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Abstract 

Traditional computational methods for molecule design are based on first principles calculation, 

which places a high demand on computing power. The increasingly powerful machine learning 

(ML) models have fundamentally transformed this landscape. Statistically, by learning the joint 

probability distribution between molecular or material structure and targeted properties, generative 

models can autonomously design numerous novel structures with satisfactory properties. This 

inverse design strategy clearly outperforms the traditional physics-based methods which requires 

human expertise and intuition, along with serendipity. To validate the generated molecules or 

materials for specific properties, classical discriminative models allow for fast large-scale 

screening of the quantitative structure-activity relationships. Generally, the completely ML-based 

workflow from generation to validation for the exploration of chemical space is accessible and 

provides outstanding benefits which traditional computational approaches struggle to achieve. In 

this review, we summarize recent advances in ML-assisted discovery for transition metal 

complexes and conclude with several existing challenges which impede the widespread practical 

applications of this technology to the class of problems. 
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1.Introduction 

The flexible electron configurations in d or f orbitals in transition metals define new bonding 

patterns which differentiate them from covalent bonds in organic molecules.1,2 Metal-ligand 

bonding is very complex, with a wide variety of coordination nubmers.3 Moreover, ligand-ligand 

and metal-metal interactions also pose challenges in the design of organometallic compounds. On 

the other hand, the intricate structural features of organometallic complexes imparts important and 

novel properties to transition metal complexes (TMCs). For example, the spin states of transition 

metals remain of great interest, with increasing interest in the determination of the preferred ground 

spin state and on the factors that influence the preferred spin state and the overall energetics of the 

various possible spin states.4 The existence of multiple energetically accessible spin states in 

transition metal complexes enriches the diversity of TMCs, leading to numerous technological 

applications. Taken together, these features of TMCs motivates the active exploration of unknown 

complexes with optimal properties.  

 

The discovery of novel structures in transition metal chemistry involves several steps, including 

computational design/validation, experimental synthesis/testing with a focus on practical 

applications.5 In this review, we focus on the ongoing development of computational strategies 

with particular emphasis on artificial intelligence(AI)/machine learning(ML) for the design of 

novel TMCs. Traditional computational approaches leverage explicit chemical principles with 

human intuition and expertise for rational in silico complex design. The detailed analysis obtained 

from these computational methods are valuable resources to guide the inverse design of new 

molecules. The rapid development of DFT methods facilitates the extensive investigation of 

electronic structure data derived from TMCs.6 However, for the large-scale screening of promising 
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candidates, the efficiency and effectiveness of DFT calculations are far from satisfactory, 

regardless of the advancements in computing power.  

 

To expediate scientific research in materials science, ML methods have been broadly used to assist 

in the search of targeted candidates.7-10 Given tens of thousands of samples, the ML model is 

capable of autonomously looking for shared patterns and capturing minimal structural differences, 

e.g. conformers, with regard to predefined properties. The learned relations between structures and 

properties are then used to make predictions for unknown samples. With the unprecedent 

advancements in ML algorithms as well as the availability of extensive data sets in the past decade, 

the ML applications in chemical space has been transformed in several aspects: 1) the increasing 

complexity of the investigated systems from simple, single mocules11 to challenging, composite 

systems such as crystal structures,12 polymers.13 2) The development of ML-assisted functionals 

that provide a good understanding of electronic structure data rather than the use of neural network 

models without any physical knowledge.14 3) Improving the versatility of ML models for multitask 

prediction.15 As a data-driven method, the limitation of a ML-based approach is generally 

recognized, to be the lack of interpretability. Unlike traditional computational methods, where the 

underlying physical and chemical principles are explicitly defined and understood, ML models 

often function as “black boxes”, i.e., they can provide accurate predictions, but the reasoning 

behind these predictions are opaque and without explanation. As a result, the insights into the 

chemical mechanisms obtained from ML models are limited.  But the advantage of ML models is 

its ability to significantly decrease the computational cost while maintaining a high level accuracy. 

This efficiency allows for the sampling of larger chemical spaces and the fast simulation of 
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complex systems. And this capability is particularly beneficial in tasks such as drug discovery, 

material design, and process optimization, where speed and precision are crucial.  

 

In Section 2, we first discuss various physics-knowledge based computational approaches for the 

design of TMCs, along with outstanding challenges. The general idea of these methods is the 

reassembly of available ligands with or without replacing functional substituents in the ligands. 

Next, we introduce generative ML models to explore the inorganic materials space. Unlike 

classical methods which require predefined ligands, generative models design novel structures 

from scratch without any prior knowledge. By learning from realistic data distributions in chemical 

spaces, generative models can sample numerous, appropriate structures within seconds, which 

notably accelerates the discovery process. A necessary step for these designed molecules,  using 

either method, is the computational validation of the targeted properties before experimental 

synthesis. Currently, the main strategy is to use time-consuming DFT calculations. To optimize 

this process, in Section 3, we explore various ML methods to predict the energy-based properties 

of TMCs. We also discuss how these classical ML methods can combine with generative models 

to optimize the design workflow and maximize the efficiency of AI/ML-assisted discovery of new 

materials. The success of ML relies heavily on reference data. Although the chemical space of 

TMCs is less explored than that of organic molecules, significant progress has been made to cover 

TMC chemical space. In Section 4, we list some publicly available data sets in terms of complexes 

and ligands. These data sets are valuable resources for ML studies in transition metal chemistry. 

They can be either directly used to train new ML models for various properties or combined with 

newly generated complexes to expand the transition metal space.  Finally, we conclude with 
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opportunities and challenges for the future of ML modeling of transition metal chemistry. The 

schematic illustration of this review is given in Figure 1.  

 

 Figure 1. The design of transition metal complexes. 

 

2. The Design of 3D Novel Structures  

The study of 3D structure design is essential because well-defined 3D structures are a prerequisite 

to the exploration of chemical space in order to understand, for example,  conformational space or 

to investigate complex chemical reaction mechanisms.16-19 Extensive research effort has been 

expended toward understanding the representation of chemical structures, along with the 

development of automatic 3D structure generation.20-24 Whereas most methods for de novo design 

are developed for drug-like organic molecules, successful strategies, to a lesser extent, have been 

explored in organometallic and transition metal chemistry.25-27 The potential applications of TMCs, 

ranging from catalysis and materials science to medicine and environmental technology, 

underscore the importance for this area of research. As a broad class, organometallic molecules 
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are much more complex and structurally diverse than organic molecules, which poses new 

challenges to the discovery of novel structures in transition metal chemistry, requiring an in-depth 

understanding of both theoretical and experimental principles.28-31 Herein, we provide a concise 

overview of various methods for the discovery of inorganic materials, with a focus on TMCs.  

 

In Section 2.1 we discuss the traditional methods of designing novel TMCs. These methods 

leverage the existing TMCs as templates and then deconstructs the complexes to extract available 

ligands. By combining different ligands together, new structures of TMCs are then designed. One 

obvious limitation of this complex-level design is that it highly relies on already synthesized TMCs, 

and it is simply a selection of all possible recombination of available ligands. As a result, ligands 

are not designed from scratch, which limits the discovery of novel TMCs because the chemical 

space of known TMCs is smaller than that of organic molecules and accordingly the variety of 

ligands is also limited. Section 2.2 discusses how ML can overcome this drawback and open new 

pathways for the de novo design of TMCs. The schematic timeline of representative open-source 

tools for TMCs design is shown in Figure 2. 
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Figure 2. The timeline of strategic development for TMCs design. Representative approaches for 

configurational design are listed on the left, and available tools for conformation ensemble 

generation are shown on the right. 

 

2.1 Traditional Strategies for the Design of Transition Metal Complexes 

The first type of techniques we discuss focuses on conformer sampling in transition metal 

chemistry. The exploration of low-energy chemical space is essential for the investigation of 
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quantitative structure-activity relationships (QSAR) because the functional characteristics of 

molecules are largely determined by the most stable configuration.32,33 In addition, conformer 

sampling also plays a crucial role in several different types of computational analyses, such as 

docking,34,35 pharmacophore searching,36 and receptor-based virtual screening.37 Moreover,  ligand 

conformations have profound effects on catalytic activities.38,39 However, capturing reasonable 

conformer ensemble is significantly challenging because of the huge conformational space of 

flexible molecules. Therefore, software which can accurately and efficiently locate the local 

minimum on the potential energy surface (PES) is highly relevant.40-42  

 

While most packages explore the low-energy chemical space of drug-like molecules, such as 

Balloon,43,44 RDKit,45 OMEGA,46,47 and Forg2,48,49 conformer sampling in transition metal 

chemistry is less well investigated.  For example, CREST16,50 develops a meta-dynamics driven 

search algorithm at a semiempirical quantum mechanics GFNn-xTB51,52 level to explore the 

conformational ensembles for almost any chemical species in either the gas-phase or explicit 

solvation. In terms of the sampling of TMCs, bond breaking may occur due to the excess bias 

potential exerted to drive the sampling and bond constraints need to be applied to remedy this 

issue.53 Simultaneously, Molassembler54 proposes a graph-based method to construct the 3D 

structures of (in)organic molecules. Each molecule model is embedded as an undirected graph 

where atoms are represented as nodes and chemical bonds are encoded as edges. The spatial 

orientations of bonded atoms are traced in an index of permutation, including atom-centered 

stereopermutators which capture the orientation differences of neighbors around a central atom 

and bond-centered stereopermutators which capture bond rotation differences. Both types of 

representations are used for spatial modeling to generate a distance bounds matrix, which is finally 
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converted to spatial atom coordinates via distance geometry (DG)55,56 to generate the conformer 

ensemble. However, the limited accessibility to stereopermutators may lead to failures to 

conformer generation and since no strict algorithm is introduced to control the generation of 

conformer at local minima, generated structures are not recommended for downstream tasks 

without further geometry optimization.  

 

 

More recently, Architector57 leverages the known experimental chemical space to design new 

complexes and energetically stable conformers. This python package highlights the conformer 

sampling of f-block systems which usually have more coordination sites than d-block complexes. 

Given a complex input, Architector first identifies the metal core, coordination number and ligand 

SMILIES. The metal symmetry is determined by referring to a predefined geometry table derived 

from CSD molecular symmetries. Ligand type, denticity and the corresponding ligand bite angle 

are assigned from a built-in ligand library of 27 ligand geometries. The mapping between ligands 

and an identified geometry is then automatically performed and redundant binding site mappings 

due to identical ligands are removed. For ligand generation, Architector uses DG to constrain the 

distance of atoms in the pre-optimized ligand. The final output is a list of conformers energetically 

ranked by GFN2-xTB. Results indicate that Architector generates structures lower in energy than 

the CSD complexes.  

 

 

In a recent study, MACE58 proposes a workflow to convert the metal center and ligand 

SMILES/MOL to 3D structures covering all possible stereoisomers of octahedral and square 
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planar complexes. Stereoisomers are a special class in complexes due to the unique spatial 

geometry of complexes where ligands around a metal center have different spatial orientations, 

leading to distinctive properties. For example, cisplatin shows great effectiveness as an anticancer 

agent and has been clinically applied, however, its trans-isomer, transplatin is found to be clinically 

ineffective.59 The inclusion of stereoisomers can further enrich the diversity of TMCs. Similar to 

Architector, MACE first identifies the central metal, coordination geometry and ligand SMILES 

and lists all possible stereoisomers: octahedral (30) and square planar (3). After removing identical 

and “exotic” configurations due to non-localization, 3D atom coordinates are generated via RDKit-

supported DG.45 Post-optimization is implemented but it currently only supports the more 

qualitative Universal Force Field (UFF). 

 

As we discuss above, most programs for conformer generation employ DG to explore the 

conformational space with the assumption that by constraining lower and upper distance bounds 

between all pairs of atoms, all possible conformers can be covered. Some empirical information, 

such as bond length, bond angles and torsion angles may also be added to the distance bounds 

matrix for better sampling. Nonetheless, the generated structures via this algorithm still can have 

distorted geometry and torsional angle values beyond the experimental range because within the 

distance constraints, atomic coordinates are randomly generated. Therefore, error checking or 

geometry filtration is essential to ensure high-quality conformations. In contrast, CREST utilizes 

a RMSD based bias potential to run meta-dynamics for its conformer search. The extra potential 

drives the structure far away from previously visited geometries, allowing for a wide screening of 

the PES. To ensure the lowest energy conformer is searched, all generated conformations are 

optimized and energetically sorted, and the meta-dynamics simulations are run multiple times until 
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no lower conformer is found. While CREST can provide reasonable chemical structures, its 

computational cost is far more expensive than the DG-based methods.  

 

Another type of molecular design technique aims at generating configurationally diverse transition 

metal compounds. Different from conformer sampling where the covalent topology is maintained 

while changing the 3D shape of structures by rotating one or more bonds, the configurational 

exploration in transition metal domain attempts to attach configurationally new ligands to the metal 

center in order to design structurally diverse TMCs for the high-throughput screening of 

identification of complexes with desirable properties. This configuration-based design is equally 

as important as conformer sampling because the availability of experimental TMCs is quite limited, 

with only 242,829 mononuclear TMCs reported in the CSD.60 The relative scarcity of TMCs 

reveals the enormous potential for the in silico design of new complexes which can guide 

experimental synthesis.61,62 In addition, the configurationally diverse complexes are a necessity 

for conformer sampling as conformation generation is based on a complete complex structure. 

With more complexes available, conformation sampling has more sources to investigate QSAR 

models. 

 

The complexity of TMCs poses both challenges and opportunities to the discovery of new 

complexes. For example, the complicated ligand-ligand interactions makes it difficult to design 

reasonable ligands that can spatially match the coordination site well in terms of steric 

hinderance.63-67 Steric strain affects the connectivity, ligand arrangement, and the magnetic and 

electrochemical properties of complexes.63 On the other hand, each ligand in a complex is 

structurally independent, which brings much flexibility to the ligand design. Ligands can be 
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partially modified by inserting or removing a functional group or the entire ligand can be replaced 

by an entirely different ligand, or even more than one ligand can be substituted. The flexible 

manipulation on ligands enriches the diversity of TMCs.68,69  

 

To facilitate the investigation of the binding interactions between metal ion guests and host 

structures, HostDesigner70 introduces scoring algorithms to identify promising host component 

from predefined fragments and the proposed host-guest systems are built via the LINKER and 

OVERLAY modules. LINKER connects fragments together from the library while OVERLAY 

superimposes linking fragments onto a predefined complex structure. COSMOS71 uses a data-

driven method to predict 3D structures of small molecules including both organic and 

organometallic systems. A fragment library which consists of rigid fragments and cyclic fragments 

was built by decomposing molecules in the Cambridge Structural Database (CSD).72 For a given 

query molecule, COSMOS first deconstructs it into fragments, and the query fragments are then 

matched against the built-in library. Finally, the matched fragments are connected to construct 3D 

structures, along with adjusting the torsion angles to minimize steric interactions. COSMOS is a 

biased method because the distribution of fragments in the built-in library is highly imbalanced, 

indicating that fragments with high frequency are more likely to be matched than fragments with 

lower occurrence.  

 

Chu et al.73 proposed a fragment-based evolutionary algorithm (EA)74-78 to de novo design 

functional TMCs via a search space of ligand scaffolds. As a generic and population-based 

optimization strategy, EA provides approximate solutions to problems that are difficult to 

exhaustively sample. The quality of candidate solutions is evaluated by a fitness function and the 
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evolutionary process is iterated until the predefined property criteria is satisfied. One prerequisite 

of EA is the presence of fitness functions to guide the optimization process. In the case study, the 

authors used a QSAR model as the only fitness function to generate ruthenium olefin metathesis 

catalysts.73 Although this evolutionary method successfully optimizes multiple highly active 

catalysts, these promising structures are estimated to be synthetically inaccessible, which limits 

the practical applications of this method. To overcome this drawback, DENOPTIM79 introduces a 

set of predefined connection rules to control the synthetic accessibility.80 Significant effort to 

leverage EA to design organometallics has been reported recently, with such approaches as stk,81 

PoreMatMod.ji82 and NaviCatGA.83  

 

The Kulik lab has developed molSimplify84 for the screening of TMCs. This toolkit predefines 

some common coordination geometries as templates to construct the geometry of a 3D-complex. 

Ligands are predefined as well. They can be either chosen from around 160 common built-in 

ligands or customed by users. The selected ligands are aligned to the coordination sites sequentially 

following the order of ligand denticity to minimize the global steric repulsion. Simple and fast 

force field optimizations are recommended after the entire structure is built for the sake of 

downstream tasks. To design functional complexes, ChemSpaX85 targets exploring the local 

chemical space of molecular scaffolds. It allows users to place functional groups on a given 

complex to generate a series of derivatives from an initial skeleton. Similar to molSimplify, the 

functional substituents are specified from a predefined ligand database which includes 80 common 

ligands. And it also supports post-functionalization for either the newly placed substituent or the 

entire functionalized structure. Another feature of ChemSpaX is that it allows iterative 

functionalization on a skeleton, i.e., the output of one functionalization can be the input for the 
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next functionalization. As a result, ChemSpaX can build large molecules with more than 200 atoms. 

However, it should be noted that a manual error check is necessary during serial functionalization 

because no chemical rules are considered to control the functionalization in ChemSpaX and exotic 

geometries may be generated, leading to poor synthetic feasibility.  

 

The recent advances described propose powerful practical strategies to enrich the diversity of 

TMCs, but the in silico design of TMCs still faces challenges for large-scale generation of 

complexes. One common feature of these toolkits for configuration-based design of TMCs is the 

need of predefined ligands which can be either assigned from a built-in library or specified as input. 

Usually only up to hundreds of the most common ligands are included in the ligand library to 

simplify the coordination environment and thus improve the success rate. And this design strategy 

generates new complexes by identifying the possible combination of different ligands around a 

metal center. The new structure is defined at the complex level, while no ligands are newly 

designed from scratch, which makes the exploration of potential ligand space incomplete. 

Moreover, an important application of these methods is to provide tens of thousands of candidates 

for the high-throughput screening of TMCs to enumerate new structures with tailored properties. 

Although the fast development of computing power advances the computational analyses in 

chemistry, the computational cost of these methods for large-scale screening is still an issue, 

especially for EA-based methods, where tens of evolutionary cycles may be applied.  

 

2.2 Generative Models for Inorganic Material Design 
 
In the rapid developing AI area, thanks to both the ever-increasing computational resources and 

ever growing data sets, AI/ML-assisted strategies for automated molecular design show great 
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promise to outperform traditional methods.5 Unlike some common ML models which make 

predictions, generative AI creates new data in various formats, such as text, image, video, audio, 

3D models, etc. by learning the data distributions from known data sets.86 This unique feature 

satisfies the goal of molecular design to intentionally search for tailored molecules or materials for 

practical applications in unknown chemical space.87,88 Moreover, the self-learning characteristics 

of generative AI makes molecule generation autonomous without human supervision, which can 

avoid biases, leading to more objective and better decision-making. Another advantage of 

generative models is the large number of possible rational outputs, which provides large molecular 

samples for downstream tasks, e.g. wet-lab synthesis, computational analyses of structure-property 

relationships, or even building new ML models using the generated structures.  

 

Traditional methods for molecule discovery greatly rely on serendipity, where the discovery of 

new molecules can be a matter of luck. These approaches lack the ability to support efficient design, 

leading to a trial-and-error process that can be time-consuming and resource-intensive. 

Researchers frequently depend on unexpected results, which can delay progress and make it 

challenging to achieve specific design goals. In contrast, generative models implement systematic 

strategies for molecule design by implicitly recognizing and leveraging complex patterns within 

existing data. Through deep learning, the complex feature representations related to targeted 

properties can be identified and extracted, which, however, are impossible to accomplish simply 

via chemical intuition and knowledge using traditional strategies. These implicit features can be 

parametrized via neural networks for recurrently directed search in chemical space.  
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Herein we mainly discuss several of the most common generative models used in molecular design: 

variational autoencoders (VAEs),89 generative adversarial networks (GANs)90,91 and diffusion 

models.92-95 A general overview of generative models has been provided elsewhere96-98, so we only 

focus on molecular design related to metals, like organometallics, inorganic materials, crystal 

structures, etc. Reviews on generative models for drug-like organic molecules have also appeared 

recently.99,100 The overarching goal of generative models is to implement advanced algorithms 

embedded by the architecture, in order to model the latent representation of the high-dimensional 

probability distribution allowing for the generation of novel data within the existing distribution.  

The difference between various ML models depends on the architecture, i.e., the internal 

networking of each layer and the arrangement of layers. 

 

VAEs are based on autoencoders101,102, a class of unsupervised ML models which include an 

encoder to encode input data into a compressed representation in the latent space and a decoder to 

reconstruct the low-dimension representation to the representation of the original data as 

accurately as possible. En/decoder are typically composed of neural networks. Conceptually, the 

ultimate goal of autoencoders is to minimize the reconstruction loss so that the decoder can give 

output that closely resembles the original input. Autoencoders, while powerful for extracting latent 

representations, are trained to simply replicate the input rather than to learn how to generate truly 

new data from scratch. The emphasis of the model is reconstruction accuracy, and an extremely 

simplified situation is the model memorizes all training data so that the decoder exactly reproduces 

all original data without any reconstruction error. In this instance, no meaningful interpolation 

between the input and latent space is garnered and the model learns nothing. To really generate 

new data, several variants of autoencoders have be proposed.102 As the most popular variant of 
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autoencoders, VAEs introduce variations into autoencoders.  Plain autoencoders map the input 

into a fixed vector in the latent space, while VAEs map it into a distribution by sampling a prior 

distribution between the encoder and decoder, which allows for more flexible representation of the 

data. In addition, a new latent representation can be directly sampled from the latent space 

distribution and fed into the decoder and thus new data can be generated.  Moreover, instead of 

consisting of distinct datapoints as in traditional autoencoders, the structured latent space 

distribution in VAEs allows for smooth interpolation between data points so that intermediate data 

points can be generated by interpolating between latent vectors. For example, given benzene and 

anthracene, a VAEs-based model is likely to generate the structure of naphthalene by interpolating 

the latent representation of both structures because the model is able to capture the overlap between 

two latent representations and learn the gradual change between them and thus generate realistic 

intermediate states. The overview of VAEs is shown in Figure 3.  

 

Figure 3. The architecture of a VAE model. By introducing a prior distribution, each input is 

projected to a sample (highlighted in blue) in the latent distribution. To generate new data, a latent 

representation (highlighted in red) is sampled and fed into the decoder. 
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Generative models based on VAEs have been extensively implemented to advance material 

discovery for various systems. Schilter et al.103 proposed a hybrid model of VAE and a recurrent 

neural network (RNN) to design catalysts for Suzuki cross coupling reactions. The model was 

trained by taking both SMILES and SELFIES104 of 7054 theoretically validated catalysts with data 

augmentation to build the latent space. Encoder and decoder of the VAE model are embedded 

within RNN, and a third neural network is implemented to interpolate the relationships between 

the latent representation and the reaction energy for conditional generation, i.e., the model is 

constrained to generate TMCs satisfying the catalysis of Suzuki cross coupling reactions. Results 

indicate that 84% of the generated samples are novel and valid catalysts.  

 

Recently, Strandgaard et.al designed JT-VAE105 for the dual-object inverse design of homoleptic 

metal complexes. JT-VAE models the latent representation of SMILES-embedded ligands with 

explicit identification of the metal coordination site. The graph-based ligands are further 

categorized into rings, bond, and atom clusters by using the junction tree method.106 The model 

first unconditionally generated thousands of homoleptic TMCs which were then optimized at the 

DFT level with a focus on targeted properties.  With these generated TMCs, the model was re-

optimized by incorporating a third neural network to predict the targeted properties for conditional 

generation. 

 

For inorganic crystal structures, iMatGen107 constructs the latent space of solid-state materials by 

mapping the targeted compositions into image representation. To achieve this, iMatGen utilizes a 

two-step VAE for image reduction and material generation, respectively. A binary classifier is 

introduced to enhance the latent vector for the targeted formation energy related to the stability of 
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materials. The model capably reproduced some experimental vanadium oxide materials as well as 

designing novel stable structures. Later, Court et al.108 extended iMatGen to design a VAE for not 

only generating new structures but also predicting eight properties of these generated structures 

simultaneously. In their work, the unit cells are embedded as electron-density maps and used to 

construct the latent space. To generate new structures, a UNet model is used to convert new 

electron-density maps sampled from the latent space to atomic structures. Finally, a graph 

convolutional neural network is used to predict the properties of generated structures. This 

conditional VAE model generates reasonable crystals with desired properties. However, the 

requirement of less than 40 atoms per unit cell limits the generation of complex structures. In 

addition, the model was trained on limited crystal-structure types, as a result, the model has limited 

generality and may not generate various crystal structures.  

 

GANs are generative models which consist of two components, a generator and a discriminator, 

mainly implemented by neural networks. ‘Adversarial’ in GANs signifies the competitive 

interaction between the generator and discriminator, where the former creates new data instances 

that resemble the true data, i.e., the training data and shares them with the latter, then the 

discriminator evaluates the generated instances and distinguishes them from real data as accurately 

as possible. Both networks evolve together: the generator tries to produce more realistic data to 

fool the discriminator, while the discriminator strives to become better at identifying fake data 

received from the generator. The training dynamics is a min-max optimization problem, where the 

generator minimizes the likelihood of the discriminator correctly classifying its outputs as fake, 

and simultaneously, the discriminator maximizes its accuracy in identifying real from fake. Over 

time, this adversarial process leads to Nash equilibrium109 where the generator creates highly 
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realistic data, meanwhile, the discriminator becomes highly adept at discriminating subtle 

differences between true and generated data. This dynamic optimization is shown in Figure 4.  

 

Figure 4. The dynamic optimization process of a GAN model. At the initial step s = 0, the 

generator only generates isolated atoms or bonds based on the sampled data from a prior 

distribution and at this step, it is easy for the discriminator to identify the fake data since the 

generated data is fundamentally different from real molecules. Over time s = t, the generator keeps 

improving its capability of generating realistic molecules and the discriminator also improve itself 

to better distinguish fake from real. At the Nash equilibrium s = T, the generator successfully 

generates real-like molecules. 

 

CrystalGAN110 is the first GAN model designed to explore novel crystal structures with increased 

structural complexity. It was trained with stable binary hydrogen storage materials MH, the model 

generates stable ternary crystal structures, AHB, where A or B=M. The model took the typical 
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crystallographic representation of the three lattice vectors of a unit cell and the atomic coordinates, 

e.g. H or M as inputs. The generator takes the representation of both AH and BH but generates the 

representation of AHB, while the discriminator identifies the combined representations. The model 

successfully generated novel crystal structures with the defined geometric constraints.   

 

Kim et al.111 also used the unit cell parameters and atomic coordinates of the ternary Mg-Mn-O 

system to design a GAN model for the generation of various novel crystal compositions. The GAN 

model includes three parts, where the generator takes the representation of the composition, and 

the critic evaluates the distance between the true data distribution and the training data distribution, 

inspired by WGANs,112 and finally a classifier network is used for conditional generation of novel 

structures by evaluating the representation differences between the generated composition and the 

real compositions.  Theoretical calculations indicated this proposed model generated 14 entirely 

novel structures with desirable photoanode properties. 

 

Although the two previous models can generate new structures, the design space they cover is very 

limited because of the limited training data set used in the work, and thus the diversity of generated 

structures is a concern.  To expand the design space, Dan et al.113 proposed MatGAN for three 

separated data sets, each of which includes more than 63,000 inorganic compounds. MatGAN uses 

a sparse matrix of one-hot embedding for atom types and atom numbers in each material. A 

convolutional neural network with normalization layers were used in both the generator and 

discriminator. For 2 million generated materials, MatGAN gave valid results 84.5% of the time in 

terms of both charge neutrality and balanced electronegativity. The t-SNE analysis indicated that 

MatGAN explored new design space in inorganic materials.  
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To design complex-architecture materials without prior knowledge, Mao et al.114 used GANs to 

analyze millions of various crystallographic architectures sampled from simulation. Both 

configurations and their properties were used to map the design space so that the discriminator 

interpolates the implicit relationships between configurations and properties, which guides the 

generators to promptly generate new configurations with expected properties. For example, the 

proposed GAN model designed more 400 2D architectures with the HS upper bounds of stiffness 

at various porosities.   

 

GANs have been extensively applied to facilitate the exploration of inorganic material space, but 

they also have some shortcomings. First, difficulties in convergence, the adversarial loop between 

the generator and the discriminator makes the model difficult to train and converge. Second, mode 

collapse, previous studies observed that the generator sometimes repeatedly generates new data 

with a certain type of modes, although a wider variety of modes are included in the data 

distribution.115,116 To tackle this issue, various variants of GANs have been proposed. The first 

solution is to avoid a fake local Nash equilibrium. Studies show that model collapse happens along 

with sharp gradients of the discriminator. To avoid this, DRAGAN proposed to regularize the 

discriminator by adding extra penalization terms so that its gradients are realistically 

constrained.117 Similarly, LSGANs118 used least squares loss to replace the original cross-entropy 

loss in the discriminator to overcome the vanishing gradient issue. Finally, several controversial 

topics, such as the generalization ability119 and memorization issues,120 are still being discussed 

with respect to GANs.  
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Diffusion models, as the newly emerging generative models, have outperformed GANs in a variety 

of application domains.121 Inspired by nonequilibrium statistical mechanics, diffusion models 

consist of two Markov chains: a forward diffusion chain and a reverse diffusion chain. By 

iteratively adding noise sampled from a prior distribution to the input data, the forward process 

gradually destroys the complex data distribution and finally converts it to a simple, known and 

tractable distribution. Next, the reverse process learns to recover the real data distribution from the 

noised distribution. Central to the success of a diffusion model is its ability to parametrize the 

reverse process with a neural network. New datapoints in a targeted distribution are generated by 

first sampling random unstructured datapoints from a prior distribution and then sequentially 

removing noise via the learnable reverse process. 

 

We recently proposed a diffusion model, LigandDiff, to design novel ligands for octahedral 

TMCs.122 LigandDiff introduces the scaffold technique to the diffusion model and allows for the 

generation of 3D monodentate or polydentate ligands at a given coordination site. Specifically, 

given a metal center with several connecting ligands (context u), LigandDiff generates one 

appropriate ligand for the vacant coordination site to form a complete complex. But since the 

initialization of the reverse process is random, even with the same u, numerous ligands with diverse 

configurations can be designed. In LigandDiff, each complex is denoted as 𝑥 = [𝑟, ℎ! , ℎ"], where 

r is the coordinate of each atom, ℎ! is the one-hot embedding of atom type, and ℎ" indicates the 

ligand group information, i.e., which atoms are from the same ligand. In the forward process, an 

assigned well-structured ligand 𝑥#" in each complex is deconstructed to a group of isolated atoms 

𝑥$" . The unstructured data is then used to parametrize a neural network 𝜙 to estimate the noise at 

a given step t, i.e., the distance between 𝑥%"	and 𝑥#". To generate a new ligand, LigandDiff starts 
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from 𝑥$" , sampled from a prior distribution, and removes the noise predicted by parametrized 𝜙 to 

reverse 𝑥$"  to 𝑥$&'" . By iterating this denoising process from 𝑥%" to 𝑥%&'" , finally a new ligand 𝑥#"	is 

generated. The overview of LigandDiff is given in Figure 3.  

 

Figure 5. The dynamics of LigandDiff. The diffusion process q gradually adds noise to initial 

ligand 𝑥#" while the denoising process removes noise from 𝑥$" . Reproduced with permission from 

ref 122. Copyright 2024 American Chemical Society. 

 

LigandDiff is capable of generating novel, unique and valid ligands with high synthetic 

accessibility and has great transferability to design ligands for any transition metal. Recently, we 

extended it to multi-LigandDiff,123 which has two improvements over LigandDiff. First, multi-

LigandDiff allows for partial to total generation of ligands for TMCs. Instead of generating only 

one ligand in LigandDiff, multi-LigandDiff can generate one or more ligands with or without 

ligands in context u. In addition, it allows users to predefine the ligand denticity of the generated 

ligands. To achieve this, the coordination site of a complex is embedded into multi-LigandDiff. 

With this extra embedding, users can customize the ligand denticity of each generated ligand. 

Ligand denticity influences organometallics in various ways, such as the stability of 

complexes,124,125 the geometry of complexes,126,127 and the reactivity of complexes.128,129 This 

conditional design with regards of ligand denticity can facilitate the investigation of metal-ligand 
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interactions. As the successor of LigandDiff, multi-LigandDiff clearly outperforms LigandDiff in 

generating valid, novel and unique ligands for any transition metal.123 Moreover, multi-LigandDiff 

is capable of generating ligands for non-octahedral complexes. As a universal tool for the 

discovery of TMCs, multi-LigandDiff can be used to design new complexes with any targeted 

properties based on scaffolds. That is to say, given a complex with known targeted properties, 

multi-LigandDiff can generate a series of derivatives of this complex by replacing existing ligands 

with new ligands from partially to totally. These newly generated complexes maintain the core 

structure of the reference structure as well as the main properties. Meanwhile, the newly generated 

ligands bring potentials to complexes for other properties. In our case study, multi-LigandDiff 

generated 338 theoretically validated Fe(II) spin-crossover(SCO) complexes with reference to 

only 47 experimentally validated Fe(II) SCO complexes.123  

 

OM-DIFF incorporates a neural network predictor to a diffusion model for the inverse-design of 

novel catalysts for cross-coupling reactions.130 By inducing the model to generate complexes with 

appropriate binding energy calculated at the DFT level, several optimized catalysts including Pd, 

Pt and Cu complexes were generated and theoretically identified to be potential catalysts for the 

Suzuki reaction. Crystal diffusion variational autoencoder (CDVAE)131 combines VAE and 

diffusion models to design novel, stable periodic materials, like perovskites. Three neural networks 

are concurrently optimized: an encoder which encodes the crystal structures into the latent space; 

a property predictor which predicts the composition, lattice and number of atoms of a material; a 

diffusion model based decoder that denoises 3D crystal structures conditioned on the latent 

representation. Recently, Han et al.132 improved CDVAE for the sake of inorganic crystal 

generation with desired compositions. The search in latent space is conditioned on targeted 
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compositions using gradient descent optimization. In addition, Alverson et.al.133 compared GANs 

and diffusion models for unstructured crystal generation. The authors first proposed the CrysTens 

representation which efficiently captures both the pairwise distance matrix and the distance graphs 

of crystal structures. Three models, including Vanilla GANs, WGANs and diffusion models, were 

trained with the CrysTens representation of 53,856 CIFs and were evaluated on their ability to 

understand the symmetrical features of crystals. Results indicate that diffusion models clearly 

outperformed GANs in capturing the structural crystal information and covering the structural 

distribution of the real dataset.  

 

Although generative models have paved the way for the design of molecules with tailored 

properties, AI-assisted methods still face challenges. Currently, almost all candidates designed by 

generative models are computationally validated for targeted properties and the evaluation of 

properties is performed by checking the energetics of candidates, such as the bonding affinities, 

the interaction energies and the free energies, etc. Such computation heavily relies on quantum 

mechanical methods, which however, are time-consuming and resource intensive. To further 

accelerate the discovery of chemical space, efficient strategies for property evaluations should be 

proposed. One possible approach is to combine generative models with machine learning 

potentials (MLPs). The latter is a family of ML methods which model the potential energy surface 

of chemical systems of interest. A well-trained model is able to predict the energetics with several 

orders of magnitude faster than traditional DFT methods. 

3. Machine Learning Potentials for Transition Metal Complexes 
 

3.1 Overview 
 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


Over the past 30 years, various ML algorithms, such as Random Forest (RF), Support Vector 

Machine (SVM), Extra-Trees (ET), GBoost (XGB), Neural Network (NN), etc. have been 

implemented to investigate the statistical relation between chemical structure and potential energy. 

By learning from tens of thousands of reference data from accurate yet computationally expensive 

electronic structures calculations, the parametrized ML models capably perceive the atomic 

interactions without a significant loss in accuracy and thus can be widely used in large-scale 

molecular simulations,134 QSAR investigations,135 and reaction rate determination.136 Traditional 

MLPs based on fixed architectures are constrained to thousands of data points and have limited 

flexibility and transferability. In contrast, neural network potentials (NNPs), as the most 

widespread MLPs, are implemented by deep neural networks, composed of generally hundreds of 

neurons in several layers, which allows the model itself to freely determine the interconnections 

between neurons in consecutive layers. Dating back to 1995, NNPs have a long history and 

continue to experience rapid development. NNPs utilize molecular representations to learn the 

interatomic interactions in molecules. The atomic spatial configurations and interatomic relations 

are defined by descriptors to model the contribution of single atom to the entire system and the 

sum of individual contributions is counted as the total energy. Descriptors are either predefined 

based on intuition and experience from experts or implicitly learned by the model itself.  

 

For example, Behler and Parrinello proposed the atom-centered symmetry functions (ACSFs) to 

capture radial and angular features of single atom with its neighbors.137,138 These predefined 

descriptors transform atomic coordinates into chemically relevant representations for energies 

while maintaining translational, rotational, and permutational invariances. On the other hand, 

representative models, such as DTNN,139 SchNet,140 PAINN,141 directly encode the geometric 
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structures into neural networks and the descriptors related to energies are automatically captured 

by the model. In NNPs, descriptors are proposed to define the local environments of atoms, which 

are constrained to a certain range from the central atom by a cutoff. To simplify the complexity 

and computation, the cutoff radius is usually predefined at 6~8 Å, and the interactions with 

pairwise distances beyond this cutoff are ignored. As a result, this type of NNPs only covers the 

short-range interactions and errors can occur by neglecting long range interactions.  

 

To overcome this limitation, long-range interactions, such as electrostatics, van der Waals, can be 

explicitly added to the short-range component. The long-range interactions are calculated based 

on empirical formulas, like DFT-D3,142 DFT-D4.143 However, the generally parametrized formulas 

are not applicable to specific systems if high accuracy is required. To better model the long-range 

interactions, recently, implicit neural networks for long-range physics are proposed. For example, 

EwaldMP144 embeds the Ewald summation into a neural network to capture the long-range 

interactions. The Ewald summation transforms the long-range part which decays slowly with 

distance into a Fourier space where the interactions decay quickly with frequency and thus can be 

summed up efficiently. Instead of using empirical formulas as general Ewald summation methods 

do,145 EwaldMP achieves Ewald summation for nonlocal interactions by parametrizing neural 

networks. This parametrized Ewald summation for specific systems based on the training data set 

definitely outperforms the traditional long-range methods which are generally parametrized for all 

systems. In addition, So3krates proposes spherical harmonic coordinates (SPHCs) to capture 

nonlocal electronic effects on molecular systems with arbitrary length scales.146 Instead of using 

only fixed atomic coordinates to learn the molecular representations, So3krates also defines 

SPHCs based on spherical harmonics during the message passing. The distance matrix for all 
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possible pair-wise atoms in SPHC space are introduced to model the nonlocal interactions. One 

advantage of SPHC space is that the spherical neighborhoods can include atoms that are far away 

in Euclidean space so that nonlocal interactions can be covered within short range part in SPHC 

space. 

 

Although various NNPs have been proposed in the past 30 years, most models aim at delineating 

the PES of organic systems. The parametrization of TMCs is much more challenging and requires 

extra effort. First, TMCs have unique electronic properties, like charges, spin states, which effect 

the potentials of complexes.  However, most NNPs only consider embeddings related to atomic 

coordinates and are only applied on neutral organic molecules. Without explicitly incorporating 

these electronic properties into neural networks, the proposed architectures are inappropriate for 

TMCs. Second, unlike organic molecules which have fixed bonding patterns, transition metals 

usually have flexible coordination types with different coordination numbers, and even ligands 

with the same atom coordinated to the metal center can have different ligand-field strengths. The 

increasing geometric complexity makes it difficult to model typical metal-ligand interactions. 

Moreover, NNPs designed for TMCs should be able to model manifold interactions, including the 

metal-ligand interactions, the ligand-ligand interactions, or even metal-metal interactions, which 

requires the architectures to be highly versatile. In addition, since almost any molecular species 

which can donate electrons can be a ligand, the diverse ligand types also increase the complexity 

of TMCs, and thus poses outstanding challenges to the generality of NNPs designed for TMCs. 

Overall, the optimal strategies for NNPs of TMCs are still challenging due to the the high-

dimensional structural complexity of TMCs. 
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3.2 Available Approaches and Applications 

Although the development of MLPs for TMCs faces multiple obstacles, significant progress has 

been achieved with the continuous advancement of cheminformatics. One aspect of the 

contribution of cheminformatics is attributed to the development of descriptors. Descriptors play 

a crucial role in data-driven research in chemistry. First, they can reduce the complex 

dimensionality of data by compressing chemical structures into a tractable string, vector or matrix. 

For example, 1D representations, e.g. SMILES, or SELFIES104 are extensively used in 

cheminformatics when 3D structure isn’t essential. Other descriptors, like bond order, the number 

of aromatic rings, the existence of functional groups are also widely used to decode structural 

information. More importantly, by means of these chemically intuitive characteristics, it is possible 

to understand a derived QSAR model. The mapping of descriptors in chemical space provides 

valuable insights into structural features for targeted properties. By leveraging derived structural 

information, inverse design of novel molecules is achievable.  In terms of NNPs, descriptors play 

a pivotal role in extracting useful structure features related to energies. Such highly condensed 

descriptors provide a refined understanding of geometric structures to ML models, particularly 

those classical models whose simple architectures limit them in terms of interpreting complex 3D 

structures. As a result, ML models only need to focus on these essential descriptors rather than 

crude structures, which certainly improves the capability of ML models. 

 

In 2017, Janet et al. trained neural networks to predict electronic structure properties of the first-

row TMCs in multiple oxidation states as well as spin states.147 15-demensional predefined 

descriptors including complex-focused and ligand-focused features were used to encode the 

geometric information of TMCs. The trained model predicted the spin state ordering with an 
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error of around 3kcal/mol and metal-ligand bond length within 0.03 Å accuracy. However, since 

this model did not consider the 3D structure of TMCs, it is unable to capture the minimal 

structural differences in conformer ensembles of TMCs. Subsequently, Meyer et al. trained ML 

models based on the reaction energy of oxidative addition reactions to explore new catalysts for 

cross-coupling reactions.148 The 3D structure of each catalyst was obtained by converting 

SMILES to atomic coordinates, and was used to calculate some commonly used descriptors, 

including the sorted Coulomb Matrix (CM), the Bag of Bonds (BoB) as well as the Spectrum of 

London and Axilrod–Teller–Muto potential (SLATM). Among them, SLATM representations 

were found be the most associated with the reaction energy, with an error of 2.61 kcal/mol. 

Similarly, Friederich et al. leveraged ML methods to explore optimal complexes with respect to 

catalysis.149 Descriptors derived from autocorrelation and deltametric functions were fed into 

neural networks with Bayesian hyperparameter optimization to predict the H2 activation energy 

with a MAE of around 2 kcal/mol.  The authors then extended the feature space with molecular 

fingerprints (MFs) and utilized gradient boosting to select the most relevant features. Finally, 

Gaussian process regression with selected features yielded the lowest error of 0.59 kcal/mol. 

Simultaneously, Cordova et al. created a data set of more than 143,000 homogeneous nickel 

catalysts by replacing ligands at different coordination sites to estimate the catalytic activity for 

aryl ether cleavage via ML methods.150  

 

Similar to Meyer et al., three types of descriptors, including CM, BoB and SLATM were 

individually computed and tested with a kernel ridge regression model. The parametrized model 

with BoB representations reported the lowest error of 4.28 kcal/mol. To facilitate the discovery of 

desirable transition metal catalysts for asymmetric hydrogenation of olefins (AHO), Hong’s group 
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curated over 1,2000 AHO transformations and developed ML methods to identify promising 

candidates.151 The combination of 2D MFs descriptor and the 3D many-body tensor representation 

(MBTR) yielded the lowest MAE of 0.317 kcal/mol in terms of ∆∆G. Xu et al. leveraged transition 

state (TS) knowledge in ML to predict enantioselectivity of pallada-electrocatalysed C–H 

activation.152 From the distorted TS geometries generated with constrained optimization, a variety 

of descriptors at the atom-level and bond-level, such as the Hirshfeld charge, the condensed local 

softnesses, the bond order, etc. were computed to represent the targeted reaction. Their ML model 

trained with these knowledge-based descriptors reported a MAE of 0.236 kcal/mol with a R2 of 

0.909.  In addition to these classical descriptors, Kneiding et al. proposed the natural quantum 

graph (NatQG) to encode the electronic structure data of TMCs based on natural bond orbital 

(NBO) analysis.153 The NatQG representations derived from DFT computation, such as geometry 

optimization and NBO calculation, include topology and electronic structure information. The 

topology is encoded by either undirected molecular graph (u-NatQG) or directed graph (d-NatQG) 

with manifested donor-acceptor interactions. NBO data such as atomic charge, valence index and 

bond order are shared by nodes and edges in NatQG. The embedded NatQG is dynamically 

updated in a Graph Neural Network (GNN) to predict the quantum properties of TMCs, like the 

HOMO–LUMO gap.  

 

All ML methods discussed above require predefined descriptors to predict energy-related 

properties. The exploration of suitable descriptors for ML models is an active area of research, 

with a variety of ligand descriptors derived from DFT calculations.154 Recent advances also 

highlight the impact of descriptors in terms of ligand conformations on TMCs.155 Although these 

already proposed descriptors have helped advance ML-based material discovery, the design of 
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new descriptors for targeted properties is never straightforward. It relies on computational 

expertise with a bit of serendipity, which introduces inadvertent bias that hinders further 

development. In addition, the intricate structures of TMCs pose extra requirements on descriptors 

because classical descriptors, like SMILES, MFs are inadequate for differentiating the structural 

complexity of configurational isomers, which are commonly observed in transition metal 

chemistry, e.g. cis-[Co(NH3)4Cl2]+ vs. trans-[Co(NH3)4Cl2]+. Although high-level descriptors 

based on 3D structures are available, they often involve quantum mechanical computation which 

hampers the efficiency of the entire ML workflow. 

 

An alternative, and perhaps more straightforward ML approach, is to skip the computation of 

descriptors and directly employ 3D coordinates as the input of the ML model. By means of 

molecular architectures presented the model, the model is expected to automatically capture the 

complexity of structural differences via its mathematical architecture and infer the relations 

between structural features and properties. Generally, neural networks are widely used in this 

research area since they provide the flexibility to easily customize the architecture. For example, 

Garrison et al.156 reported the tmQM_wB97MV data set by filtering out 155 anomalous complexes 

in the tmQM data set157 and computing all remaining TMCs at the ωB97M-V/def2-SVPD level. 

For this refined data set, the authors implemented four GNNs models to predict the energies of 

TMCs. All tested GNNs models, including SchNet,140 PaiNN,141 SpinConv,158 and GemNet-T,159 

only took atomic numbers and atomic coordinates as inputs. Compared with the original tmQM 

data set, the model trained on the tmQM-wB97MV data set clearly yield lower error which 

indicates that the original tmQM data set compiled at the TPSSh-D3BJ/def2-SVP level may be 

insufficient to describe the electronic structure of TMCs.  
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Despite the observed improvement at the cost of resource-intensive reference data, energy 

prediction can be further enhanced by optimizing the architecture of the ML model. All tested 

models only consider short-range interactions while neglecting long-range interactions, like 

dispersion which has been validated to be important in TMCs.160,161 The pivotal role of dispersion 

in TMCs also explained why models trained on the tmQM-wB97MV data set outperform those on 

tmQM data set because the reference data of the former was calculated from ωB97M-V method 

which includes a better nonlocal correction than D3BJ. These findings also indicate that the tested 

models implicitly capture nonlocal interactions to a limited extent and the incorporation of 

embeddings related to long-range interactions will further improve the capability of ML models. 

In addition, electronic properties, such as charge, and spin states are also ignored, which makes it 

challenging for ML models to meticulously analyze electronic structure data.  

 

Another limitation of this work is the inherent sparsity of the data. The configurationally diverse 

complexes in the data set ensure the generality of the trained models. However, minimal structural 

differences among conformers are difficult to capture because the models were never trained to 

differentiate conformer ensembles. In a conformational PES map the energy landscape of a 

molecule is a function of the positions of its nuclei. The detailed energy landscape is crucial to the 

understanding of molecular stability, reactivity, and dynamic behavior. NNPs designed for 

conformational PESs enable efficient sampling at a negligible computational overhead and allow 

for extensive conformational searches and molecular dynamics simulations, leading to a 

comprehensive view of the energy landscape.  
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Based on the previous discussion, several key factors to build satisfactory NNPs for TMCs can be 

summarized as follows: 1) the architecture of the NNPs should consider electronic properties; 2) 

long-range interactions should be explicitly involved; 3) the data set for NNPs should include both 

configurationally and conformationally diverse complexes. 

 

To achieve this goal, recently, we developed NNPs for zinc and iron(II) complexes, namely 

Zn_NNPs162 and Fe(II)_NNPs,163 respectively. Both types of NNPs aim at accurately modeling the 

PES of conformer ensembles of complexes by covering the long-range interactions. To model the 

PES of zinc complexes with the inclusion of conformers, we first curated a subset of the tmQM 

data set157 which includes 771 zinc complexes with various bonding patterns and ligand types to 

ensure a diverse data set for the generality of the trained NNPs. We then generated conformer 

ensembles for each zinc complex, leading to 39,599 conformations obtained via CREST and the 

RMSD of each pair of conformations is over 0.1 Å to avoid data redundancy.  The single-point 

energy of each conformation was computed using r2SCAN-3c method164 with the D4 dispersion 

correction. To better cover long-range interactions, we improved the representations of 

EwaldMP.144 Specifically, we incorporated partial charges into the model. Although all complexes 

are neutral in our data set, the partial charge distribution in each complex is significantly different, 

leading to varied long-range interaction contributions to the total energy. As an independent 

architecture, EwaldMP can be combined with any existing baseline model so both short-range and 

long-range interactions can be interpreted. In the original work,144 EwaldMP and a baseline model 

share the same atomic embeddings in terms of atomic numbers and atomic coordinates. To 

highlight the significant role of partial charges in long-range interactions, we differentiated the 

representations for both components, i.e., the embeddings of partial charges were fed into 
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EwaldMP, while the baseline model remained unchanged. The resulting Zn_NNPs model thus 

meets all three requirements mentioned above. We then tested both SchNet140 and PaiNN141 as 

baseline models and compared them with the original EwaldMP and our proposed approach.   

 

Results indicate that Zn_NNPs outperforms both baseline models and the original EwaldMP, 

yielding the lowest MAE of 0.92 kcal/mol with respect to r2SCAN-3c. Moreover, with reference 

to PWPB95/CBS with D4 correction, Zn_NNPs surpasses several semiempirical methods, 

including to GFN1-xtb, GFN2-xtb, PM6-D3H4X, and PM7 for relative conformational energies 

and capably locates the lowest energy conformation. Overall, this GPU-supported Zn_NNPs can 

predict the energies of zinc complexes at the DFT level in accuracy but it is several orders of 

magnitude faster.  

 

We also tested our strategy for Fe(II) complexes in high-spin(HS) and low-spin(LS) states. The 

goal of our Fe(II) NNPs was to model the conformational PES of Fe(II) complexes and predict 

the spin-splitting energies (∆𝐸()&*)) simultaneously. Following the procedures in Zn_NNPs,162 

we selected 383 well-defined Fe(II) complexes with the charges {0,+1,+2} from a reported TMC 

database.60 Both HS and LS states were assigned to each complex and 28834 spin-state-specific 

conformers were generated via CREST and optimized at the B97-3c level. The single-point 

energy was calculated using TPSSh/ def2-TZVP with the D4 correction. Complexes in this 

curated data set have varied charge and spin state properties.  

 

To encode these global electronic properties, each property of each complex is shared among 

atoms in proportion to their atomic numbers. We tested several combinations of embeddings on 
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different models: 1) a baseline model with only classical atomic embeddings; 2) a baseline model 

with both classical atomic embeddings and electronic embeddings; 3) a baseline model with 

classical atomic embeddings + EwaldMP with electronic embeddings; 4) a baseline model and 

EwaldMP shared the same classical atomic embeddings; 5) a baseline model and EwaldMP shared 

both classical atomic embeddings and electronic embeddings. Results indicate that these electronic 

embeddings make contributions to modeling long-range interactions and SchNet with both 

classical atomic embeddings and electronic embeddings yields the lowest MAE for the prediction 

of the total energy and the spin-splitting energy, which are 0.037eV and 0.030eV, respectively. 

The combination of SchNet with classical atomic embeddings and Ewald with electronic 

embeddings performs a bit worse but clearly outperforms other combinations, indicating the 

significant importance of electronic embeddings to EwaldMP. To evaluate the ability of Fe_NNPs 

to identify the ground spin state of Fe(II) complexes, from a total number of 23446 pair of 

complexes in the HS state and LS state, we computed all possible complexes and recorded the 

prediction of the model. The trained model incorrectly predicted only 8 ground spin states, which 

surpassed semiempirical methods by several orders of magnitude.  

 

This remarkable Fe_NNPs model which allows for efficient conformation sampling as well as 

ground spin state identification has a variety of promising applications for Fe(II) complexes. For 

example, in our multi-LigandDiff work,123 we proposed a workflow to design Fe(II) SCO 

complexes (Figure 6). To quickly look for promising Fe(II) SCO complexes from thousands of 

candidates, we used Fe_NNPs to do the preliminary screening. The spin-splitting energies of 2231 

pairs of Fe(II) complexes in both the HS and LS states were predicted by the Fe_NNPs model 

within seconds thanks to GPU parallel computing. 560 pairs of complexes identified by the model, 
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which were predicted to be promising SCO complexes, were further calculated using the TPSSh 

method with the D4 dispersion correction. Finally, 338 out of 560 complexes were labeled as Fe(II) 

SCO complexes. Evidently, the application of Fe_NNPs greatly expedites the entire design 

workflow via decreasing the computational load by 75% but without significant loss in accuracy 

in this qualitative analysis.  

 

Figure 6. The design of novel Fe(II) SCO complexes with Fe_NNPs model. Reproduced with 

permission from ref 123. Copyright 2024 American Chemical Society. 

 

Overall, the development of NNPs for TMCs can be concisely summarized in Figure 7. For a data 

set with less than 10k datapoints, traditional ML models and simple neural networks are a good 

choice to prevent overfitting. But considering the simplicity of these ML architectures, suitable 

descriptors, such as bond order, SLATM should be pre-computed and used as inputs of the ML 

models. In contrast, for high-level neural networks, easily accessible representations, including 
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atomic coordinates and atomic numbers are directly fed into the model with the expectation that 

the model can automatically capture the hidden structural features for targeted properties. In 

addition, charge and spin state information are essential attributes for TMCs, and the incorporation 

of them into neural networks can further improve the capability of NNPs for TMCs.  

 

Figure 7. Two types of NNPs for TMCs. 1) Complex-level and ligand-level descriptors are used 

to facilitate neural networks to capture important structural information. 2) Various atomic 

representations derived from 3D structures without any refinement are directly passed into neural 

networks. 

4. Data Availability  

Despite these recent advancements discussed in Section 2 and Section 3, the discovery of novel 

TMCs is still experiencing difficulties due to two limiting factors identified in the existing 

reference data: poor diversity and inconsistent quality. As discussed in Section 2.1, traditional 

strategies for the design of novel TMCs require available ligands as templates to generate new 

complexes. And although generative models do not need any templates for the generation of 
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complexes, the training of generative models is based on available TMCs. That is to say, the 

diversity of already available TMCs is a limiting factor for the current strategies for the exploration 

of TMCs. Without massive reference data to cover a variety of configurationally diverse 

complexes, the generation of new complexes tends toward homogenization, leading to data 

redundancy. Unfortunately, compared with the explored chemical space for organic molecules, the 

exploration in transition metal chemistry is somewhat limited, leading to finite diversity for the 

TMC database. On the other hand, theoretical validation of generated complexes for targeted 

properties and the curation of reference data for NNPs are highly dependent on DFT computation, 

however, due to the complex structures of TMCs, the best protocol for DFT computation of 

transition metal complexes is still being explored.165 To search for promising complexes from 

generated candidates, property evaluation via DFT computation is an easily accessible approach. 

However, it is challenging to pick appropriate DFT methods to assess TMCs for targeted properties 

due to a lack of widespread agreement on the “best” DFT functional. For example, for only 95 

experimentally validated Fe(II) SCO complexes, 30 DFT functionals was unsuccessful in 

predicting SCO behavior for all of them.166 Inaccurate assessment from DFT methods certainly 

leads to a loss of promising complexes, which underestimates the efficiency and effectiveness of 

these molecular design tools. Moreover, inappropriate DFT methods report poor reference data 

which misleads ML models to interpret the statistical relations between chemical structure and 

properties of interest, leading to poor performance of NNPs, e.g., the tmQM-wB97MV data set 156 

vs. the tmQM data set.157 Therefore, the quality of reference data plays a crucial role in using ML 

methods to predict energy-oriented properties.  
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Herein, we provides an overview of several publicly available data sets used in the realm of 

transition metal chemistry (Table 1).  All these easily accessible data sets are either directly curated 

or derived from the CSD. The tmQM data set157 consists of 86,665 mononuclear, molecular, 3d~5d 

TMCs extracted from the 2020 release of the CSD, with a limited range of nonmetal elements, {H, 

B, C, N, O, F, Si, P, As, S, Se, Cl, Br, and I} and a fixed range of charge, {-1, 0, +1}. All reported 

TMCs were optimized at the GFN2-xTB level, along with some quantum properties computed at 

the TPSSh-D3BJ/def2-SVP level, such as the electronic and dispersion energies, HOMO/LUMO 

energies, HOMO/LUMO gap, dipole moment, and charge of the metal center. Recently, Garrison 

et al. revisited this tmQM data set, removed some erroneous complexes and recomputed the 

energies at the wB97MV level, leading to the reported tmQM-wB97MV data set.156 From the same 

version of the CSD database as the tmQM data set, Kulik’s group enumerated all 242,829 

mononuclear 3d~5d TMCs, with a subset of 85,575 octahedral complexes.60 From this 

comprehensive data set, the distribution of TMCs in chemical space were analyzed and visualized. 

For example, the majority of complexes in the CSD are 3d TMCs of {Fe, Co, Ni, Cu} with 

coordinating atoms of {C, N, O}. This full set includes 10 coordination geometries based on the 

coordination number from 4 to 7, along with some nonstandard sandwich complexes. Since 

octahedral geometries are most common in this reported set, the distribution of the symmetry 

classes for all octahedral complexes were analyzed and more than 20 types of symmetry classes 

exist in this subset where the most common type is the geometry with two identical equatorial 

bidentate ligands and two identical axial monodentate ligands. Because this full data set was 

curated without any constraint, some erroneous complexes with missing hydrogens or disorder are 

present in this set, thus data preprocessing, such as re-examination and filtration is recommended 

to ensure a set of high-quality complexes for downstream tasks.  
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Vela et al.167 curated a database of 31,019 TMCs from the CSD updated to May 2021 to evaluate 

the ability of their cell2mol software to interpret the crystallographic data, such as the oxidation 

state of the metal center, the formal charge of each ligand and the molecular connectivity. These 

31k complexes include eight transition metals in {Cr, Mn, Fe, Co, Ni, Cu, Ru, Re}, and anomalous 

complexes with missing H atoms or disorder were discarded. The curated set covers more than 

13k distinctive ligands with total charge ranging from -6 to +2. However, all data sets mentioned 

above ignored the diversity of conformational space in transition metal chemistry. The 

conformations of ligands in complexes play a pivotal role in determining the physical-chemical 

properties of TMCs.155 To alleviate the scarcity of data set by inclusion conformational ensembles, 

we reported the zinc_60 data set162 with 39,599 zinc conformers and the Fe(II)_80 dataset163 which 

includes over 28,000 conformers of Fe(II) complexes. The former includes neutral Zn 

conformations with less than 60 atoms with ligands including {H, C, N, O, Zn} atoms, while the 

latter consists of Fe(II) charged conformers in both the HS and LS states with less than 80 atoms 

with ligands including {H, C, N, O, P, S, Cl, Fe} atoms.  

 

Recently, several ligand libraries have become publicly available which are valuable resources for 

the design of novel complexes with tailored properties. For instance, kraren168 provides 331,776 

virtual monodentate organophosphorus(III) ligands with their associated conformational space, 

along with 190 physicochemical descriptor properties. The authors first curated the conformer 

ensembles of 1558 commercially available ligands with a set of nonmetal elements including {H, 

B, C, N, O, F, Si, P, S} via CREST. By attaching different substituents to P atom in these 21,437 

complexess, over 330,000 virtual ligands were generated. In addition, Chen et al. reported their 
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ReaLigands library which includes more 30,000 monodentate or polydentate ligands by 

deconstructing experimentally synthesized complexes reported in the CSD.169 To assign charge 

for each ligand, the authors leveraged Random Forest models with several quantum-chemical 

descriptors, such as SCF iteration number, the HOMO-LUMO gap and internal forces calculated 

at the GFN2-xTB level. The most recently reported tmQMg-L set consists of 30k diverse and 

synthesizable TMC ligands with defined charges and metal coordination sites based on graph and 

NBO analyses.6 The ligands were extracted from a subset of the tmQM data set and were highly 

diverse with 12 different ligand classes, such as phosphines, chelating amines, olefins, carbenes, 

etc.  Although comparing with the publicly available data sets for organic systems, like QM9,170 

ANI-1,171 these presented data sets cover limited chemical spaces of transition metals. But they 

have enumerated all realistic crystal structures reported in the CSD, along with extensive 

hypothetical ligands, and thus are good resources to expand the TMCs domain.  

5. Discussion and Outlook 

Despite the structural complexity of transition metal complexes, ranging from varied oxidation, 

spin states to the interplay between metal and ligands, notable advancements have been achieved 

in exploring this domain. Traditional physics-based knowledge approaches capably enumerate 

novel complexes by re-assembling discrete ligands extracted from available databases. However, 

the lack of widespread agreement on enumeration protocols results in a poor understanding of 

practical solutions under various conditions. The emergence of ML drives a paradigmatic 

transformation in this field. The ML-assisted strategies, e.g. generative models enrich the diversity 

of generated complexes with the aim of generating novel ligands from scratch without any prior 

knowledge. In addition, the ongoing development of MLPs allows for efficient screening of 

generated candidates for tailored properties. More importantly, the remarkable performance of ML 
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models makes it accessible to run simulations for large systems, like zinc-metalloproteins,172 for 

which a force field or a DFT method could not achieve both efficiency and effectiveness 

simultaneously. It is acknowledged that ML provides numerous opportunities to explore the 

unknown domain in chemistry and is becoming increasingly important for the computational 

discovery of new materials. Despite the unprecedented progress of ML, challenges remain in 

maximizing the potentials of ML for the automated workflow for transition metal materials design.  

 

ML can circumvent human biases and preconceived notions about molecules and materials, thus 

reanimating the understanding of researchers about chemistry and motivating them to expand the 

search space for new molecules and materials. However, the inspiration obtained from these ML 

models is very limited due to the lack of interpretability which exists in all ML models. Although 

ML methods provide good solutions to various chemical problems, the inference behind these 

predictions is not transparent, making it difficult to understand how specific molecular features 

influence the predicted properties or activities. In addition, in some cases such as reaction 

pathways, the dynamic transition between different states is crucial, however, ML can only give 

the final state without any intermediate information provided. This hampers a clear 

understanding of reaction mechanisms and quantum mechanical methods, to some extent, 

alleviate this dilemma, but these electronic structure methods do not have the same level of 

accuracy for transition metals as they do for organic molecules. The insights on TMCs are very 

limited due to the complexity of structures and large chemical space for TM complexes also 

impedes the utilization of DFT methods in transition metal chemistry because of the 

computational cost. The lack of fully validated  electronic structure methods also influences the 

quality of reference data, thus misleading the fitting of ML models. Finally, for practical 
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applications, only computational validation on designed molecules is not enough because there 

still exists a fundamental gap between theory and experiments.166 Whether these computationally 

validated molecules really have targeted properties is still an open question and need further 

experimental analysis.173 The computational design is certainly not the endpoint. Rather, these 

design tools should be used by experimentalists to explore TMC chemical space to help in 

precisely locating targets for synthesis and evaluation.   

 

In conclusion, ML can facilitate the automated design of molecules and materials, despite some 

outstanding challenges. Its ability to quickly analyze massive datasets, identify patterns and make 

predictions surpasses that of physics-based methods. Automation without any prior knowledge 

makes it a handy tool to solve a variety of scientific problems. Ongoing research and advancements 

in ML techniques, combined with efforts to improve data availability and model interpretability, 

are likely to further enhance the impact of ML in this field.  
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Table 1. Publicly available data sets in transition metal chemistry.  

Dataset Source Type Complex or 
Ligand Number Include 

conformer Metal Nonmetal Charge 

tmQM132 CSD 2020 experimental complex 86,665 No 3d~5d 

H, B, C, N, 
O, P, S, Si, 
As, Se, F, 
Cl, Br, I 

{-1,0,+1} 

tmQM-
wB97MV127 tmQM experimental complex 86,507 No 3d~5d 

H, B, C, N, 
O, P, S, Si, 
As, Se, F, 
Cl, Br, I 

{-1,0,+1} 

Nandy et al.43 CSD 2020 experimental complex 242,829 No 3d~5d 

H, B, C, N, 
O, P, S, Si, 
As, Se, F, 
Cl, Br, I 

- 

Cell2mol167 CSD 2021 experimental complex 
ligand 

31019 
13819 No 

Cr, Mn, 
Fe, Co, 
Ni, Cu, 
Ru, Re 

-  
[-6, +2] 

Zinc_60162 tmQM hypothetic complex 39599 Yes Zn H, C, N, O 0 

Fe(II)_80163 Nandy et 
al.43 hypothetic complex 28834 Yes Fe H, C, N, O, 

P, S, Cl {0,1,2} 

Kraren168 Literature hypothetic ligand 331776 yes - 
H, B, C, N, 
O, F, Si, P, 

S 
- 

ReaLigands169 tmQM experimental ligand >30000 no - 

H, B, C, N, 
O, P, S, Si, 
As, Se, F, 
Cl, Br, I 

[-3, +1] 

tmQMg-L6 tmQMg153 experimental ligand 29764 no - 

H, B, C, N, 
O, P, S, Si, 
As, Se, F, 
Cl, Br, I 

- 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


References 
 

1. Gerloch, M.; Constable, E. C. Transition Metal Chemistry: The Valence Shell in d-Block 
Chemistry; Verlagsgesellschaft mbH:Weinheim, 1994. 

2. Chen, D.; Xie, Q.; Zhu, J. Unconventional Aromaticity in Organometallics: The Power of 
Transition Metals. Acc. Chem. Res. 2019, 52, 1449–1460.  

3. Klamm, B. E.; Windorff, C. J.; Celis-Barros, C.; Marsh, M. L.; Meeker, D. S.; Albrecht-
Schmitt, T. E. Experimental and Theoretical Comparison of Transition-Metal and 
Actinide Tetravalent Schiff Base Coordination Complexes. Inorg. Chem. 2018, 57, 
15389–15398.  

4. Swart, M.; Gruden, M. Spinning around in Transition-Metal Chemistry. Acc. Chem. Res. 
2016, 49, 2690–2697. 

5. Dimitrov, T.; Kreisbeck, C.; Becker, J. S.; Aspuru-Guzik, A.; Saikin, S. K. Autonomous 
Molecular Design: Then and Now. ACS Appl. Mater. Interfaces 2019, 11, 24825–24836. 

6. Kneiding, H.; Nova, A.; Balcells, D. Directional Multiobjective Optimization of Metal 
Complexes at the Billion-System Scale. Nat. Comput. Sci. 2024, 4, 263. 

7. Zunger, A. Inverse Design in Search of Materials with Target Functionalities. Nat. Rev. 
Chem. 2018, 2 (4). 

8. Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine 
Learning: Generative Models for Matter Engineering. Science 2018, 361, 360. 

9. Guo, K.; Yang, Z.; Yu, C.-H.; Buehler, M. J. Artificial Intelligence and Machine Learning 
in Design of Mechanical Materials. Mater. Horiz. 2021, 8, 1153. 

10. Li, J.; Lim, K.; Yang, H.; Ren, Z.; Raghavan, S.; Chen, P.-Y.; Buonassisi, T.; Wang, X. AI 
Applications through the Whole Life Cycle of Material Discovery. Matter 2020, 3, 393. 

11. Balabin, R. M.; Lomakina, E. I. Support Vector Machine Regression (LS-SVM)—an 
Alternative to Artificial Neural Networks (ANNs) for the Analysis of Quantum 
Chemistry Data? Phys. Chem. Chem. Phys. 2011, 13, 11710. 

12. Graser, J.; Kauwe, S. K.; Sparks, T. D. Machine Learning and Energy Minimization 
Approaches for Crystal Structure Predictions: A Review and New Horizons. Chem. 
Mater. 2018, 30, 3601. 

13. Martin, T. B.; Audus, D. J. Emerging Trends in Machine Learning: A Polymer 
Perspective. ACS Polym. Au 2023, 3, 239. 

14. Dick, S.; Fernandez-Serra, M. Machine Learning Accurate Exchange and Correlation 
Functionals of the Electronic Density. Nat. Commun. 2020, 11. 

15. Zubatyuk, R.; Smith, J. S.; Leszczynski, J.; Isayev, O. Accurate and Transferable 
Multitask Prediction of Chemical Properties with an Atoms-in-Molecules Neural 
Network. Sci. Adv. 2019, 5. 

16. Pracht, P.; Grimme, S.; Bannwarth, C.; Bohle, F.; Ehlert, S.; Feldmann, G.; Gorges, J.; 
Müller, M.; Neudecker, T.; Plett, C.; Spicher, S.; Steinbach, P.; Wesołowski, P. A.; 
Zeller, F. Crest—a Program for the Exploration of Low-Energy Molecular Chemical 
Space. J. Chem. Phys. 2024, 160,114110. 

17. Duran-Frigola, M.; Mosca, R.; Aloy, P. Structural Systems Pharmacology: The Role of 
3D Structures in Next-Generation Drug Development. Chemistry & Biology 2013, 20, 
674–684.  

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


18. Li, X.; Lu, S.; Zhang, G. Three-Dimensional Structured Electrode for Electrocatalytic 
Organic Wastewater Purification: Design, Mechanism and Role. Journal of hazardous 
materials 2023, 445, 130524–130524.Bruice, T. C. Computational Approaches: Reaction 
Trajectories, Structures, and Atomic Motions. Enzyme Reactions and Proficiency. Chem. 
Rev. 2006, 106, 3119–3139. 

19. Nad−a Došlić; Goran Kovačević; Ljubić, I. Signature of the Conformational Preferences 
of Small Peptides: A Theoretical Investigation. J. Phys. Chem. A 2007, 111, 8650–8658. 

20. Sadowski, J.; Gasteiger, J. From Atoms and Bonds to Three-Dimensional Atomic 
Coordinates: Automatic Model Builders. Chem. Rev. 1993, 93, 2567–2581. 

21. Ishikawa, Y. A Script for Automated 3-Dimentional Structure Generation and Conformer 
Search from 2-Dimentional Chemical Drawing. Bioinformation 2013, 9, 988–992. 

22. Bochkov, A. Y.; Toukach, P. V. CSDB/SNFG Structure Editor: An Online Glycan 
Builder with 2D and 3D Structure Visualization. J. Chem. Inf. Model. 2021, 61, 4940–
4948. 

23. Dey, F.; Caflisch, A. Fragment-Based de Novo Ligand Design by Multiobjective 
Evolutionary Optimization. J. Chem. Inf. Model. 2008, 48, 679–690. 

24. Takeda, S.; Kaneko, H.; Funatsu, K. Chemical-Space-Based de Novo Design Method to 
Generate Drug-like Molecules. J. Chem. Inf. Model. 2016, 56, 1885–1893. 

25. Burello, E.; Rothenberg, G. In Silico Design in Homogeneous Catalysis Using Descriptor 
Modelling. Int. J. Mol. Sci. 2006, 7, 375. 

26. Comba, P.; Kerscher, M. Computation of Structures and Properties of Transition Metal 
Compounds. Coord. Chem. Rev. 2009, 253, 564. 

27. Drummond, M. L.; Sumpter, B. G. Use of Drug Discovery Tools in Rational 
Organometallic Catalyst Design. Inorg. Chem. 2007, 46, 8613. 

28. Klamm, B. E.; Windorff, C. J.; Celis-Barros, C.; Marsh, M. L.; Meeker, D. S.; Albrecht-
Schmitt, T. E. Experimental and Theoretical Comparison of Transition-Metal and 
Actinide Tetravalent Schiff Base Coordination Complexes. Inorg. Chem. 2018, 57, 
15389–15398.  

29. Gruden, M.; Browne, W. R.; Swart, M.; Duboc, C. Computational versus Experimental 
Spectroscopy for Transition Metals. Transition Metals in Coordination Environments 
2019, 161–183.  

30. Lin, Z. Interplay between Theory and Experiment: Computational Organometallic and 
Transition Metal Chemistry. Acc. Chem. Res. 2010, 43, 602–611.  

31. Bonney, K. J.; Schoenebeck, F. Experiment and Computation: A Combined Approach to 
Study the Reactivity of Palladium Complexes in Oxidation States 0 To IV. Chem. Soc. 
Rev. 2014, 43, 6609-6638. 

32. Li, J.; Maravelias, C. T.; Van Lehn, R. C. Adaptive Conformer Sampling for Property 
Prediction Using the Conductor-like Screening Model for Real Solvents. Ind. Eng. Chem. 
Res. 2022, 61, 9025. 

33. Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in Drug Design - A Review. Curr. Top. 
Med. Chem. 2010, 10, 95. 

34. McGann, M. FRED Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. 
Model. 2011, 51, 578. 

35. Das, S.; Shimshi, M.; Raz, K.; Nitoker Eliaz, N.; Mhashal, A. R.; Ansbacher, T.; Major, 
D. T. EnzyDock: Protein–Ligand Docking of Multiple Reactive States along a Reaction 
Coordinate in Enzymes. J. Chem. Theory Comput. 2019, 15, 5116. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


36. Schwab, C. H. Conformations and 3D Pharmacophore Searching. Drug Discov. Today 
Technol. 2010, 7, e245. 

37. Lyne, P. D. Structure-Based Virtual Screening: An Overview. Drug Discov. 
Today 2002, 7, 1047. 

38. Crawford, J.; Sigman, M. Conformational Dynamics in Asymmetric Catalysis: Is Catalyst 
Flexibility a Design Element? Synthesis (Mass.) 2019, 51, 1021. 

39. Baber, R. A.; Haddow, M. F.; Middleton, A. J.; Orpen, A. G.; Pringle, P. G.; Haynes, A.; 
Williams, G. L.; Papp, R. Ligand Stereoelectronic Effects in Complexes of Phospholanes, 
Phosphinanes, and Phosphepanes and Their Implications for Hydroformylation 
Catalysis. Organometallics 2007, 26, 713. 

40. Das, S.; Merz, K. M., Jr. Molecular Gas-Phase Conformational Ensembles. J. Chem. Inf. 
Model. 2024, 64, 749-760. 

41. Hatfield, M.; Lovas, S. Conformational Sampling Techniques. Curr. Pharm. 
Des. 2014, 20, 3303-3313. 

42. McNutt, A. T.; Bisiriyu, F.; Song, S.; Vyas, A.; Hutchison, G. R.; Koes, D. R. Conformer 
Generation for Structure-Based Drug Design: How Many and How Good? J. Chem. Inf. 
Model. 2023, 63, 6598-6607. 

43. Puranen, J. S.; Vainio, M. J.; Johnson, M. S. Accurate Conformation‐dependent 
Molecular Electrostatic Potentials for High‐throughput in Silico Drug Discovery. J. 
Comput. Chem. 2010, 31, 1722–1732. 

44. Vainio, M. J.; Johnson, M. S. Generating Conformer Ensembles Using a Multiobjective 
Genetic Algorithm. J. Chem. Inf. Model. 2007, 47, 2462–2474. 

45. Riniker, S.; Landrum, G. A. Better Informed Distance Geometry: Using What We Know 
to Improve Conformation Generation. J. Chem. Inf. Model. 2015, 55, 2562–2574. 

46. Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T. 
Conformer Generation with OMEGA: Algorithm and Validation Using High Quality 
Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. 
Model. 2010, 50, 572–584. 

47. Boström, J.; Greenwood, J. R.; Gottfries, J. Assessing the Performance of OMEGA with 
Respect to Retrieving Bioactive Conformations. J. Mol. Graph. Model. 2003, 21, 449–
462. 

48. Miteva, M. A.; Guyon, F.; Tuffery, P. Frog2: Efficient 3D Conformation Ensemble 
Generator for Small Compounds. Nucleic Acids Res. 2010, 38, W622–W627. 

49. Leite, T. B.; Gomes, D.; Miteva, M. A.; Chomilier, J.; Villoutreix, B. O.; Tuffery, P. 
Frog: A FRee Online druG 3D Conformation Generator. Nucleic Acids Res. 2007, 35, 
W568–W572. 

50. Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical 
Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–
7192. 

51. Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding 
Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent 
Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z = 
1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. 

52. Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—an Accurate and Broadly 
Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory 
Comput. 2019, 15, 1652–1671. 

53. Bursch, M.; Hansen, A.; Pracht, P.; Kohn, J. T.; Grimme, S. Theoretical Study on 
Conformational Energies of Transition Metal Complexes. Phys. Chem. Chem. 
Phys. 2021, 23, 287–299. 

54. Sobez, J.-G.; Reiher, M. Molassembler: Molecular Graph Construction, Modification, 
and Conformer Generation for Inorganic and Organic Molecules. J. Chem. Inf. 
Model. 2020, 60, 3884–3900. 

55. Blaney, J. M.; Dixon, J. S. Distance Geometry in Molecular Modeling. Reviews in 
Computational Chemistry. Wiley January 1994, pp 299–335. 

56. Crippen, G. M.; Havel, T. F. Distance Geometry and Molecular Conformation; John 
Wiley & Sons, 1988. 

57. Taylor, M. G.; Burrill, D. J.; Janssen, J.; Batista, E. R.; Perez, D.; Yang, P. Architector 
for High-Throughput Cross-Periodic Table 3D Complex Building. Nat. 
Commun. 2023, 14. 

58. Chernyshov, I. Y.; Pidko, E. A. MACE: Automated Assessment of Stereochemistry of 
Transition Metal Complexes and Its Applications in Computational Catalysis. J. Chem. 
Theory Comput. 2024, 20, 2313–2320. 

59. Kishimoto, T.; Yoshikawa, Y.; Yoshikawa, K.; Komeda, S. Different Effects of Cisplatin 
and Transplatin on the Higher-Order Structure of DNA and Gene Expression. Int. J. Mol. 
Sci. 2019, 21, 34. 

60. Nandy, A.; Taylor, M. G.; Kulik, H. J. Identifying Underexplored and Untapped Regions 
in the Chemical Space of Transition Metal Complexes. J. Phys. Chem. Lett. 2023, 14, 
5798–5804. 

61. Fedorova, E. V.; Buryakina, A. V.; Zakharov, A. V.; Filimonov, D. A.; Lagunin, A. A.; 
Poroikov, V. V. Design, Synthesis and Pharmacological Evaluation of Novel Vanadium-
Containing Complexes as Antidiabetic Agents. PLoS One 2014, 9, e100386. 

62. Mondal, B.; Neese, F.; Ye, S. Toward Rational Design of 3d Transition Metal Catalysts 
for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining 
Steps. Inorg. Chem. 2016, 55, 5438–5444. 

63. Medlycott, E. A.; Hanan, G. S.; Abedin, T. S. M.; Thompson, L. K. The Effect of Steric 
Hindrance on the Fe(II) Complexes of Triazine-Containing 
Ligands. Polyhedron 2008, 27, 493–501. 

64. Gothard, N. A.; Mara, M. W.; Huang, J.; Szarko, J. M.; Rolczynski, B.; Lockard, J. V.; 
Chen, L. X. Strong Steric Hindrance Effect on Excited State Structural Dynamics of 
Cu(I) Diimine Complexes. J. Phys. Chem. A 2012, 116, 1984–1992. 

65. Wang, Y.; Han, K. Steric Hindrance Effect of the Equatorial Ligand on Fe(IV)O and 
Ru(IV)O Complexes: A Density Functional Study. J. Biol. Inorg. Chem. 2010, 15, 351–
359. 

66. Fujisawa, K.; Kanda, R.; Miyashita, Y.; Okamoto, K.-I. Copper(II) Complexes with 
Neutral Bis(Pyrazolyl)Methane Ligands: The Influence of Steric Hindrance on Their 
Structures and Properties. Polyhedron 2008, 27, 1432–1446. 

67. Kuppuraj, G.; Dudev, M.; Lim, C. Factors Governing Metal−Ligand Distances and 
Coordination Geometries of Metal Complexes. J. Phys. Chem. B 2009, 113, 2952–2960. 

68. Younus, H. A.; Ahmad, N.; Su, W.; Verpoort, F. Ruthenium Pincer Complexes: Ligand 
Design and Complex Synthesis. Coord. Chem. Rev. 2014, 276, 112–152. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


69. Matsuoka, W.; Harabuchi, Y.; Maeda, S. Virtual Ligand Strategy in Transition Metal 
Catalysis toward Highly Efficient Elucidation of Reaction Mechanisms and 
Computational Catalyst Design. ACS Catal. 2023, 13, 5697–5711. 

70. Hay, B. P.; Firman, T. K. HostDesigner: A Program for the de Novo Structure-Based 
Design of Molecular Receptors with Binding Sites That Complement Metal Ion 
Guests. Inorg. Chem. 2002, 41, 5502–5512. 

71. Andronico, A.; Randall, A.; Benz, R. W.; Baldi, P. Data-Driven High-Throughput 
Prediction of the 3-D Structure of Small Molecules: Review and Progress. J. Chem. Inf. 
Model. 2011, 51, 760–776. 

72. Taylor, R. Life-Science Applications of the Cambridge Structural Database. Acta 
Crystallogr. D Biol. Crystallogr. 2002, 58, 879–888. 

73. Chu, Y.; Heyndrickx, W.; Occhipinti, G.; Jensen, V. R.; Alsberg, B. K. An Evolutionary 
Algorithm for de Novo Optimization of Functional Transition Metal Compounds. J. Am. 
Chem. Soc. 2012, 134, 8885–8895. 

74. Le, T. C.; Winkler, D. A. Discovery and Optimization of Materials Using Evolutionary 
Approaches. Chem. Rev. 2016, 116, 6107–6132. 

75. Brown, N.; McKay, B.; Gilardoni, F.; Gasteiger, J. A Graph-Based Genetic Algorithm 
and Its Application to the Multiobjective Evolution of Median Molecules. J. Chem. Inf. 
Comput. Sci. 2004, 44, 1079–1087. 

76. Clark, D. E.; Westhead, D. R. Evolutionary Algorithms in Computer-Aided Molecular 
Design. J. Comput. Aided Mol. Des. 1996, 10, 337–358. 

77. Chakraborti, N. Genetic Algorithms in Materials Design and Processing. Int. Mater. 
Rev. 2004, 49, 246–260. 

78. Lameijer, E.-W.; Kok, J. N.; Bäck, T.; IJzerman, A. P. The Molecule Evoluator. An 
Interactive Evolutionary Algorithm for the Design of Drug-like Molecules. J. Chem. Inf. 
Model. 2006, 46, 545–552. 

79. Foscato, M.; Venkatraman, V.; Jensen, V. R. DENOPTIM: Software for 
Computational de Novo Design of Organic and Inorganic Molecules. J. Chem. Inf. 
Model. 2019, 59, 4077–4082. 

80. Foscato, M.; Occhipinti, G.; Venkatraman, V.; Alsberg, B. K.; Jensen, V. R. Automated 
Design of Realistic Organometallic Molecules from Fragments. J. Chem. Inf. 
Model. 2014, 54, 767–780. 

81. Turcani, L.; Tarzia, A.; Szczypiński, F. T.; Jelfs, K. E. Stk: An Extendable Python 
Framework for Automated Molecular and Supramolecular Structure Assembly and 
Discovery. J. Chem. Phys. 2021, 154. 

82. Henle, E. A.; Gantzler, N.; Thallapally, P. K.; Fern, X. Z.; Simon, C. M. PoreMatMod.Jl: 
Julia Package for in Silico Postsynthetic Modification of Crystal Structure Models. J. 
Chem. Inf. Model. 2022, 62, 423–432. 

83. Laplaza, R.; Gallarati, S.; Corminboeuf, C. Genetic Optimization of Homogeneous 
Catalysts. Chemistry Methods 2022, 2. 

84. Ioannidis, E. I.; Gani, T. Z. H.; Kulik, H. J. MolSimplify: A Toolkit for Automating 
Discovery in Inorganic Chemistry. J. Comput. Chem. 2016, 37, 2106– 2117. 

85. Kalikadien, A. V.; Pidko, E. A.; Sinha, V. ChemSpaX: Exploration of Chemical Space by 
Automated Functionalization of Molecular Scaffold. Digit. Discov. 2022, 1, 8–25. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


86. van der Zant, T.; Kouw, M.; Schomaker, L. Generative Artificial Intelligence. In Studies 
in Applied Philosophy, Epistemology and Rational Ethics; Springer Berlin Heidelberg: 
Berlin, Heidelberg, 2013; pp 107–120. 

87. Schwalbe-Koda, D.; Gómez-Bombarelli, R. Generative Models for Automatic Chemical 
Design. In Machine Learning Meets Quantum Physics; Springer International Publishing: 
Cham, 2020; pp 445–467. 

88. Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine 
Learning: Generative Models for Matter Engineering. Science 2018, 361, 360. 

89. Kingma, D.P. and Welling, M. Auto-Encoding Variational Bayes. arXiv Preprint 
arXiv:1312.6114. https://arxiv.org/abs/1312.6114, 2013. 

90. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; 
Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 
139. 

91. Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: 
Algorithms, Theory, and Applications. IEEE Trans. Knowl. Data Eng. 2023, 35, 3313. 

92. Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. arXiv Preprint 
arXiv:2006.11239, https://arxiv.org/abs/2006.11239, 2020. 

93. Sohl-Dickstein, J.; Weiss, E. A.; Maheswaranathan, N.; Ganguli, S. Deep Unsupervised 
Learning Using Nonequilibrium Thermodynamics. arXiv Preprint arXiv:1503.03585, 
https://arxiv.org/abs/1503.03585, 2015. 

94. Song, Y.; Ermon, S. Generative Modeling by Estimating Gradients of the Data 
Distribution. arXiv Preprint arXiv:1907.05600, https://arxiv.org/abs/1907.05600, 2019. 

95. Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Ermon, S.; Poole, B. Score-
Based Generative Modeling through Stochastic Differential Equations. arXiv Preprint 
arXiv:2011.13456, https://arxiv.org/abs/2011.13456, 2020. 

96. Gm, H.; Gourisaria, M. K.; Pandey, M.; Rautaray, S. S. A Comprehensive Survey and 
Analysis of Generative Models in Machine Learning. Comput. Sci. Rev. 2020, 38, 
100285. 

97. Kumar, S.; Musharaf, D.; Musharaf, S.; Sagar, A. K. A Comprehensive Review of the 
Latest Advancements in Large Generative AI Models. In Communications in Computer 
and Information Science; Springer Nature Switzerland: Cham, 2023; pp 90–103. 

98. Sengar, S.S., Hasan, A.B., Kumar, S. and Carroll, F., 2024. Generative Artificial 
Intelligence: A Systematic Review and Applications. arXiv Preprint arXiv:2405.11029, 
https://arxiv.org/abs/2405.11029, 2024. 

99. Pang, C.; Qiao, J.; Zeng, X.; Zou, Q.; Wei, L. Deep Generative Models in DE Novo Drug 
Molecule Generation. J. Chem. Inf. Model. 2024, 64, 2174. 

100. Tong, X.; Liu, X.; Tan, X.; Li, X.; Jiang, J.; Xiong, Z.; Xu, T.; Jiang, H.; Qiao, N.; 
Zheng, M. Generative Models for DE Novo Drug Design. J. Med. Chem. 2021, 64, 
14011. 

101. Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning Internal Representations by 
Error Propagation. In Readings in Cognitive Science; Elsevier, 1988; pp 399–421. 

102. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. In Machine Learning for Data 
Science Handbook; Springer International Publishing: Cham, 2023; pp 353–374. 

103. Schilter, O.; Vaucher, A.; Schwaller, P.; Laino, T. Designing Catalysts with Deep 
Generative Models and Computational Data. A Case Study for Suzuki Cross Coupling 
Reactions. Digit. Discov. 2023, 2, 728. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2405.11029
https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


104. Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. Self-Referencing 
Embedded Strings (SELFIES): A 100% Robust Molecular String 
Representation. Mach. Learn. Sci. Technol. 2020, 1, 045024. 

105. Strandgaard, M.; Linjordet, T.; Kneiding, H.; Burnage, A.; Nova, A.; Jensen, J. H.; 
Balcells, D. Deep Generative Model for the Dual-Objective Inverse Design of Metal 
Complexes. ChemRxiv, 2024. 

106. Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational Autoencoder for 
Molecular Graph Generation. arXiv Preprint arXiv:1802.04364, 
https://arxiv.org/abs/1802.04364, 2018. 

107. Noh, J.; Kim, J.; Stein, H. S.; Sanchez-Lengeling, B.; Gregoire, J. M.; Aspuru-Guzik, 
A.; Jung, Y. Inverse Design of Solid-State Materials via a Continuous 
Representation. Matter 2019, 1, 1370. 

108. Court, C. J.; Yildirim, B.; Jain, A.; Cole, J. M. 3-D Inorganic Crystal Structure 
Generation and Property Prediction via Representation Learning. J. Chem. Inf. 
Model. 2020, 60, 4518. 

109. Ratliff, L. J.; Burden, S. A.; Sastry, S. S. Characterization and Computation of Local 
Nash Equilibria in Continuous Games. In 2013 51st Annual Allerton Conference on 
Communication, Control, and Computing (Allerton); IEEE, pp.917-924, 2013. 

110. Nouira, A., Sokolovska, N. and Crivello, J.C. Crystalgan: Learning to Discover 
Crystallographic Structures with Generative Adversarial Networks. arXiv Preprint 
arXiv:1810.11203. https://arxiv.org/abs/1810.11203, 2018. 

111. Kim, S.; Noh, J.; Gu, G. H.; Aspuru-Guzik, A.; Jung, Y. Generative Adversarial 
Networks for Crystal Structure Prediction. ACS Cent. Sci. 2020, 6, 1412. 

112. Arjovsky, M., Chintala, S. and Bottou, L. Wasserstein GAN. arXiv Preprint 
arXiv:1701.07875. https://arxiv.org/abs/1701.07875, 2017. 

113. Dan, Y.; Zhao, Y.; Li, X.; Li, S.; Hu, M.; Hu, J. Generative Adversarial Networks 
(GAN) Based Efficient Sampling of Chemical Composition Space for Inverse Design 
of Inorganic Materials. Npj Comput. Mater. 2020, 6. 

114. Mao, Y.; He, Q.; Zhao, X. Designing Complex Architectured Materials with 
Generative Adversarial Networks. Sci. Adv. 2020, 6, 4169. 

115. Srivastava, A., Valkov, L., Russell, C., Gutmann, M.U. and Sutton, C. VEEGAN: 
Reducing Mode Collapse in Gans Using Implicit Variational Learning. arXiv Preprint 
arXiv:1705.07761, https://arxiv.org/abs/1705.07761, 2017. 

116. Bau, D.; Zhu, J.-Y.; Wulff, J.; Peebles, W.; Zhou, B.; Strobelt, H.; Torralba, A. 
Seeing What a GAN Cannot Generate. In 2019 IEEE/CVF International Conference 
on Computer Vision (ICCV); IEEE, 2019. 

117. Kodali, N., Abernethy, J., Hays, J. and Kira, Z., 2017. On Convergence and Stability 
of Gans. arXiv Preprint arXiv:1705.07215, https://arxiv.org/abs/1705.07215, 2017. 

118. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z. and Paul Smolley, S. Least Squares 
Generative Adversarial Networks. In Proceedings of the IEEE International 
Conference on Computer Vision, pp.2794-2802, 2017. 

119. Ma, T. Generalization and Equilibrium in Generative Adversarial Nets (GANs) 
(Invited Talk). In Proceedings of the 50th Annual ACM SIGACT Symposium on 
Theory of Computing; ACM: New York, NY, USA, 2018. 

120. Nagarajan, V., Raffel, C. and Goodfellow, I.J. Theoretical Insights into Memorization 
in GANs. In Neural Information Processing Systems Workshop (Vol. 1, p. 3), 2018. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://arxiv.org/abs/1802.04364
https://arxiv.org/abs/1810.11203
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1705.07761
https://arxiv.org/abs/1705.07215
https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


121. Yang, L.; Zhang, Z.; Song, Y.; Hong, S.; Xu, R.; Zhao, Y.; Zhang, W.; Cui, B.; Yang, 
M.-H. Diffusion Models: A Comprehensive Survey of Methods and 
Applications. ACM Comput. Surv. 2024, 56, 1. 

122. Jin, H.; Merz, K. M., Jr. LigandDiff: De Novo Ligand Design for 3D Transition Metal 
Complexes with Diffusion Models. J. Chem. Theory Comput. 2024, 20 (10), 4377-
4384. 

123. Jin, H.; Merz, K. M. Partial to Total Generation of 3D Transition Metal Complexes. J. 
Chem. Theory Comput. 2024, 20,8367-8377. 

124. Clough, T. J.; Jiang, L.; Wong, K.-L.; Long, N. J. Ligand Design Strategies to 
Increase Stability of Gadolinium-Based Magnetic Resonance Imaging Contrast 
Agents. Nat. Commun. 2019, 10, 1420. 

125. Toporivska, Y.; Mular, A.; Piasta, K.; Ostrowska, M.; Illuminati, D.; Baldi, A.; 
Albanese, V.; Pacifico, S.; Fritsky, I. O.; Remelli, M.; et al. Thermodynamic Stability 
and Speciation of Ga(III) and Zr(IV) Complexes with High-Denticity Hydroxamate 
Chelators. Inorg. Chem. 2021, 60, 13332-13347. 

126. Preston, D.; Kruger, P. E. Using Complementary Ligand Denticity to Direct 
Metallosupramolecular Structure about Metal Ions with Square‐planar 
Geometry. ChemPlusChem 2020, 85, 454-465. 

127. Meagley, K. L.; Garcia, S. P. Chemical Control of Crystal Growth with Multidentate 
Carboxylate Ligands: Effect of Ligand Denticity on Zinc Oxide Crystal Shape. Cryst. 
Growth Des. 2012, 12, 707-713. 

128. Deka, H.; Ghosh, S.; Saha, S.; Gogoi, K.; Mondal, B. Effect of Ligand Denticity on 
the Nitric Oxide Reactivity of Cobalt(II) Complexes. Dalton Trans. 2016, 45, 10979-
10988. 

129. Smits, N. W. G.; van Dijk, B.; de Bruin, I.; Groeneveld, S. L. T.; Siegler, M. A.; 
Hetterscheid, D. G. H. Influence of Ligand Denticity and Flexibility on the Molecular 
Copper Mediated Oxygen Reduction Reaction. Inorg. Chem. 2020, 59, 16398-16409. 

130. Cornet, F.; Benediktsson, B.; Hastrup, B.; Schmidt, M. N.; Bhowmik, A. Om-Diff: 
Inverse-Design of Organometallic Catalysts with Guided Equivariant Denoising 
Diffusion. ChemRxiv, 2024. 

131. Xie, T.; Fu, X.; Ganea, O.-E.; Barzilay, R.; Jaakkola, T. Crystal Diffusion Variational 
Autoencoder for Periodic Material Generation. arXiv Preprint arXiv:2110.06197, 
https://arxiv.org/abs/2110.06197, 2021. 

132. Han, S.; Lee, J.; Han, S.; Moosavi, S. M.; Kim, J.; Park, C. Design of New Inorganic 
Crystals with the Desired Composition Using Deep Learning. J. Chem. Inf. 
Model. 2023, 63, 5755-5763. 

133. Alverson, M.; Baird, S. G.; Murdock, R.; Ho, (Enoch) Sin-Hang; Johnson, J.; Sparks, 
T. D. Generative Adversarial Networks and Diffusion Models in Material 
Discovery. Digit. Discov. 2024, 3, 62-80. 

134. Noé, F.; Olsson, S.; Köhler, J.; Wu, H. Boltzmann Generators: Sampling Equilibrium 
States of Many-Body Systems with Deep Learning. Science 2019, 365. 

135. Iribarren, I.; Garcia, M. R.; Trujillo, C. Catalyst Design within Asymmetric 
Organocatalysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12. 

136. Koner, D.; Unke, O. T.; Boe, K.; Bemish, R. J.; Meuwly, M. Exhaustive State-to-
State Cross Sections for Reactive Molecular Collisions from Importance Sampling 
Simulation and a Neural Network Representation. J. Chem. Phys. 2019, 150. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://arxiv.org/abs/2110.06197
https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


137. Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-
Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98. 

138. Behler, J. Atom-Centered Symmetry Functions for Constructing High-Dimensional 
Neural Network Potentials. J. Chem. Phys. 2011, 134. 

139. Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.; Tkatchenko, A. Quantum-
Chemical Insights from Deep Tensor Neural Networks. Nat. Commun. 2017, 8. 

140. Schütt, K. T.; Kindermans, P.-J.; Sauceda, H. E.; Chmiela, S.; Tkatchenko, A.; 
Müller, K.-R. SchNet: A Continuous-Filter Convolutional Neural Network for 
Modeling Quantum Interactions arXiv Preprint arXiv:1706.08566, 
https://arxiv.org/abs/1706.08566, 2017. 

141. Schütt, K. T.; Unke, O. T.; Gastegger, M. Equivariant Message Passing for the 
Prediction of Tensorial Properties and Molecular Spectra. arXiv Preprint 
arXiv:2102.03150, https://arxiv.org/abs/2102.03150, 2021. 

142. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and AccurateAb 
InitioParametrization of Density Functional Dispersion Correction (DFT-D) for the 94 
Elements H-Pu. J. Chem. Phys. 2010, 132. 

143. Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; 
Grimme, S. A Generally Applicable Atomic-Charge Dependent London Dispersion 
Correction. J. Chem. Phys. 2019, 150. 

144. Kosmala, A., Gasteiger, J., Gao, N. and Günnemann, S. Ewald-Based Long-Range 
Message Passing for Molecular Graphs. arXiv Preprint arXiv:2304.04791, 
https://arxiv.org/abs/2303.04791, 2023. 

145. Wells, B. A.; Chaffee, A. L. Ewald Summation for Molecular Simulations. J. Chem. 
Theory Comput. 2015, 11, 3684. 

146. Frank, J. T.; Unke, O. T.; Müller, K.-R. So3krates: Equivariant Attention for 
Interactions on Arbitrary Length-Scales in Molecular Systems. arXiv Preprint 
arXiv:2205.14276, https://arxiv.org/abs/2205.14276, 2022. 

147. Janet, J. P.; Kulik, H. J. Predicting Electronic Structure Properties of Transition Metal 
Complexes with Neural Networks. Chem. Sci. 2017, 8 (7), 5137-5152. 

148. Meyer, B.; Sawatlon, B.; Heinen, S.; von Lilienfeld, O. A.; Corminboeuf, C. Machine 
Learning Meets Volcano Plots: Computational Discovery of Cross-Coupling 
Catalysts. Chem. Sci. 2018, 9, 7069-7077. 

149. Friederich, P.; dos Passos Gomes, G.; De Bin, R.; Aspuru-Guzik, A.; Balcells, D. 
Machine Learning Dihydrogen Activation in the Chemical Space Surrounding Vaska’s 
Complex. Chem. Sci. 2020, 11 (18), 4584-4601. 

150. Cordova, M.; Wodrich, M. D.; Meyer, B.; Sawatlon, B.; Corminboeuf, C. Data-
Driven Advancement of Homogeneous Nickel Catalyst Activity for Aryl Ether 
Cleavage. ACS Catal. 2020, 10 (13), 7021-7031. 

151. Xu, L.-C.; Zhang, S.-Q.; Li, X.; Tang, M.-J.; Xie, P.-P.; Hong, X. Towards Data‐
driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical 
Learning. Angew. Chem. Int. Ed Engl. 2021, 60 (42), 22804-22811. 

152. Xu, L.-C.; Frey, J.; Hou, X.; Zhang, S.-Q.; Li, Y.-Y.; Oliveira, J. C. A.; Li, S.-W.; 
Ackermann, L.; Hong, X. Enantioselectivity Prediction of Pallada-Electrocatalysed C–
H Activation Using Transition State Knowledge in Machine Learning. Nat. 
Synth. 2023, 2, 321-330. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://arxiv.org/abs/1706.08566
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2303.04791
https://arxiv.org/abs/2205.14276
https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


153. Kneiding, H.; Lukin, R.; Lang, L.; Reine, S.; Pedersen, T. B.; De Bin, R.; Balcells, D. 
Deep Learning Metal Complex Properties with Natural Quantum Graphs. Digit. 
Discov. 2023, 2, 618-633. 

154. Durand, D. J.; Fey, N. Computational Ligand Descriptors for Catalyst Design. Chem. 
Rev. 2019, 119, 6561-6594. 

155. Baidun, M. S.; Kalikadien, A. V.; Lefort, L.; Pidko, E. A. Impact of Model Selection 
and Conformational Effects on the Descriptors for in Silico Screening Campaigns: A 
Case Study of Rh-Catalyzed Acrylate Hydrogenation. J. Phys. Chem. C Nanomater. 
Interfaces 2024, 128, 7987-7998. 

156. Garrison, A. G.; Heras-Domingo, J.; Kitchin, J. R.; dos Passos Gomes, G.; Ulissi, Z. 
W.; Blau, S. M. Applying Large Graph Neural Networks to Predict Transition Metal 
Complex Energies Using the tmQM_wB97MV Data Set. J. Chem. Inf. 
Model. 2023, 63, 7642-7654. 

157. Balcells, D.; Skjelstad, B. B. TmQM Dataset—Quantum Geometries and Properties 
of 86k Transition Metal Complexes. J. Chem. Inf. Model. 2020, 60, 6135-6146. 

158. Shuaibi, M.; Kolluru, A.; Das, A.; Grover, A.; Sriram, A.; Ulissi, Z.; Zitnick, C. L. 
Rotation Invariant Graph Neural Networks Using Spin Convolutions. arXiv Preprint 
arXiv:2106.09575, https://arxiv.org/abs/2106.09575, 2021. 

159. Gasteiger, J.; Becker, F.; Günnemann, S. GemNet: Universal Directional Graph 
Neural Networks for Molecules. arXiv Preprint arXiv:2106.08903, 
https://arxiv.org/abs/2106.08903, 2021. 

160. Roy Chowdhury, S.; Nguyen, N.; Vlaisavljevich, B. Importance of Dispersion in the 
Molecular Geometries of Mn(III) Spin-Crossover Complexes. J. Phys. Chem. 
A 2023, 127, 3072-3081. 

161. Dixon, I. M.; Khan, S.; Alary, F.; Boggio-Pasqua, M.; Heully, J.-L. Probing the 
Photophysical Capability of Mono and Bis(Cyclometallated) Fe(Ii) Polypyridine 
Complexes Using Inexpensive Ground State DFT. Dalton Trans. 2014, 43, 15898-
15905. 

162. Jin, H.; Merz, K. M., Jr. Modeling Zinc Complexes Using Neural Networks. J. Chem. 
Inf. Model. 2024, 64, 3140-3148. 

163. Jin, H.; Merz, K. M., Jr. Modeling Fe(II) Complexes Using Neural Networks. J. 
Chem. Theory Comput. 2024, 20, 2551-2558. 

164. Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. r2SCAN-3c: A “Swiss Army 
Knife” Composite Electronic-Structure Method. J. Chem. Phys. 2021, 154. 

165. Bursch, M.; Mewes, J.-M.; Hansen, A.; Grimme, S. Best‐practice DFT Protocols for 
Basic Molecular Computational Chemistry. Angew. Chem. Weinheim Bergstr. 
Ger. 2022, 134. 

166. Vennelakanti, V.; Taylor, M. G.; Nandy, A.; Duan, C.; Kulik, H. J. Assessing the 
Performance of Approximate Density Functional Theory on 95 Experimentally 
Characterized Fe(II) Spin Crossover Complexes. J. Chem. Phys. 2023, 159. 

167. Vela, S.; Laplaza, R.; Cho, Y.; Corminboeuf, C. Cell2mol: Encoding Chemistry to 
Interpret Crystallographic Data. Npj Comput. Mater. 2022, 8. 

168. Gensch, T.; dos Passos Gomes, G.; Friederich, P.; Peters, E.; Gaudin, T.; Pollice, R.; 
Jorner, K.; Nigam, A.; Lindner-D’Addario, M.; Sigman, M. S.; Aspuru-Guzi, A. A 
Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis. J. 
Am. Chem. Soc. 2022, 144, 1205–1217. 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://arxiv.org/abs/2106.09575
https://arxiv.org/abs/2106.08903
https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/


169. Chen, S.-S.; Meyer, Z.; Jensen, B.; Kraus, A.; Lambert, A.; Ess, D. H. ReaLigands: A 
Ligand Library Cultivated from Experiment and Intended for Molecular 
Computational Catalyst Design. J. Chem. Inf. Model. 2023, 63, 7412–7422. 

170. Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum Chemistry 
Structures and Properties of 134 Kilo Molecules. Sci. Data 2014, 1. 

171. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1, A Data Set of 20 Million Calculated 
off-Equilibrium Conformations for Organic Molecules. Sci. Data 2017, 4. 

172. Ding, Y.; Huang, J. DP/MM: A Hybrid Model for Zinc–Protein Interactions in 
Molecular Dynamics. J. Phys. Chem. Lett. 2024, 15, 616–627. 

173. Karl, T. M.; Bouayad-Gervais, S.; Hueffel, J. A.; Sperger, T.; Wellig, S.; Kaldas, S. 
J.; Dabranskaya, U.; Ward, J. S.; Rissanen, K.; Tizzard, G. J.; Schoenebeck, F. 
Machine Learning-Guided Development of Trialkylphosphine Ni(I) Dimers and 
Applications in Site-Selective Catalysis. J. Am. Chem. Soc. 2023, 145, 15414-15424. 

 

 

 

 

 

 

 
 

https://doi.org/10.26434/chemrxiv-2024-1k3l5 ORCID: https://orcid.org/0009-0009-4345-6300 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1k3l5
https://orcid.org/0009-0009-4345-6300
https://creativecommons.org/licenses/by/4.0/

