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Supplementary Methods

Figures

The t-SNE plot (perplexity=30) was generated using 1024-Morgan fingerprints (radius=2)
based on PCA initialization and the Jaccard distance metric. Heatmap plots for interpretability
were generated using custom code utilizing the SimilarityMaps functionality of RDKit.

Dataset

An important intermediate aim of this work was to curate a large, high-quality dataset of
molecular tastants, combining publicly available data. The dataset utilizes a standard text-
based representation of molecules, called SMILES [1]. Every molecule is labeled with a taste:
sweet, bitter, sour, umami, and undefined. Where the last category encompasses compounds
that had either previously been established as tasteless or compounds that were present in the
source databases but for which no clear taste could be associated, this particularly includes
many compounds with odor rather than taste labels. Salty was excluded as a taste category
because only a very small number of molecules actually produce this taste apart from sodium
chloride [2]. Data curation was handled with the cheminformatics package RDKit [3]. The
data was enriched with information from the PubChem database.

Supplementary Table 1: Overview of the data sources used for FART.

Database Sweet Bitter Sour Umami Undefined Total
ChemTastesDB 787 021 17 47 405 2177
FlavorDB 8665 71 35 0 1601 10372
PlantMolecularTasteDB 90 631 40 0 144 905
TAS2R Agonists 0 53 0 0 0 53
I[UPAC Dissociation Constants 0 0 1513 0 0 1513
Suess et al. 2015 0 0 0 11 0 11
Total 9542 1676 1605 58 2150 15031

The FART dataset combines data from six publicly available sources, see Table 1. Chem-
TasteDB is one of the largest public databases of tastants and contains 2,944 organic and
inorganic tastants from which 2,177 were used to train FART. The database was curated from
literature [4]. FlavorDB aggregates data on both gustatory and olfactory sensation from a
number of sources [5]. The FART database uses the "flavor profile” given by FlavorDB as
most molecules do not have a specific entry for taste. Data from FlavorDB will thus be more
heterogeneous given that some of these flavor profiles will actually be based on smell, not
taste. Care was taken to only include compounds with unambiguous taste adjectives in the
dataset. From the 25,595 total molecules, 10,372 could be clearly attributed to one of the
four taste categories. FlavorDB is dominated by sweet molecules and is also the source of the
data imbalance in the final dataset. PlantMolecularTasteDB contains 1,527 phytochemicals
with associated taste of which 906 were used for this dataset [6]. The database is based on
both literature and other databases, some of which are also listed in other databases used
for FART. To obtain more data on bitter compounds, a database of ligands that bind to the
human bitter receptor (TAS2) was also considered which yielded 53 previously unseen bitter
compounds [7].
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Supplementary Figure 1: The dataset size decreases during data curation. Duplicate removal
nearly halved the size of the dataset.

Water-soluble, acidic molecules (pKa between 2 and 7), assumed to taste sour [8], were
collected from an ongoing project based with the International Union of Pure and Applied
Chemistry (IUPAC) digitizing three high-quality sources of pK, values in the literature [9-11].
Sour taste is influenced by other factors such as cell permeability, which is the reason why
organic acids taste more acidic than inorganic acids such as HCI at the same pH. Nonetheless,
acidic molecules can be assumed to also taste sour [8]. A total of 1,513 acids could be
obtained in this way although it should be noted that sour taste, as all tastes, is concentration-
dependent and that some of the weaker acids may not be picked up by humans. The pKy
values refer to the most acidic proton and are all measured between 15 and 30 °C in water,
i.e. around physiological temperature, excluding any acids that are not water-soluble. Lastly,
19 umami-tasting molecules were collected from the literature [12] of which 11 were not given
in any other database.

The combined dataset was reduced to the taste label associated with a canonicalized
SMILES representation. The open-source cheminformatics package RDKit [3] was used to
further curate the dataset. First, all SMILES that did not allow the generation of a valid
molecular graph were excluded. To avoid solvent-containing molecules, all entries with multiple
uncharged fragments were removed. Charged molecules were additionally excluded to prevent
substances with missing counter ions. All SMILES were standardized with the default RDKit
standardization procedure. Duplicates could be removed with the help of these standardized
SMILES.

While only very few entries with invalid SMILES (21) or charged molecules (342) needed
to be removed, the number of entries containing multiple neutral fragments (3783) was more
significant. The duplicate removal (14685) reduced the dataset by almost half to a final size
of 15,031 entries, see Figure 1. The large number of duplicates underlines the significant
overlap among the databases used. When duplicate entries existed from different sources,
which source would be given in the final dataset was arbitrarily determined based on the



index. The final dataset exhibits a strong data imbalance, where sweet represents over 60%
and umami less than 1% of the data.

The curated dataset was further enriched by general information (PubChemID, IUPAC
name, molecular formula, molecular weight, InChl, InChlKey), accessed through the PubChem
API [13]. The dataset, FartDB, was published in agreement with the FAIR principles [14] and
can be accessed through several different interfaces to encourage its use by other research
projects.

Model Training

All transformer models were trained on multiple NVIDIA T4 GPUs in Google Cloud using
the HuggingFace Transformers library [15]. For all experiments, the ChemBERTa checkpoint
seyonec/SMILES_tokenized PubChem shard00_160k on HuggingFace was used, consisting
of 6 layers and a total of 83.5 million parameters. Training on the unaugmented dataset was
run for 20 epochs, while training on the augmented dataset was run for 2 epochs. A weight
decay of 0.01 was applied, and a batch size of 16 was used. For all other parameters, the
default values for fine-tuning were used. Training was continued until overfitting was observed,
as indicated by the loss function on the evaluation dataset, or until the loss had saturated.
At this point, the best model checkpoint, corresponding to the lowest evaluation loss, was
selected for further analysis. The following weighted loss function was used for the weighted

model:
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where NN is the number of samples in the batch, C' is the number of classes, z; ; is the logit
(raw output) for the jth class of the ith sample, y; is the true class label for the ith sample,
and wy, is the weight associated with the true class ;.

Supplementary Table 2: Overview of FART model variations.

Model Link
FART FartLabs/Stable_A
FART augmented FartLabs/Stable_B

FART augmented + weighted loss function FartLabs/Stable_C

Model Evaluation

Multi-Class Averages

To evaluate multi-class classification performance, macro and weighted averages are commonly
used to summarize metrics across all classes. The macro (unweighted) average is computed

with
c

1
Macro = ol Z M;, (2)

=1


https://huggingface.co/FartLabs/Stable_A
https://huggingface.co/FartLabs/Stable_B
https://huggingface.co/FartLabs/Stable_C

where C' is the number of classes and M, is the metric (e.g., precision, recall, F1-score) for
the ith class. The weighted average is given by

c
Weighted = Z % - M;, (3)
i=1

where n; is the number of instances in class ¢, IV is the total number of instances across all
classes, and M, is the metric for the ith class.

Multi-Label Data

Molecules that could be associated with multiple tastes during data curation are given as
duplicates in the dataset with the same canonicalized SMILES but different taste labels.
To test how FART (augmented, no weighted loss function) evaluates on these multi-label
molecules, we considered all labels above a probability of 0.2, i.e. higher than a uniform
distribution across the classes, as relevant rather than considering the highest probability as
done for normal evaluation. Of the 213 molecules, which were nearly all seen during training,
FART only correctly associates 23 of the molecules with only and all of the training labels. In
18 cases FART associates too many labels, in 15 of these the additional label is " undefined”.
Overwhelmingly, however, FART collapses the multiple labels into a single one. In 101 of the
213 cases, only a single but correct label was predicted. Ultimately, during learning as well
as inference, FART is tasked with producing a single output label and hence it is unsurprising
that it struggles with this parallel multi-class prediction task. More work is needed to develop
models that more accurately reflect the nature of multi-class tastants.

Interpretability Framework

Integrated Gradients [16] is a method for attributing a deep neural network'’s prediction to its
input features. The core idea is to integrate the gradients of the output taken along a linear
path from a baseline input to the input at hand. Mathematically, for a neural network F(x),
an input x and baseline input 2’ (e.g. the zero input), the attribution for the ith feature is:

1 / !
IntegratedGrads;(z) = (x; — ;) x / OF @ tax (- ))doz. (4)

0 axz

The method satisfies important axioms like sensitivity (if inputs differ in one feature but
have different predictions, that feature should receive attribution) and implementation invari-
ance (attributions are identical for functionally equivalent networks). The method is readily

available for Hugging Face Transformers models through the transformers-interpret package
[17].



Supplementary Table 1: Performance Overview with Weighted
Averages

Supplementary Table 3: Performance comparison between the trained transformers and base-
line classifiers. Scores are given as weighted averages across taste classes which penalizes
wrong but rare predictions on a minority class less compared to an unweighted average. Scores
for Random Forest and XGBoost were obtained through five-fold cross-validation. Area under
the receiver operating characteristic (AUROC) values are calculated as one-vs-rest for each
taste class and then combined into a weighted average.

Weighted average

Model Accuracy Precision Recall F1 Score AUROC Support
XGBoost: fingerprints (fp) 0.8572 0.8616  0.8572 0.8564 0.8821  100%
XGBoost: fp+descriptors 0.8526 0.8522  0.8526  0.8506  0.8716 100%
Balanced Random Forest: fp 0.7375 0.8105 0.7375 0.7580 0.8296  100%
FART 0.8621 0.8650 0.8621 0.8607 0.9617 100%
FART augmented 0.8670 0.8610 0.8670 0.8626 0.9643 100%

FART augmented + weighted 0.8532 0.8721  0.8532 0.8592 0.9576  100%
FART augmented + confidence 0.8837 0.8986 0.8837 0.8887 0.9686 93%




Supplementary Tables 2-4: Class-Resolved Performance
Data for XGBoost and Random Forest

Supplementary Table 4: Class-resolved performance data for the XGBoost model trained on
Morgan fingerprints. The entire data set is considered through five-fold cross validation.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.8104 0.5943 0.6857 1676
Sour 0.8242 0.8941 0.8577 1605
Sweet 0.9288 0.9257 0.9273 9542
Umami 0.7600 0.3276 0.4578 58
Undefined 0.6338 0.7447 0.6848 2150
Weighted Average 0.8616 0.8572 0.8564 0.8821

Unweighted Average 0.7915 0.6973 0.7227 0.8250

Overall 0.8572 15031

Supplementary Table 5: Class-resolved performance data for the XGBoost model trained on
Morgan fingerprints in addition to 15 Mordred descriptors. The entire data set is considered

through five-fold cross validation.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.7842 0.6116 0.6872 1676
Sour 0.8292 0.8773 0.8526 1605
Sweet 0.9146 0.9299 0.9222 0542
Umami 0.7273 0.2759 0.4000 58
Undefined 0.6490 0.6949 0.6712 2150
Weighted Average 0.8522 0.8526 0.8506 0.8716

Unweighted Average 0.7809 0.6779 0.7066 0.8133

Overall 0.8526 15031

Supplementary Table 6: Class-resolved performance data for the Balanced Random Forest
using Morgan fingerprints. The entire data set is considered through five-fold cross validation.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.6845 0.4039 0.5081 1676
Sour 0.5583 0.8766 0.6822 1605
Sweet 0.9436 0.7785 0.8531 9542
Umami 0.0567 0.7241 0.1051 58
Undefined 0.5263 0.7121 0.6053 2150
Weighted Average 0.8105 0.7375 0.7580 0.8296

Unweighted Average 0.5539 0.6991 0.5507 0.8154

Overall 0.7375 15031




Supplementary Tables 5-8: Class-Resolved Performance

Data for the FART models

Supplementary Table 7: Class-resolved performance data for the FART model trained on the
unaugmented dataset with an unweighted loss function.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.7955 0.5882 0.6763 238
Sour 0.8078 0.9075 0.8548 227
Sweet 0.9286 0.9267 0.9276 1459
Umami 1.0000 0.3750 0.5455 8
Undefined 0.6658 0.7523 0.7064 323
Weighted Average 0.8650 0.8621 0.8607 0.9617

Unweighted Average 0.8395 0.7099 0.7421 0.9644

Overall 0.8621 | 2255

Supplementary Table 8: Class-resolved performance data for the FART model trained on the
augmented dataset with an unweighted loss function.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.7594 0.6765 0.7156 238
Sour 0.8571 0.8987 0.8774 227
Sweet 0.9096 0.9520 0.9303 1459
Umami 0.5000 0.3750 0.4286 8
Undefined 0.7279 0.6130 0.6655 323
Weighted Average 0.8610 0.8670 0.8626 0.9643

Unweighted Average 0.7508 0.7030 0.7235 0.9649

Overall 0.8670 | 2255

Supplementary Table 9: Class-resolved performance data for the FART model trained on the

augmented dataset with a weighted loss function.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.6630 0.7269 0.6962 238
Sour 0.8480 0.9339 0.8889 227
Sweet 0.9690 0.8780 0.9213 1459
Umami 0.5714 0.5000 0.5333 8
Undefined 0.6091 0.7864 0.6865 323
Weighted Average 0.8721 0.8532 0.8592 0.9576

Unweighted Average 0.7331 0.7650 0.7452 0.9595

Overall 0.8532 | 2255




Supplementary Table 10: Performance overview for the confidence model trained on the
augmented dataset with a weighted loss function. A prediction is only made when all 10
augmented SMILES for a given molecule result in the same label. Molecules for which no
consensus is reached are not predicted. The percentages in the support column indicate how
many molecules the model predicted on out of the unaugmented test set.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.7260 0.7644 0.7447 208 (87%)
Sour 0.8879 0.9406 0.9135 219 (96%)
Sweet 0.9800 0.9086 0.9430 1401 (96%)
Umami 0.6000 0.5000 0.5455 6 (75%)
Undefined 0.6278 0.8095 0.7072 273 (85%)
Weighted Average 0.8986 0.8837 0.8887 0.9686

Unweighted Average 0.7643 0.7846 0.7708 0.9692

Overall 0.8837 | 2107 (93%)




Supplementary Figure 2: Receiver Operating Characteris-
tics (ROC) for FART Models
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Supplementary Figure 2: Receiver operating characteristics (ROC) for all FART models. (a)
Unaugmented training data with unweighted loss function. (b) Augmented training data with
unweighted loss function. (c) Augmented training data with weighted loss function. (d)
Confidence model (10 models in agreement) based on augmented training data and weighted
loss function.
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Supplementary Tables 9-10: Comparison Between Aug-
mented and Unaugmented FART Models on Non-Canonical
SMILES

Supplementary Table 11: Performance of the unaugmented FART model with unweighted
loss function on an augmented test set including non-canonical SMILES. The performance
drops markedly compared to an evaluation on only canonical SMILES suggesting that the
unaugmented FART has not robustly learned a mapping from structure to taste.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.5167 0.5841 0.5483 3258
Sour 0.6734 0.8236 0.7410 3039
Sweet 0.9358 0.8503 0.8910 20270
Umami 0.8095 0.1545 0.2595 110
Undefined 0.6105 0.7335 0.6664 4161
Weighted Average 0.8213 0.8013 0.8075 0.9304

Unweighted Average 0.7092 0.6292 0.6213 0.9325

Overall Accuracy 0.8013 | 30838

Supplementary Table 12: Performance of the augmented FART model with unweighted loss
function on an augmented test set including non-canonical SMILES. The performance remains
essentially unchanged compared to evaluating on canonical SMILES as predictions are now
robust towards non-canonical input.

Taste Class Accuracy Precision Recall F1 Score AUROC | Support
Bitter 0.7582 0.6805 0.7173 3271
Sour 0.8524 0.8810 0.8665 3060
Sweet 0.9081 0.9522 0.9296 20257
Umami 0.5610 0.4107 0.4742 112
Undefined 0.7163 0.5921 0.6483 4158
Weighted Average 0.8596 0.8658 0.8613 0.9643

Unweighted Average 0.7592 0.7033 0.7272 0.9649

Overall Accuracy 0.8658 | 30858
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Supplementary Figure 3: Receiver Operating Characteris-
tics for Evaluation on Non-Canonical SMILES
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Supplementary Figure 3: The performance of the FART model trained only canonical SMILES,
i.e. on the unaugmented train set, (a) drops markedly when evaluating on non-canonical
SMILES. The performance of the FART model trained on augmented SMILES (b) is robust

towards non-canonical SMILES.
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