exciton in a cyclic circuit comprised of three chro-

mophores - one circular chromophore and two linear chromophores. The geometry of the

system is illustrated in Fig. 4A. This system is defined by the following Frenkel Hamiltonian,

Ĥtrimer =


Ea

L V a
LC VLL

V a
CL EC V b

LC

VLL V b
CL Eb

L

 . (19)

where EC is the excitation energy of the circular chromophore, and Ea
L and Eb

L are the

excitation energies of the two linear chromophores (labeled a and b). In this system, the

linear-circular coupling, VLC, carries a complex phase e.g., as in Eq. 9, while the linear-linear

interaction VLL does not. Specifically, V a
LC = cos θaVx ± sin θaVy, with a similar expression

for V b
LC.

We simulated the evolution of an exciton in a closed three-chromophore cyclic circuit via

the Liouville equation (Eq. 17), with the exciton initially localized on the cyclic chromophore.

The results of this simulation are plotted in Fig. 4 for excitation via right-hand or left-

hand circularly polarized light, when the linear molecules a and b are oriented relative to

the circular molecule according to θa = 3π/4 and θb = −0.6θ, respectively. We observe

that the order in which the linear chromophores are populated by the exciton depends on

the polarization of the light pulse. That is, the direction of circular polarization of the

light determines whether the exciton rotates clockwise or anticlockwise around the cycle.

Evolution in the presence of a bath, as simulated via Redfield theory, is presented in the SI.

It is worth noting that the dependence of exciton rotational dynamics on pulse polariza-

tion is contingent upon the geometric arrangements of the linear chromophores relative to

the axis of light propagation. In the model we present here, this angle is different for the

two linear chromophores, i.e., θa ̸= θb. If, on the other hand, θa = θb, which would occur if

the two linear chromophores were mutually parallel, then no local phase will be introduced
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into the system and the effect of circularly polarized light on exciton rotation vanishes.

To quantify exciton rotation within the cyclic circuit, we calculate the normalized flux

using Eq. 18 for the clockwise path: F23, F31 and F12. Furthermore, we define the total

clockwise flux through site i as Fi = Fji − Fik, where j and k are the two sites neighboring

site i. The calculated fluxes are plotted in Fig. S4. For the three-chromophore cycle the

condition Fmn = −Fnm holds for any given site, but the total flux coming in and out of the

site is not necessarily equivalent. For example, for site 1 (i.e., linear chromophore a), the

net clockwise flux is given by F1 = F12−F31 ̸= 0. However, because the construct is a closed

ring and it is isolated from the environment, the sum of the net clockwise flux for all three

sites must vanish by definition.

The direction of exciton flow is not easily inferred from the dynamics plotted in Figs. 4

and S3. To make studying flow easier, we define the total clockwise flux as Fright = F23 +

F31+F12 = −Fleft. With this definition, F1+F2+F3 = Fright−Fleft = 0. We find that when

an RCP pulse is used Fright = 1.65− 17.2i and an LCP pulse leads to Fright = −2.04− 17.3i

eV. From this calculation, we clearly see that switching the polarization of light inverts the

global direction of the exciton flow. Notably, F (RCP)
right ̸= F

(LCP)
left due to differences in electronic

coupling between the sites, arising from differences in the phases θa and θb.

To further explore the capability of CVCs to direct excitons around cyclic circuits, we

constructed an expanded six-chromophore cyclic circuit. The results of this system study,

presented in the SI, lead to similar conclusions. That is, exciting with right- or left-hand

circularly polarized light induces flow in a clockwise or anticlockwise direction around the

ring. From a practical standpoint, larger rings are more complicated, not just because they

contain more molecules, but also because they require the alternation of real- and complex-

valued coupling (via alternating linear and circular chromophores) in order to generate phase

across the entire ring.
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4.3 Branched excitonic circuit.

In addition to driving circular flow in ring-like circuits, complex-valued coupling can enable

excitons to be directed along specific paths in branched circuits. To demonstrate this ca-

pability, we designed a model of branched circuits with two paths of linear chromophores

originating from a central circular chromophore. This circuit is illustrated in Fig. 5A. A

Hamiltonian describing this system is given by,

Ĥspath =



Ea
L VLL 0 0 0

VLL Ea
L V a

LC 0 0

0 V a
CL EC V b

CL 0

0 0 V b
LC Eb

L VLL

0 0 0 VLL Eb
L


, (20)

where the central circular chromophore has energy EC, the two linear chromophores of the

left branch both have energies Ea
L and the two linear chromophores of the right branch both

have energies Eb
L. The topology of the circuit can be deduced based on the structure of

the Hamiltonian matrix. As with the previous examples, the energies of the circular and

t (fs)

LLV
LCV

LLV
LCV

A B

LLV
LCV LCVLLV

Figure 5: (A) System described by the Hamiltonian Eq. 20, consisting of two separate linear circuits connected
to the same central DNh molecule. The cases when the phase is set to θ = 0 and π/2 are illustrated, resulting
in the green and orange paths being blocked, respectively. (B) The populations for both cases are calculated,
evidencing that the population flux is almost completely stopped by careful manipulation of θ. The top and
bottom plots correspond to the diagrams on the left.
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linear molecules are taken as those for Mg-Porphyrin and Cy3, respectively, and all the

linear chromophores have identical energies (i.e., Ea
L = Eb

L = ECy3 and EC = EMgPh. The

coupling between the circular and linearly excited sites is defined with Eq. 9, and the phase

θ is different for each branch (i.e., θaL = θbL and θaR = θbR). For simplicity, the linear-to-linear

coupling VLL is set to half the energy difference ∆ELC.

Starting from an exciton fully localized on the central molecule via a circularly-polarized

pulse (red circle in Fig. 5A), the amount of population flowing into each of the two connected

molecules depends on their relative angle with respect to the incident light. When the

connected chromophores (green and orange solid lines) are placed orthogonally with respect

to each other (for example, by setting V a
x = V b

y ), the exciton flux is completely blocked when

the incident light is directed parallel to one set of molecules (no flux), and orthogonal to the

other (full flux). In the example shown in Fig. 5A, when the light is parallel to the green

path and orthogonal to the orange one, the first path is blocked (top diagram). When the

light is parallel to the orange chromophores, this path is blocked instead (bottom diagram).

Note that a full delocalization across the circular and all the linear chromophores in the

activated path (both solid and dashed lines) can be achieved by aligning the linear molecules

parallel to each other.

We calculated the exciton populations for this model, setting V x
LC,a = V y

LC,b = 5∆ϵLC/4

and V y
LC,a = V x

LC,b = ∆ϵLC/4. We find that switching the relative phase, θ = θa = θb, between

0 and π/2 almost completely blocks the flux to the orange and green paths, respectively.

This concept can be generalized for complex constructs connecting more than two paths

with similar results.

We note that in this particular circuit architecture, the direction of the circularly polarized

light has no effect on the direction of exciton flux. The direction of exciton flux in the

branched circuit is determined by the angles of the linear chromophores relative to the

direction of light propagation. Therefore, switching between RCP and LCP light will not

change the exciton flux in Fig. 5. This is analogous to observations that the AB effect does
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not manifest in open cycles.25 In fact, one can argue that circularly polarized light is not

strictly necessary in this particular construct. A similar phase control could be achieved with

a linear pulse on a circuit of chromophore molecules with precisely aligned dipole moment

vectors. Indeed, the control of the phase is an artifact of the alignment between the molecules

and does not necessarily arise for the complex phase in the coupling. We discuss this issue

further in the SI.

4.4 Analysis of implementation error

The dynamics of delocalized excitons in the cyclic and branched circuits are influenced by

their alignment relative to incident light, as characterized by angle θ. Achieving precise

alignment in an experimental setting is challenging, resulting in variations from the intended

angle by δθ. At the same time, unless we have access to precise single-molecule measure-

ment frameworks, observed signatures will typically reflect an ensemble of circuits, with an

associated distribution of δθ angles. These variations will be influenced by factors such as

laser alignment precision or the synthetic accuracy of chromophore positioning.

For the 3-chromophore circuit, implementation errors could hinder the intended exciton

flow reversal with changing light direction. This manifests as a bias in exciton delocalization

toward a linear chromophore optimally oriented to the light pulse, regardless of the light’s

circular polarization used. Such an error is quantifiable by comparing the populations of the

two linear chromphores under a different light direction (e.g., RCP or LCP light), with no

discrepancy indicating perfect flow reversal:

εtrimer(δθ) = ⟨|PRCP
a (δθ)− P LCP

b (δθ)|⟩t. (21)

Here, εtrimer represents the time-averaged difference in chromophore populations Pi = ρ̂ii(t)

under right (RCP) and left (LCP) circularly polarized light. The vector δθ encompasses the

range of angle deviations for each molecular orientation and light polarization.
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In the branched circuit, misalignment can cause erroneous exciton populations in the

non-targeted branch. This error is similarly evaluated as a time-weighted average:

εbranch(δθ) = ⟨|P 1
i (δθ) + P 2

i (δθ)|⟩t. (22)

Here, P 1,2
i denotes the populations of the molecules on the unselected branch. According

to the notation introduced in the Hamiltonian Ĥspath, for instance, P 1
i = ρ̂11(t) and P 2

i =

ρ̂33(t) when the intended branch is b, while P 1
i = ρ̂22(t) and P 2

i = ρ̂44(t) apply when branch

a is the target.

We assess the implementation error for both circuits by simulating an ensemble of 500

configurations with δθ varying within [−π/12, π/12]. For the three-chromophore circuit, the

error is estimated to be around 0.132, assuming random deviations for each chromophore

and polarization direction. Remarkably, switching between right and left light polarization

at a constant δθ deviation leads to an error of nearly zero for the three-chromophore cyclic

circuit, εtrimer. This approximation is not unreasonable for a precise experimental setup,

where switching light polarization does not usually imply a modification in the orientation

of the light with respect to the pulse.

The branched circuit yields an implementation error of approximately 0.176 under ran-

dom deviations, δθ, from angles set to those in Fig. 5. This error is not significantly higher

than the error at δθ = 0 (approximately 0.113), suggesting that random alignment errors

minimally affect ensemble measurements.

It is worth noting that misalignment of the circular chromophore with the light pulse’s xy-

plane, represented by angle ϕ, primarily introduces a global phase shift without significantly

affecting population outcomes (see Eq. 15).

21

https://doi.org/10.26434/chemrxiv-2024-6v2jn ORCID: https://orcid.org/0000-0002-0934-4737 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-6v2jn
https://orcid.org/0000-0002-0934-4737
https://creativecommons.org/licenses/by/4.0/


5 Conclusions

In this manuscript, we have described a method to introduce a complex phase into the elec-

tronic coupling between interacting chromophores. We have demonstrated that RCP and

LCP light can be used to control the sign of this phase, while its magnitude can be manip-

ulated by changing the angle of the incident light with respect to the linear chromophore,

either through modifying the laser parameters or the geometrical orientation of the molecules.

The effect presented here could have important implications for the development of efficient

organic semiconductor materials, providing a strategy for directional excitonic flux in the

coherent electron transfer regime. To provide a simple and tractable model for the imaginary

coupling we assumed the environment only couples weakly to the system. Still, we anticipate

our model can be easily expanded to include the effect of strong system-bath interactions.

We also commented on the challenges associated with the physical implementation of

a system with CVCs. These challenges, can be divided into those associated with 1) im-

plementation and 2) measurement of the resulting populations. We found errors in both

implementation and measurement to arise from deviations in the alignment of the linear

components of the circuit with respect to the pulse. Although errors in the implementation

can lead to significant errors in the populations of a single system when the deviation is

large, measurement of large ensembles leads to reduced average deviations. For the three-

chromophore cycle, the measurement error is negligible, and for the branched-circuit the

error is relatively small as well. The alignment of the circular molecule with respect to the

plane of light was, on the other hand, observed to contribute only a global phase to the exci-

ton evolution. Therefore, our results demonstrate promising avenues for the implementation

of geometrical phase control via complex-valued intermolecular couplings.
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