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Single-atom alloys (SAAs) arise as a promising concept for the design of improved CO2 hydrogenation catalysts. How-
ever, from the immense number of possible SAA compositions and structures, only a few might display the properties
required to be useful catalysts. Thus, the direct, high-throughput screening of materials is inefficient. Here, we use
artificial intelligence to derive rules describing surface sites of SAAs that provide an effective CO2 activation, a crucial
initial step to convert the molecule into valuable products. We start by modeling the CO2 interaction with 780 sites of
flat and stepped surfaces of SAAs composed by Cu, Zn, and Pd hosts via high-quality DFT-mBEEF calculations. Then,
we apply subgroup discovery to determine constraints on key physical parameters, out of 24 offered candidate descrip-
tive parameters, characterizing subgroups (SGs) of surface sites where chemisorbed CO2 displays large elongations of
its C−O bonds. The key identified parameters are free-atom properties of the elements constituting the surface sites,
such as their electron affinity, electronegativity, and radii of the d-orbitals. Additionally, the generalized coordination
number is selected as a key geometrical parameter. The SG rules are used to identify promising alloys among more
than 1,500 possible single-atom and dual-atom alloys. Some of the promising alloys predicted by the SG rules were
explicitly evaluated by additional DFT-mBEEF calculations and confirmed to provide a significant CO2 activation.

I. INTRODUCTION

Carbon dioxide is the main by-product of fossil fuels com-
bustion and the largest contributor to global warming.1–3

Among greenhouse gases, CO2 is responsible for approxi-
mately 66% of Earth’s total radiative forcing.4 Thus, there is
an urgent need for developing chemical processes to capture
and transform CO2 into valuable compounds, such as olefins
and alcohols.5–12 These processes can support a sustainable
society if they are combined with the large-scale production
of hydrogen from renewable energy sources.13–15 Because
the molecule is rather inert, the efficient conversion of CO2
requires the use of catalysis. For instance, transition-metal
catalysts can enable the hydrogenation of CO2 to methanol
via thermal processes.16–20 Currently, Cu/ZnO/Al2O3 is the
state-of-the-art catalyst for performing this reaction.21 How-
ever, this catalyst experiences deactivation in the presence of
high concentrations of water within the reaction mixture.20–22

Hence, developing new, water-tolerant catalysts is crucial to
achieve industrial CO2 utilization.

Pd-based CO2 hydrogenation catalysts are more water-
tolerant than those based on Cu. Nevertheless, these systems
favor the reverse water-gas shift reaction and produce signif-
icant amounts of carbon monoxide.17,18 It has been shown
that the selectivity to the desired methanol product can be in-
creased by alloying Pd with a second metal, such as Zn or
Ga.20,23 Therefore, alloy materials offer a promising strategy
for improving the performance of CO2 hydrogenation cata-
lysts.

Single-atom catalysts are a frontline approach in catalysis
research.24,25 In these materials, isolated atoms of a metal
are dispersed and stabilized on a host material. If the sub-
strates are metals, we identify these materials as single-atom
alloys (SAAs). Thus, SAAs are metallic systems in which
one single atom of a given chemical element is embedded in
a monometallic host surface of a second element.26–30 We de-
note these systems hereafter as SA@host. SAAs can display

unique electronic properties compared to monometallic sys-
tems or stoichiometric alloys.31–34 These properties can be
exploited to design new catalysts. Particularly, the adsorp-
tion strength of reactive species with the materials surface can
be modulated by the choice of the SA and host elements, and
by the geometry of the adsorption sites containing the SA.
Several methods for the synthesis of SAAs and applications
in catalysis have been reported.35,36 SAAs are typically de-
signed by embedding a highly active SA element on the sur-
face of a less active host element. This is done to enable the
desired reaction while avoiding undesirable side (competing)
reactions that would occur in systems of pure, highly active
metals. Thus, the selectivity can be improved. Additionally, it
has been shown that SAAs can display enhanced stability dur-
ing time on stream (operation).27,37 However, due to the prac-
tically infinite compositional and structural space, designing
SAAs for catalysis is a formidable challenge.

Theoretical approaches like those based on density func-
tional theory (DFT),38 can elucidate specific processes re-
lated to reactivity, such as surface reaction elementary steps.39

For instance, it is possible to model the CO2 activation, the
key initial step for converting the molecule into valuable
products.40,41 Several DFT studies model the full reaction
path for the CO2 conversion, on SAAs, to different products
like methanol and Ethylene.42,43

Artificial Intelligence (AI) can accelerate the discovery of
promising materials by identifying correlations and patterns in
data.44 Nonetheless, only few SAAs might present the prop-
erties required for them to be useful in a specific application.
This is often the case in catalysis, where only a handful of
compounds are known as efficient catalysts (active, selective,
and stable during operation). Global AI models might over-
look these exceptional cases, since these models are designed
to describe as many materials as possible, i.e., to have the best
predictive performance on average for most, but not neces-
sarily the useful materials.45,46 Alternatively, focused AI ap-
proaches can provide descriptions of specific regions of inter-
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est in the data space (or materials space). For instance, sub-
group discovery (SGD) identifies local partitions of the data
associated with outstanding distributions of a given target of
interest.47–49 In particular, SGD provides rules as constraints
(e.g., inequalities) on the values of the key properties identi-
fying the materials in the subset(s) of interest. Compared with
widely used clustering algorithms, SGD has significant differ-
ences. Clustering is an unsupervised method that groups data
points based solely on similarity, without considering a target
variable or providing explicit explanations for the grouping.
In contrast, rather than assigning each point to a cluster, SGD
is a supervised approach that identifies specific subsets or sub-
groups (SGs) of interest as well as rules explaining why data
points belong to these SGs.

In this work, we combine DFT simulations with the SGD
approach to obtain rules describing surface sites on different
SAAs able to activate CO2 effectively (Fig. 1). Relying on the
meta-Bayesian-error-estimation functional (mBEEF) for ex-
change and correlation, a semi-local meta-generalized gradi-
ent approximation (meta-GGA),50 we model the CO2 interac-
tion with 780 surface sites in several flat and stepped surfaces
of 36 SAAs based on Cu, Zn, and Pd host elements. We cre-
ated a data set containing 24 physicochemical candidate de-
scriptive parameters characterizing the surface sites where the
molecule chemisorbs. As the target property for our AI anal-
ysis, we use the C−O bond elongation of these chemisorbed
CO2 structures. Then, by applying SGD, we uncover descrip-
tions of surface-site SGs in the SAAs data set resulting in a
large elongation of at least one of the C−O bonds. The ob-
tained rules highlight the key electronic and geometric prop-
erties of the SAA surface sites associated with CO2 activa-
tion. Based on the obtained SG rules, we efficiently identify
promising alloys in a candidate space of more than 1,500 pos-
sible SAAs and dual-atom alloys (DAAs).51,52 Through ad-
ditional DFT-mBEEF calculations, we confirm the capability
of the surface sites in these promising alloys to activate CO2.
Therefore, our approach provides chemical insights into the
CO2 activation on SAAs while enabling the efficient design
of new materials.

II. METHODOLOGY

A. Atomistic Models of the SAA Surfaces and Calculations
Settings

Based on previous work on the CO2 hydrogenation by
thermal16–20 and electrochemical catalysis,53–55 we choose
Cu, Zn, and Pd as host metals in our SAAs. 12 different
SAs are combined with each of the three hosts resulting in
36 SAAs. Overall, 120 flat and stepped SAA surfaces and
780 different surface sites were considered (Figure 2). The
sites in the pristine surfaces of the three host metals were also
included in the study.

The DFT simulations were performed with the FHI-
aims package56 and managed through the Atomic Simula-
tion Environment.57 We use the mBEEF functional50 to per-
form our calculations. Prior benchmark work58–60 confirms

(a) Pd(111) (b) Os@Pd(111)

FIG. 1. The single-atom-alloy (SAA) concept, i.e. embedding a sin-
gle atom in a host metal, can significantly affect the CO2 activation.
(a) For the Pd(111) surface, the molecule chemisorption is not fa-
vorable (ECO2

ads = 0.046 eV), and the C−O bond of chemisorbed CO2
is slightly elongated with respect to the bond lengths in the isolated
(gas-phase) molecule (1.155 Å). (b) In the Os@Pd(111) surface, CO2
chemisorption is favored (ECO2

ads = −0.337 eV) and the C−O bond is
significantly elongated, indicating a stronger activation.

FIG. 2. Single-atoms, hosts, and considered surface terminations in
our study of the CO2 activation on SAAs. The structures containing
Co and Ni atoms involved spin-polarized calculations.

mBEEF as an appropriate choice to model the interaction be-
tween CO2 and the SAA surfaces. The use of the Hartree po-
tential correction of FHI-aims allowed us to speed up the sim-
ulations. A detailed description of the slab models, considered
surface sites, and the DFT-mBEEF simulations, is provided in
the Electronic Supplementary Information (ESI) Section 1.

We evaluate the CO2 adsorption energy (ECO2
ads ) to judge

whether the interaction with the SAA surface is energetically
favorable.

ECO2
ads = Eslab···CO2 − (Eslab +ECO2). (1)
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Here, Eslab···CO2 is the energy of the slab with adsorbed CO2,
Eslab is the energy of the clean slab (without the molecule),
and ECO2 is the energy of the isolated CO2 molecule.

As the physisorption of CO2 is favorable on the surface
of the three host metals, with ECO2

ads values between −0.16
and −0.12 eV, we employ two criteria to select the struc-
tures for the SGD analysis. First, we only take into account
chemisorbed CO2 structures associated with ECO2

ads < 0 eV,
since metastable configurations with ECO2

ads > 0 eV will be un-
likely compared with the molecule’s physisorption. Second,
we select only the structures in which CO2 directly interacts
with the SA on the surface (see Fig. 1(b)), as the adsorption on
SAA structures that are only composed by atoms of host ele-
ment is similar to the adsorption on the sites of monometallic
Cu, Zn, and Pd surfaces, which are included in our analysis
(see Table S2 in the ESI and related discussion).

We consider the C−O bond elongation in the chemisorbed
CO2 molecule (∆dC−O

max ) as an indicator of CO2 activation.61

This quantity is defined as:

∆dC−O
max = dC−O

chem −dC−O
equil , (2)

were dC−O
chem is the largest distance between the two C−O bond

distances in the chemisorbed CO2 molecule, and dC−O
equil refers

to the distance between C and O in an optimized gas-phase
CO2 molecule evaluated with DFT-mBEEF (1.155 Å).

B. Subgroup discovery

Starting with a data set of population P̃, containing N
physicochemical candidate descriptive parameters (ϕi) and a
target quantity of interest Y , e.g. a material’s property, SGD
searches along the ϕi-space and identifies subsets of data
or subgroups (SGs) with outstanding distributions of Y .47,48

These SGs are identified by selectors (σi) or “rules” which
can be used to obtain physical insights and to screen for new
materials outside the training data set. The rules typically have
the form:

σi = π1 ∧ π2 ∧ . . . (3)

were the πi are propositions constraining the values of each
ϕi to some minimum (π1 ≡ ϕ1 > a) or maximum (π2 ≡ ϕ2 <
b) values to be determined. When a sample in the data set
follows all the propositions in a given set of rules, the sample
belongs to the SG. The identification of the SGs is based on
the maximization of a quality function Q:

Q(SG, P̃) =
s(SG)

s(P̃)
·u(SG, P̃). (4)

The first term, known as the coverage, is the ratio between the
size of the subgroup s(SG) and the size of the data set s(P̃).
This term prevents the selection of too small SGs. The sec-
ond term is the utility function u(SG, P̃) and provides a metric
for the usefulness of the SGs. The target in our analysis is
∆dC−O

max as defined in Eq. 2 and we aim at identifying rules

TABLE I. Candidate descriptive parameters (ϕi) used in the
subgroup-discovery analysis. Including a large number of proper-
ties increases the chances of AI to find which properties of the alloy
determine an efficient CO2 activation.

Type Symbol Unit Description

Host

PEh - Host Pauling electronegativity
IPh eV Host ionization potential
EAh Host electron affinity
rs-h

Å

Host s-orbital atomic radius
rp-h Host p-orbital atomic radius
rd-h Host d-orbital atomic radius
rval-h Host valence radius
Bulkh-nnd Neighbor distance in host bulk
PESA - SA Pauling electronegativity
IPSA eV SA Ionization potential

Single- EASA SA electron affinity
atom rs-SA

Å

SA s-orbital atomic radius
rp-SA SA p-orbital atomic radius
rd-SA SA d-orbital atomic radius
rval-SA SA valence radius
PEsite - Surface site PEa

Surface IPsite eV Surface site IPa

site EAsite Surface site EAa

Siteno # atoms Atoms in the surface site
PEsnn - Surface site and first neighbors PEa

Surface IPsnn eV Surface site and first neighbors IPa

site + first EAsnn Surface site and first neighbors EAa

neighbors CN # atoms Surface site coordination number
gen-CN Generalized CN

a Average of all atoms in the ensemble.

describing structures with large ∆dC−O
max values, Thus, we used

the normalized positive mean shift function. This utility func-
tion favors SGs with high mean values of ∆dC−O

max . Hence, we
should identify SGs of SAA surface sites that can significantly
activate CO2, and weaken at least one of its bonds.

As candidate descriptive parameters, we collected 24
physicochemical properties characterizing the SAAs and the
surface sites where CO2 chemisorbs (Table I). These parame-
ters are constructed considering (free-atom) properties of the
elements in the alloys, the monometallic bulk systems and of
the SAA surface sites. The elemental properties are Pauling
electronegativity (PE), ionization potential (IP), electron affin-
ity (EA), and s-, p-, d-, and valence-orbital radii. We define
four types of candidate descriptive parameters: host, SA, sur-
face site, and surface site + first nearest neighbors. The host
and SA parameters are defined as the properties of the ele-
ments associated with hosts and SAs. Additionally, the bulk
interatomic distance is included within the host’s candidate
parameter. The surface site and surface site + first nearest
neighbors parameters are defined as the average of the ele-
mental properties corresponding to all atoms in the site (or
ensemble). In other words, if the adsorption site is composed
by more than one atom, the property average of all atoms in
the ensemble is the value included in the data set. Two ge-
ometrical parameters characterizing the surface sites are in-
cluded: coordination number (CN) and the generalized-CN
(gen-CN).62 By including basic candidate descriptive param-
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eters, we aim to derive rules capable of screening new materi-
als efficiently, without the need of further sophisticated DFT
simulations. Additional details on the SGD AI approach, the
utility function, and the candidate descriptive parameters eval-
uation are provided in the ESI Section 3.

III. RESULTS AND DISCUSSION

A. DFT-mBEEF Simulations and CO2 interaction with SAAs

Overall, we performed approximately 2200 simulations
modeling the interaction of the CO2 molecule with SAAs
based on the hosts Cu, Zn, and Pd. The monometallic surfaces
of the hosts were also included in our analysis. Most of our
simulations identified structures where CO2 is physisorbed.
The physisorption is characterized by the molecule’s lin-
ear configuration. Besides, in the physisorbed systems, the
molecule-surface distance is typically around 3 Å. Neverthe-
less, some simulations resulted in chemisorbed CO2 struc-
tures. We found 199 structures where chemisorb CO2 satisfies
the criteria in Sec. II A. Three kinds of interactions are iden-
tified among the structures with chemisorbed CO2: a) only
the carbon atom of CO2 bonds to the surface (η1), b) the car-
bon and one oxygen atom of CO2 bond to the surface (η2)
as in Fig. 1, and c) the three atoms of the molecule bond to
the surface (η3). The η1 and η3 geometries are illustrated in
ESI Section 2.1. We analyze the correlation between ∆dC−O

max
and ECO2

ads considering the overall trends observed on these 199
systems. In particular, we focus on the host element, the sur-
face structure, and the SA influences.

Fig. 3 (a) shows the adsorption energy and the C−O bond
elongation values associated with the structures containing
chemisorbed CO2. The ECO2

ads and ∆dC−O
max values are in the

ranges [−1.2, 0 eV] and [0.04, 0.25 Å], respectively. These
wide ranges show that the surface-adsorbate adsorption en-
ergy can be largely tuned by the choice of host and SA ele-
ments, and by the structure of the adsorption site. The SAAs
displaying the strongest binding with the adsorbate, i.e., the
lowest ECO2

ads values, are based on the Cu host. No clear pat-
tern can be identified among the SAAs associated with large
∆dC−O

max values. Fig. 3 (a) also shows that low ECO2
ads trans-

lates to large C−O bond elongations in some systems, imply-
ing that these quantities might be inversely correlated. How-
ever, the systems presenting the largest C−O bond elonga-
tions (∆dC−O

max > 0.18 Å) display rather high CO2 adsorption
energy (ECO2

ads > −0.30 eV). Thus, large C−O bond elonga-
tions are not necessarily correlated with low CO2 adsorption
energies. The analysis of the charge transfer from the SAAs
surfaces to chemisorbed CO2 shows no clear correlation with
the adsorption energy (see ESI Section 2.3).

We have also verified the effect of the surface structure on
the CO2 chemisorption. Here, we focus the discussion on
surface terminations of the SAAs based on the Pd host (Fig.
3(b)). The Pd(110) and Pd(211) terminations tend to provide
SAAs with stronger CO2 chemisorption compared to Pd(111)
and Pd(100). The Pd(110) and Pd(211) surfaces are also as-

sociated with some of the largest ∆dC−O
max values. These obser-

vations can be related to the fact that surface adsorption sites
in (110) and (211) terminations display atoms with lower co-
ordination (lower gen-CN) compared to the (111) and (100)
terminations. Thus, these more unsaturated surface atoms can
bind stronger to CO2, activating the molecule. However, we
note that some surface sites of (110) and (211) terminations
are also associated with weak adsorption energies and small
∆dC−O

max values. Thus, these trends do not hold for all situa-
tions and the SA element also plays an important role.

Fig. 3(c) displays the influence of the SA on the ECO2
ads and

∆dC−O
max . For this analysis, we focus on bridge sites of SAAs

with the Pd host and corresponding to the surfaces (111),
(100), (110), and (211). Firstly, we note that the presence
of the SA typically favors the CO2 chemisorption compared
to the case of monometallic surfaces.63 Moreover, we observe
a decrease in the ECO2

ads as the group of the SA increases within
a given period in the periodic table. For instance, the average
ECO2

ads decrease between Ru and Rh bridge sites in Fig. 3(c)
is 0.104 eV. In general, ∆dC−O

max seems to be mostly dictated
by the SA element. Variations in the C−O elongation among
the different surface terminations are small and do not show
a clear pattern. The analysis for bridge sites of SAAs based
on Cu and Zn hosts (see ESI Section 2.4) highlights similar
trends to those for SAAs based on the Pd host.

Through the analysis of the data in Figs. 3(a), (b), and (c),
it becomes clear that the host metal, the SA element, as well
as the structure of the surface sites all impact CO2 activation
on the SAAs. Thus, it is challenging to establish simple (e.g.
linear) correlations describing an effective CO2 activation. In
particular, the above discussion highlights that interesting sce-
narios might escape the overall (global) trends. To obtain such
correlations, termed rules, we collected the 24 candidate de-
scriptive parameters described in Table I for each of the 199
structures and used this information as input for the SGD AI
analysis.

B. Identifying rules describing large C−O bond elongation in
SAAs

The conversion of CO2 into valuable products requires
breaking at least one of its bonds. Hence, large values of
∆dC−O

max can reflect high reactivity of the SAA surface sites.
For this reason, ∆dC−O

max is chosen as the target in our SGD
study. The histogram showing the distribution of ∆dC−O

max in the
data set of 199 structures (Fig. 3(d), in grey) highlights that
the mean bond elongation is 0.103 Å. As only a few structures
provide bond elongations larger than 0.15 Å, it is clear that the
strong activation of CO2 is an exceptional situation among the
different SAA adsorption sites.

We used the SGD approach to identify descriptions of sur-
face sites of SAAs presenting large values of the target ∆dC−O

max .
For this purpose, we use the normalized positive-mean-shift
utility function (see ESI Eq. S9). Table I shows the candidate
descriptive parameters used in the SGD studies. After section-
ing the ϕi-space, SGD analyzed half a million SGs and identi-

https://doi.org/10.26434/chemrxiv-2024-1dr10 ORCID: https://orcid.org/0000-0001-7250-8100 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1dr10
https://orcid.org/0000-0001-7250-8100
https://creativecommons.org/licenses/by/4.0/


5

(a) (b) (c)

(d) (e) (f)

FIG. 3. Analysis of CO2 chemisorption and activation on surface sites of single-atom alloys (SAAs) via DFT-mBEEF calculations and sub-
group discovery (SGD) using 199 data points. (a): Relationship between adsorption energy (ECO2

ads ) and largest C−O distance in chemisorbed
CO2 (∆dC−O

max ). (b): Surface-sensitivity of ECO2
ads and ∆dC−O

max for SAAs based on the Pd host. (c): SA influence on ECO2
ads and ∆dC−O

max for SAAs
based on the Pd host. (d): Distribution of ∆dC−O

max in the entire data set and in the identified SGs σmax(Q) and σselected . (e): Top-rated SGD
solutions with respect to the quality function of Eq. 4 and Pareto front of optimal solutions with respect to coverage (x axis) and normalized-
positive-mean-shift utility function (y axis, see ESI Eq. S9). (f): Results of new DFT-mBEEF simulations used to validate the SG rules (see
details of considered systems in Table III).

fies those with high Q(SG, P̃) values. In Figure 3(e), we show
the 15,000 top-rated SGD solutions with respect to the qual-
ity function (Eq. 4). These solutions are shown in a utility-
function (u(SG, P̃)) vs. coverage plot. The SG maximizing
Q(SG, P̃), denoted σmax(Q), has a ∆dC−O

max mean of 0.118 Å, a
coverage of 0.387, and is displayed in green in Fig. 4(d,e).
We introduce the rules associated with σmax(Q) and the corre-
sponding surface sites in the ESI Section 3.3. This SG con-
tains surface sites associated with larger bond elongation com-
pared to the entire data set. Nevertheless, σmax(Q) includes a
significant fraction of systems with relatively small values of
∆dC−O

max .

In order to identify SGs focusing on the large ∆dC−O
max , i.e.,

associated with more outstanding distributions of the target,
we analyzed the Pareto front of SGD solutions with respect to
the objectives coverage and utility function (magenta points
in Fig. 3(e)).64 In multi-objective optimization, a Pareto front

is defined as the set of solutions for which no single objec-
tive can be improved without deteriorating at least one other
objective. Thus, the solutions in the Pareto front reflect an
optimal tradeoff between competing objectives. This analysis
allows us to take into account multiple tradeoffs between the
two conflicting objectives of SGD: coverage and utility. We
focus on the SG with the highest utility value in the Pareto
front. Denoted as σselected , this SG coverage is 0.131 and
shows a ∆dC−O

max mean of 0.132 Å. The target distribution in
σselected is shown in blue in Fig. 3(d, e). This SG is more
focused on the outstanding situation compared to the SG that
maximizes the quality function. From the 24 offered candi-
date descriptive parameters, SGD identifies four parameters
as key to describe the capability of the surface sites in SAAs
to strongly elongate CO2 bonds: the electron affinity of the
adsorption site (EAsite), the Pauling electronegativity of the
adsorption site (PEsite), the generalized coordination number

https://doi.org/10.26434/chemrxiv-2024-1dr10 ORCID: https://orcid.org/0000-0001-7250-8100 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1dr10
https://orcid.org/0000-0001-7250-8100
https://creativecommons.org/licenses/by/4.0/


6

of the adsorption site (gen-CN), and the radius of the SA d-
orbital (rd-SA). The rules associated with the SG σselected are
the following:

σselected : EAsite ≤ 1.28 eV ∧ PEsite ≤ 2.22 ∧
gen-CN ≥ 5.87 ∧ rd-SA > 0.647 Å (5)

EAsite, PEsite, and rd-SA highlight the importance of the
electronic properties of the SA and host elements for achiev-
ing CO2 activation. In particular, the rules establish that the
SA should display rd-SA > 0.647 Å. This value is larger than
the hosts’ d-orbital radii equal to 0.319 Å, 0.300 Å, and 0.581
Å, for Cu, Zn, and Pd, respectively. The trend for the d-orbital
radius of the elements within a given period decreases as the
group number increases. Thus, there is a connection between
the uncovered rules and the patterns observed in Fig. 3(c),
where the SAs with larger d-orbital radius are also the ones
favoring larger ∆dC−O

max (Os > Ir ≈ Pt, and Ru > Rh). The
gen-CN, in turn, denotes the importance of the geometric en-
vironment of the surface site as another key factor for CO2
activation. The rule on gen-CN constrains the values of this
parameter to a minimum threshold. This excludes adsorption
sites that present unsaturated atoms, such as the ontop and the
bridge2-step (see Fig. S1) sites of the (211) surfaces, and on-
top and short bridge sites of the (110) surfaces. No explicit
properties of the host are listed in the rules. However, EAsite
and PEsite introduce a host dependence as these quantities are
averages among all the atoms that are part of the adsorption
sites (SA + host).

The 26 surface sites that are part of σselected are presented
in Table II and highlighted by crosses in Figure 3(a-c). The
selected SG contains surface sites of SAAs associated with
the three considered hosts. This means that SAAs based on
Cu, Zn, and Pd hosts can activate CO2 effectively. The ge-
ometries of the surface sites in σselected for the Cu host are
bridge, hollow, and long bridge and they are present in the
(111), (100), and (110) surfaces. In the case of the Zn host,
ontop and bridge surface sites of the (0001) and (0001)-step
surfaces are part of σselected . Finally, for the Pd host, the sites
in σselected are bridge, ontop, long bridge, 4-fold hollow, and
fcc-s. These sites are present in the Pd surfaces (111), (100),
(110), and (211). Each of these sites is displayed in the ESI
Figure S2. Only two SA chemical elements are contained in
σselected , namely Os and Ir. Overall, the analysis of the sys-
tems in σselected reveals that the electronic and geometric en-
vironment mostly provided by bridge sites with Ir and Os SAs
are key for CO2 activation.

Clearly, the rules uncovered by SGD provide physical in-
sights by identifying the key parameters favoring the effective
CO2 activation on SAAs. Nonetheless, each of the constraints
identified by SGD does not necessarily have a specific phys-
ical meaning, as only the combination of all constraints de-
scribes CO2 activation. In addition to the physical insights,
the SG rules provide an efficient way to search for new SAAs
containing different metals. This is because the parameters
entering the rules in Expression 5 can be evaluated for a large
number of surface sites in alloys. In particular, it is desir-
able to identify SAAs that can activate CO2 and contain more

TABLE II. SAAs and surfaces belonging to the selected SG. From
the 26 sites in the SG, SAAs based on Cu and Zn hosts have 5 each,
the remaining 16 belong to the Pd host.

Host Surface Geometry of sites SAs
111 Bridge

Cu 100 Bridge, hollow Os
110 Long bridge

Zn 0001 Ontop,a bridge Os, Ir0001-step Bridge1-s, fcc-s

Pd

111 Bridge

Os, Ir100 Ontop,a bridge
110 Long bridge, 4-fold hollow
211 Bridge1-s, bridge3-s, fcc-s

a Chemisorbed CO2 displays an η3 configuration.

earth-abundant elements than those in the identified SG (Os
and Ir). In the following section, we perform the screening of
SAAs considering a broader number of candidate elements.

C. Exploiting the SG rules to identify candidate alloys

We used the SG rules to identify SAAs in a larger candi-
date space of SAAs compared to the training set. The chosen
candidate space contains 20 SA chemical elements (yellow
elements in Fig. 2). The surface terminations, and adsorp-
tion sites considered in this analysis are shown in Table III.
We focused on bridge adsorption sites, as this site geometry
is present in all of the surface terminations within σselected .
More specifically, three bridge sites were taken into account:
the long bridge in Cu(110), and the bridge sites of Zn(0001)
and Pd(100). In total, 60 surface sites are taken into account
in this screening.

From the 60 SAA surface sites considered in the screen-
ing, 23 fulfill the propositions in σselected . We performed new
DFT-mBEEF calculations to confirm whether the SAAs se-
lected by the SG rules indeed provide significant C−O bond
elongation in chemisorbed CO2. The computational settings
for these geometry optimizations were similar to the ones de-
scribed in Sec. II A. We evaluated the 23 systems selected by
the SG rules. These results are displayed in the upper half
of Figure 3(f). In this figure, the orange bins correspond to
the distribution of ∆dC−O

max values for the 23 systems. 21 of
the 23 tested adsorption sites activate CO2. These systems
contain the SA elements Y, Zr, Nb, Mo, Hf, Ta, W, and Re
on the Cu(110) surface, the SA elements Y, Nb, Mo, Ta, W,
and Re on the Zn(0001) surface, and the SA elements Y, Zr,
Nb, Mo, Hf, Ta, and Re on the Pd(100) surface. The average
∆dC−O

max among these 23 sites is equal to 0.139 Å. The sys-
tem displaying the largest elongation among the tested sites
is Hf@Cu(110) (∆dC−O

max = 0.235 Å). This large bond elonga-
tion is closer to the maximum value within the training data
set, of 0.252 Å, which is associated to a long bridge in an
Os@Cu(110) surface. Two sites selected by the SG rules do
not activate CO2 (Zr@Zn(0001) and Hf@Zn(0001)). Addi-
tionally, we also use DFT-mBEEF to evaluate CO2 activation
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TABLE III. Host surfaces and bridge sites considered in the screening of SA and DA alloys suitable for CO2 activation. In the case of the
SAAs, we used the 20 SAs highlighted in yellow in Fig. 2. For DAAs, we used the set of 33 atoms highlighted in Fig. 2 (green and yellow),
and rd-SA in σselected is taken as the average of the two substituted atoms. Applying the rules allows a reduction of 62% and 75% of the
candidate surface sites in the considered SA and DA alloys, respectively. Moreover, additional DFT-mBEEF calculations confirmed the rules’
capability to predict an effective CO2 activation.

Materials Host Studied Candidate Sites selected Selected sites Not selected sites
surfaces site sites by the SG rules Tested Confirmed Tested Confirmed
Cu(110) Long bridge 20 8 8 8 5 4

SAAs Zn(0001) Bridge 20 8 8 6 5 4
Pd(100) Bridge 20 7 7 7 5 3
Cu(100) Bridge 496 133 5 5 5 2

DAAs Pd(111) Bridge 496 125 5 4 5 5
Pd(100) Bridge 496 125 5 3 5 2

on 15 sites that were not selected by the SG rules. The dis-
tribution of ∆dC−O

max values corresponding to these 15 systems
is shown in 3(f) as purple bins. With a mean bond elongation
of 0.04 Å, 11 of 15 tested systems did not activate CO2. The
largest value of ∆dC−O

max among these 15 systems is 0.178 Å,
lower than the corresponding value among the selected SAA
surface sites (0.235 Å). Overall, σselected provides good crite-
ria to identify sites where CO2 can be activated in SAAs.

In addition to SAAs, we have also considered dual-atom al-
loys (DAAs) in our screening. DAAs are composed of a host
and two different chemical elements A and B in close proxim-
ity, denoted (A, B)@host.51,52 DAAs have recently received
attention since the synergy between the two atoms in these
systems can be exploited to efficiently activate molecules,
such as ethanol,51 and CO2.52 The design of DAAs is more
challenging compared to the design of SAAs, as the num-
ber of possible combinations of elements and surface sites in-
creases substantially. Hence, the SG rules could accelerate the
discovery of DAA capable of activating CO2. For the DAA
screening, we considered bridge sites of the following hosts
and surface terminations Cu(100), Pd(111), and Pd(100). The
33 SA chemical elements highlighted in green and yellow in
Figure 2 were included in this screening. The number of DA
bridge sites that can be constructed based on these SA and
host surfaces is 1,488. The parameter rd-SA in Expression 5
is defined based on one SA element. Thus, to apply the con-
straint on rd-SA to the screening of surface sites in DAAs, we
extended the definition of rd-SA by considering the average of
the d-orbital radii of the two elements A and B in the DAA
systems. The remaining parameters in 5 can be evaluated for
DAAs using the definitions discussed previously.

By applying the SG rules with such extended definition for
rd-SA, we identify 383 surface sites of DAAs likely to pro-
vide large C−O bond elongations. We selected 15 out of
these 383 systems, corresponding to five DAA sites per sur-
face, and performed new DFT-mBEEF calculations. These
results are summarized in the lower half of 3(f). The orange
bins show the distribution of ∆dC−O

max values corresponding to
these 15 systems. 12 of the tested bridge sites are able to ac-
tivate CO2. These sites are, for each host surface, the follow-
ing: (Cd, W), (Mo, Pd), (Sc, Hf), (Zr, Ag), (Y, Pd)@Cu(100);
(Nb, Mo), (Re, Pt),(Rh, Hf),(Sc, W)@Pd(111); (Mo, Hf),
(Ti, Ta),(Ta, Pt)@Pd(100). The average ∆dC−O

max among these

15 sites is equal to 0.111 Å. The systems displaying the
largest C−O bond elongation among the tested sites are (Re,
Pt)@Pd(111) and (Ta, Pt)@Pd(100), with ∆dC−O

max values of
0.190 and 0.187 Å, respectively. Three of the selected DAAs,
(Zr, Ag)@Pd(111) and (Nb, Hg), (Y, Ag)@Pd(100), did not
present CO2 activation. Finally, we evaluated CO2 activation
on 15 of the DAA surface sites that were not selected by the
SG rules. The purple bins of the lower panel in Fig. 3 (f) show
the distribution of ∆dC−O

max among these 15 systems. 8 sites did
not show any activation and the average ∆dC−O

max value across
the 15 sites is 0.059 Å. Even though the SG rules missed some
DAA systems providing relatively large ∆dC−O

max and were not
as effective as they were for SAAs, they correctly identified
the DAA systems presenting the larger ∆dC−O

max values among
all tested DAAs. This result is remarkable given that the rules
were only trained on the much simpler SAA systems. We
stress that the SGD rules can be systematically improved by
retraining with more data (e.g., the data related to DAAs), pro-
viding rules that better describe an effective CO2 activation on
both SA and DA alloy systems.

In addition to the surface reactivity, the synthesizability,
and stability of a catalyst during the operation are crucial de-
sign criteria in heterogeneous catalysis. Indeed, the migration
of metal atoms and the segregation of different metal phases
might occur in SAAs and DAAs.65 As a proxy for the synthe-
sizability and stability of the considered alloys, we evaluated
the formation energy of the SAAs used for training SGD by
using DFT-mBEEF calculations. The details are presented in
Section 4 of the ESI. The formation energy reflects the ther-
modynamic stability of the SAA system compared to the pure-
metal phases. Our results show that the formation energies
strongly depend on the host and SA. SAAs with favorable
as well as unfavorable formation energies are present in our
data set. In general, large C−O bond elongation are associ-
ated with unfavorable formation energies, i.e., the most unsta-
ble SAAs are also the most reactive towards CO2 activation.
Nonetheless, relatively stable alloys can also achieve moder-
ate C−O bond elongations, making them promising candi-
dates for further investigation.

An active catalyst for CO2 hydrogenation likely displays
a good capability of activating CO2 and H2. However, a se-
lective catalyst should also favor the formation of the desired
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products by interacting with hydrogen and other reaction in-
termediates in an appropriate manner. The use of SGD de-
scribed here can be extended to other key steps and inter-
mediates along CO2 conversion. For instance, the stability
of formate intermediate in the molecule’s hydrogenation to
methanol has been proposed to be crucial.11,39 Such analysis
will be the subject of a separate contribution.

Finally, we note that the reaction conditions were not taken
into account in this work. Nonetheless, if the applied reaction
conditions (e.g., temperature, pressure) are harsh, the surface
of the catalyst might restructure. Such restructuring is typi-
cally unknown. Previously, the blending of high-quality the-
oretical and experimental data has shown that AI can identify
correlations that take into account the experimental reaction
conditions.66,67 These approaches enabled the design of new
materials confirmed experimentally. Thus, the incorporation
of experimental data into SGD studies describing CO2 conver-
sion on SA and DA alloys is a promising route for addressing
the impact of reaction conditions on the catalytic performance.
This will require, however, systematic and rigorous experi-
mental procedures68 for the characterization and the evalua-
tion of stability and reactivity of series of SAAs and DAAs.

IV. CONCLUSIONS

In this work, we used high-quality data generated by DFT-
mBEEF calculations and applied the SGD AI approach to
study the CO2 activation in 36 SAAs based on Cu, Zn, and
Pd hosts. From 24 easily accessible candidate descriptive pa-
rameters, SGD selected four parameters as key to characterize
a SG of SAA surface sites capable of strongly elongating the
C−O bonds of the chemisorbed molecule. These key prop-
erties highlight the importance of the SA nature (radius of its
d-orbitals) and the surface site’s electronic (the electron affin-
ity and Pauling electronegativity of the surface site) and geo-
metric factors in achieving an effective CO2 activation. The
rules provided by SGD connect these key parameters to the
desired bond elongation and can be used for materials design.
Indeed, from a total of 1,548 candidate systems, the rules en-
abled a fast screening and prediction of SA and DA alloys
of new potential members of the outstanding SG. Through
new DFT-mBEEF simulations, we tested and confirmed the
rules’ capability to correctly predict the strong CO2 activa-
tion on SA and DA alloys beyond the chemical space used
to train SGD. We hope this work will encourage the use of
high-quality data with focused AI approaches, like SGD, to
accelerate the design of materials for catalysis. Crucially, hav-
ing access to experimental data capturing phenomena that are
hard to include in calculations, such as surface reconstruction
and mass/energy transport, will boost the capabilities of data-
centric AI approaches.
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