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Abstract 

Computing the free energy of the protein-ligand binding by employing molecular dynamics (MD) 

simulations is becoming a valuable tool in the early stages of drug discovery. However, the cost 

and complexity of such simulations are often prohibitive for high-throughput studies.  We present 

an automated workflow for the thermodynamic integration scheme with the “on-the-fly” 

optimization of computational resource allocation for each λ-window of both relative and absolute 

binding free energy simulations. This iterative workflow utilizes automatic equilibration detection 

and convergence testing via the Jensen-Shannon distance to determine optimal simulation stopping 

points in an entirely data-driven manner. We benchmark our workflow on the well-characterized 

systems cyclin-dependent kinase 2 and T4 Lysozyme L99A/M102Q mutant, as well as the more 

flexible SARS-CoV-2 papain-like protease. We demonstrate that this proposed protocol can 

achieve over an 85% reduction in computational expense while maintaining similar levels of 

accuracy when compared to other benchmarking protocols. We examine the performance of this 

protocol on both small and large molecular transformations.  The cost accuracy tradeoff of repeated 

runs is also investigated.  

Introduction 

Free energy differences in biomolecular systems are often required to quantitatively characterize 

the structure and dynamics of biomolecular interactions underlying multiple biological and 

biochemical processes.1 One such important quantity is the binding free energy (BFE) of a small 

molecule ligand to a protein.2,3  

BFEs can be categorized into two broad classes: absolute BFE (ABFE) and relative BFE 

(RBFE). ABFE is the difference in free energy between the protein-ligand complex and the free 

protein and ligand in solution, referred to as the standard binding free energy. Δ𝐺𝑏𝑖𝑛𝑑
𝑜  This quantity 
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can be measured experimentally, e.g., by surface plasmon resonance4 or isothermal titration 

calorimetry.5 ∆𝐺𝑏𝑖𝑛𝑑
°  is related to the ligand dissociation constant Kd by the following relation: 

𝛥𝐺𝑏𝑖𝑛𝑑
° = 𝑅𝑇 ln 𝐾𝑑,  (1) 

where R is the gas constant and T is the temperature of the system. RBFE is the difference in 

Δ𝐺𝑏𝑖𝑛𝑑
°  of two ligands A and B, referred to as ∆Δ𝐺𝐴→𝐵

𝑏𝑖𝑛𝑑. In drug design applications ABFE 

simulations can be used for initial screenings and hit identification of compounds for synthesis,6,7 

while RBFE simulations are well-suited for hit-to-lead and lead optimization.8–12 

A common approach to computing BFE is molecular dynamics (MD)-based 

thermodynamic integration13 (TI) that utilizes an “alchemical” i.e., nonphysical thermodynamic 

pathway. MD TI and other types of simulations14,15 that utilize an alchemical thermodynamic 

pathway to compute BFE are often termed alchemical binding free energy calculations. MD TI 

can be used to compute both ABFE and RBFE; however, the two methods have several 

technological differences in implementation, mainly in the alchemical pathways employed. MD 

TI simulations are expensive and technologically complex and, historically, scaling up these 

computations to include multiple ligands has been difficult.  

With the advent of GPU computing, MD TI simulations became feasible  for high-

throughput drug discovery applications;7,8,16–21 however, computing BFEs for a large number of 

ligands remains costly and time consuming.22 Moreover, the approach suffers from various 

technical difficulties, including tedious system setup and preparation; inaccuracies in modelling 

difficult transformations such as ring breaking/forming, ring extensions, and changes in the net 

charge;12,23–26 and the difficulty in achieving sufficient sampling across all intermediate states. 

Combined, these problems often prove unsurmountable, leading to the selection of cheaper and 

simpler methods with inferior accuracy. Simplified computational methods, e.g. molecular 

docking, a commonly used computational screening technique, can quickly yield reasonable ligand 

binding poses; however, its scoring functions are typically insufficiently accurate for 

discriminating false positives from true hits,6,7,27–29 which is a serious problem when thousands of 

potential hits have been proposed with limited resources for experimental validation. End-point 

MD methods, such as MM/PBSA and MM/GBSA, may sometimes afford limited accuracy 
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improvement when compared to docking, albeit at a greater cost; yet their accuracy is strongly 

system specific and is generally less reliable than TI MD simulations.30,31   

Recently, we have developed workflows for high throughput ABFE and RBFE calculations 

for small molecules.7,8 A hit-to-lead optimization framework combining RBFE simulations and 

active learning (AL) machine learning (ML) was designed to iteratively explore large chemical 

spaces consisting of thousands of congeneric molecules for high performing molecules when 

compared to an experimentally validated reference compound.8,20 In this scheme, batches of 

molecules are iteratively selected by an ML model trained on previous iterations of RBFE 

calculations, with the goal of selecting molecules with the most negative ∆Δ𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 value. With this 

framework, we were able to explore a chemical space consisting of 8715 ligands with only 253 

simulations, identifying 133 compounds with a higher predicted affinity. Others have also 

demonstrated the active learning framework efficacy in RBFE simulations,32–34 as well as in 

structural docking screeening,35–37 or in forcefield development38 and coarse-graining.39 Even with 

our active learning framework, the computational cost of requisite simulations requires significant 

resources.34 

ABFE simulations have been proposed as an accurate and cost-effective method for the 

final stages of high-throughput virtual drug screening for initial hit discovery.6 Beginning with 

large datasets of molecules, often in the millions to billions, this approach utilizes high-throughput 

docking to narrow down the set of candidates to a number feasible for ABFE simulations, typically 

in the hundreds or thousands, with top performing candidates submitted for experimental 

validation.6,7,28 The utility of combining docking with alchemical BFE simulations has been 

recognized for several decades due to their complementary nature: the inaccuracy of docking can 

be corrected with ABFE rescoring, while docking both significantly reduces the number of ABFE 

simulations required and provides reasonable starting poses.40 Still, this may involve thousands of 

tedious and expensive calculations, which can be infeasible to perform. Thus, both RBFE and 

ABFE simulations would benefit from methods designed to lessen the cost of such high-throughput 

computations. 

 Here we present a simple, highly automated, and data-driven approach for on-the-fly 

optimization of computational resource allocation for high-throughput TI RBFE and TI ABFE 

simulations. The goal of this protocol is to utilize the minimal resources necessary to achieve a 
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convergence with a desired accuracy for each individual simulation with as little user input as 

possible. We begin by describing the theory behind alchemical BFE simulations and the simulation 

parameters employed for each system studied in this work. Next, we illustrate the workflow and 

concepts behind our on-the-fly optimization algorithm. We then demonstrate our RBFE 

implementation on the cyclin-dependent kinase 2 (CDK2) benchmark system using the same set 

of ligands as Song et al.41 and compare our accuracy with respect to experimental results against 

theirs. In order to examine the performance of our protocol on more difficult and flexible systems, 

we apply several implementations of our protocol to several ligand mutations of the SARS-CoV-

2 papain-like protease (PLpro) that we have performed in previous work.8 As PLpro is less 

characterized than CDK2, we compare our results against long simulations as opposed to 

experimental results. Next, we apply our ABFE implementations to compute the affinity of the T4 

Lysozyme L99A/M102Q mutant to N-phenylglycinonitrile (PDB ID: 2RBN42) and compare the 

accuracy with respect to experimental results against that of a protocol we utilized in our previous 

work.7 We also compare several optimized protocol implementations on the PLpro ligand N-[(1R)-

1-naphthalen-1-ylethyl]benzamide against long simulations. We demonstrate that our protocol 

maintains accuracy while yielding increases in computational efficiency when compared to 

previously published sampling schemes. Finally, we conclude by making prescriptions for future 

high-throughput alchemical BFE drug discovery campaigns. 

Methods 

 

Thermodynamic Integration Molecular Dynamics Simulations 

Thermodynamic Integration is a standard technique, which is briefly described below for 

completeness. TI MD BFE simulations are designed to compute the relative free energy of two 

molecular systems by transforming one molecular system into another by performing multiple 

stratified equilibrium MD simulations along a pre-defined reaction coordinate, i.e. an alchemical 

thermodynamic pathway. Typically, the pathway is defined as a linear interpolation between the 

Hamiltonians of two systems A and B: 

𝑉(𝜆) = 𝜆𝑉𝐴 + (1 − 𝜆)𝑉𝐵, (2) 
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where V(λ) is the coupling potential energy function, 𝜆 ∈ [0,1] defines the coupling parameter, 

and VA/B is the potential energy of the endpoint A or B, respectively. The free energy difference 

between endpoints A and B are derived by integrating the derivative of the coupling potential 

energy function with respect to λ. In practice, this is performed numerically: 

Δ𝐺𝐴→𝐵 = ∫ 〈
𝑑𝑉

𝑑𝜆
〉𝜆 𝑑𝜆 ≅ ∑ 𝑤𝑖 〈

𝑑𝑉

𝑑𝜆
〉𝑖

𝑁
𝑖

1

0
, (3)  

where 〈
𝑑𝑉

𝑑𝜆
〉𝑖 is the average of the derivative of the coupling potential energy function over the MD 

simulation of λ = i λ-window, wi is the statistical weight of the strata determined by the selected 

integration scheme, and N is the number of λ-windows employed.  

Usually, each MD simulation involved in an alchemical transformation is independent of 

the others. Some simulation schemes, however, do not employ independent simulations schemes 

such as that employed by He et al.,16 where initial structures for a simulation were obtained from 

snapshots of simulations from neighboring strata.  

Relative Binding Free Energy Thermodynamic Cycle  

The thermodynamic cycle for an TI RBFE simulation is depicted below in Fig. 1A. The difference 

in 𝛥𝐺𝑏𝑖𝑛𝑑
°  between ligands A and B, ∆∆Gbind

𝐴→𝐵, is computed by performing an alchemical mutation 

of the ligands from one to the other in both the bound and unbound states.  

∆∆𝐺bind
A→B = ∆𝐺bind

A − ∆𝐺bind
B = ∆𝐺A→B

prot
− ∆𝐺A→B

wat           (4) 

Thus, TI RBFE calculations consist of two alchemical transformations: from one ligand to the 

other while in complex with the protein, and from one ligand to the other while in solution. While 

in principle any mutation could be accomplished, only minor mutations are commonly performed 

due to rapid accumulation of error in large transformations.8–10,20,41 Therefore, RBFE simulations 

are typically restricted to sets of congeneric ligands that share a common substructure. 

Absolute Binding Free Energy Thermodynamic Cycle 

The thermodynamic cycle for an ABFE MD simulation is shown in Fig. 1B. The free energy 

difference between the protein-ligand complex and the free protein and ligand in solution (Fig. 1B 

1 → 2: ∆Gbind
° ) is calculated by completing an alchemical pathway between these two endpoint 

states and computed via the following equation: 
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∆𝐺𝑏𝑖𝑛𝑑
° = ∆𝐺int

solv − ∆𝐺+VB
prot

− ∆𝐺−VB
prot°

− ∆𝐺+VB
prot

− ∆𝐺int
prot

,  (5)  

The pathway typically consist of three alchemical transformations: 1) The addition of a virtual 

bond43 between three protein residue backbone atoms and three ligand heavy atoms in the 

protein-ligand complex simulation (Fig. 1B 2 → 3: ∆G+𝑉𝐵
prot

); 2) The removal of electrostatic and 

van der Waals interactions between the protein and the ligand, either stepwise or simultaneously, 

often termed “annihilation”, of the ligand (3 → 4: ∆G𝑖𝑛𝑡
prot

); and 3) the annihilation of the free 

ligand in solution (1 → 6: ∆Gint
𝑠𝑜𝑙𝑣). Once the ligand has been annihilated, the free energy of the 

virtual bond is calculated analytically43 (4 → 5: ∆G−𝑉𝐵
𝑝𝑟𝑜𝑡

); there is no free energy cost to remove 

the ligand from the binding pocket in the last step in Fig. 1B (5 → 6). 

  

Figure 1. Alchemical Thermodynamic Cycles for calculation of RBFE (left) and ABFE (right). The arrows 

determine the direction of the transformation, and therefore the sign of the term in the sum in Equations 4 

and 5. 

Software. All MD simulations were performed using the GPU-accelerated pmemd.cuda module 

of AMBER20.44–47  All 
𝑑𝑉

𝑑𝜆
 gradient time series data (Eq. 3) were extracted with the alchemlyb48 

python package. Decorrelation was performed using the pymbar49 python package, whereby 

decorrelated samples were obtained by subsampling with the statistical inefficiency rounded up to 

the nearest integer value. All hydrogen bonding interactions between the protein and ligand were 

analyzed with CPPTRAJ.50 All input coordinates, topology and parameters for conventional MD 

simulations were obtained using Ambertools18.51 

Molecular Systems Simulated 
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RBFE CDK2 system setup and TI simulations. Simulation starting structures for protein-ligand 

complexes were extracted from the GitHub repository https://github.com/linfranksong/Input_TI.41 

For both the protein-ligand complex and solvated ligand mutations, two separate λ-schedules were 

used. The first employed the following twelve λ-windows: 0.00922, 0.04794, 0.11505, 0.20634, 

0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, and 0.99078. The second 

employed the following nine λ-windows: 0.01592, 0.08198, 0.19331, 0.33787, 0.5, 0.66213, 

0.80669, 0.91802 and 0.98408. For each λ-window, the following protocol was employed: 1) 2000 

steps of minimization with the gradient descent method; 2) 50 ps of heating from 0.1 K to 300 K 

in the NVT ensemble; 3) 300 ps of density equilibration in NPT; and 4) production simulations in 

NVT with gradient averages obtained via the bootstrap method. Harmonic RMSD restraints were 

imposed on heavy atoms of the protein and the ligand during minimization and heating and were 

gradually removed during density equilibration; no restraints were used during production 

simulations. Special care was given to the λ=0.98408 window of the nine-point λ-schedule to avoid 

numerical instability. For this window, the structure obtained after the first 1000 steps of 

minimization with gradient descent of the λ=0.91802 window was used as the input for the second 

1000 steps of minimization, and then the protocol proceeded as normal. For the 12-window λ-

schedule production simulations, a 1 fs timestep was used without SHAKE52 and a Berendsen 

thermostat53 was employed. This was done to mimic the production protocol of Song et al. more 

closely. For the 9-point λ-schedule, a 2 fs timestep was used with SHAKE and a Langevin 

thermostat was employed. Free energies of both the protein-ligand complex and solvated ligand 

alchemical steps were obtained using the gaussian quadrature rule. For each mutation, a total of 

10 independent simulations were performed per protocol.  

RBFE PLpro system setup and TI simulations. Four ligands were selected from our previous 

work on the PLpro system8 and are displayed below in Figure 2. Ligands 1-3 were selected such 

that their ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑calculated in previous work were negative (Ligand 1), approximately 0 kcal/mol 

(Ligand 2), and positive (Ligand 3). Ligand 4 was selected as an edge case due to the difficulty of 

the mutation (see Discussion). Input coordinates, topologies, and parameters were obtained from 

our previous work (see Gusev et al.8  for details). All λ-windows were minimized and equilibrated 

using the protocol described in the previous section, with restraints applied to two water molecules 

in the binding pocket during minimization and heating, and gradually removed during density 

equilibration.  
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Figure 2. PLpro ligands used for ABFE and RBFE simulations. ABFE simulations were performed on the 

Reference Ligand, while RBFE simulations were performed by mutating the Reference Ligand to Ligands 

1, 2, 3 or 4. 

ABFE Lysozyme protein system preparation and simulation. The crystal structure of the T4 

lysozyme L99A/M102Q in complex with N-phenylglycinonitrile was extracted from Protein Data 

Bank (PDB ID: 2RBN42). Ligand atom parameters were obtained using GAFF2 (version 2.11)51 

and ligand atomic charges were derived using the RESP54 method with Gaussian 0955 or 16.56 The 

protein was parameterized with the FF14SB force field solvated in an orthorombic TIP3P57 water 

box using tleap with 15 Å distance between the protein and the edge of the box. The simulation 

protocol included the following steps: 1) 2000 steps of minimization with gradient descent method; 

2) 100 ps of heating from 1 K to 298 K in NVT ensemble; 3) 300 ps of density equilibration in 

NPT ensemble; 4) 7 ns of production simulation in NVT. All the MD simulations were performed 

using a 2 fs time step. Harmonic RMSD restraints were imposed on heavy atoms of the protein 

and the ligand during minimization and heating and were gradually removed during density 

equilibration; no restraints were used during production simulations. The first 2 ns of the MD 

production simulation were discarded, and the average structure was obtained from the last 5 ns of 

the simulation. A trajectory frame with minimum RMSD of ligand heavy atoms with respect to 

the average structure was selected as a representative structure and used as the initial protein-ligand 

complex structure for TI simulations. 
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ABFE lysozyme TI simulations. For TI simulations of solvated ligand, the ligand was solvated 

in a TIP3P water box using tleap51 with a 15 Å distance between the ligand and the edge of the 

box. For TI simulations of the protein-ligand complex, the orientation of ligand with respect to the 

protein were restrained using the virtual bond approach (see SI for details).29,43 Force constants of 

4 kcal/(mol*Å2), 20 kcal/(mol*rad2) and 40 kcal/(mol*rad2) were used for distance, angle and 

dihedral angle restraints, respectively. The second-order smoothstep softcore potential (SSC(2)), 

as implemented in AMBER20, was utilized for both the protein-ligand complex and solvated 

ligand steps. For each λ-window, the system was minimized and then equilibrated using the same 

protocol as was performed for conventional MD. For the solvated ligand and protein-ligand 

complex systems, a λ-schedule of 9 equally distributed windows was used (0.1, 0.2, 0.3, …, 0.9). 

Gradient means and variances were calculated using the bootstrap method.58  For the addition of 

the virtual bond restraints, 7 unequally distributed λ-windows were used (0.0, 0.05, 0.1, 0.2, 0.3, 

0.5, 1.0). Free energies for the ligand, the protein, and the restraint addition were obtained via the 

trapezoid rule. The free energy of adding virtual bond restraints for the non-interacting ligand was 

calculated using the Boresch formula.43 A total of 39 independent simulations were performed for 

all protocols. 

ABFE PLpro system setup and TI simulations. ABFE simulations were performed on N-[(1R)-

1-naphthalen-1-ylethyl]benzamide, henceforth referred to as the “Reference Ligand.” Input 

coordinates, topologies, and parameters were obtained from our previous work8 (see Gusev et al. 

for details). Force constants of 10 kcal/(mol*Å2), 10 kcal/(mol*rad2) and 20 kcal/(mol*rad2) were 

used for distance, angle and dihedral angle restraints, respectively.  All λ-windows were minimized 

and equilibrated using the protocol described above, with the addition of harmonic restraints 

applied to two water molecules in the binding pocket during minimization and heating, and 

gradually removed during equilibration. No restraints were applied during production.  

Approach 

It is typical to uniformly allocate computational resources by simulating each λ-window for the 

same amount of simulation time;7,8,10,16,21,41,59 however, there is no theoretical basis for this 

practice. For instance, it is unlikely that simulation times necessary for convergence would be 

equivalent between different systems, such as the protein-ligand complex and the solvated ligand, 

even if we restrict our analysis to states with identical λ-values. One would expect this likelihood 
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to decline further when considering different ligands or even different protein systems. 

Furthermore, it is not uncommon for specific λ-windows of a given alchemical transformation to 

experience larger autocorrelation times than other λ-windows, resulting in slower convergence, 

fewer uncorrelated samples, and greater statistical uncertainty. In contrast, other λ-windows 

converge very quickly, with additional sampling affording marginal at best accuracy benefits. In 

short, using a uniform allocation of resources may result in wasting resources simulating already 

converged λ-windows, while starving more difficult λ-windows of resources. This issue is 

magnified when considering a high-throughput computational drug discovery campaign due to the 

large number of necessary simulations. Below, we propose an algorithm to address this problem 

in an automatic and entirely data-driven manner without a priori information on the system in 

question. 

On-the-fly Optimization Algorithm. We developed and tested an algorithm for the on-the-fly 

optimization of computational resources used by TI MD simulations to predict small molecule 

binding energies as shown in Fig. 3: Starting from the equilibrated structure, an initial short 

production simulation was performed and 
𝑑𝑉

𝑑𝜆
 gradient time series (Eq. 3) were extracted. 

Convergence testing to determine whether the production simulation should be extended was 

performed as follows. The gradient time series was equilibrated with automatic equilibration 

detection60 (AED), as implemented in the pymbar python package. This method determines the 

optimal equilibration time to be that which maximizes an uncorrelated sample size that can be 

obtained from an equilibrated gradient time series. After equilibration the gradient time series was 

decorrelated (see Methods); then split in half chronologically and each half binned into seven 

equally spaced bins. The Jensen-Shannon (JS) distance,61 a measure of distance between two 

probability distributions, between these two histograms was calculated. Given two probability 

distributions P and Q, the JS distance is defined as follows: 

𝐽𝑆(𝑃||𝑄) = √
1

2
(𝐷(𝑃||𝑀) + 𝐷(𝑄||𝑀)),          (6) 

where D(P||M) is the Kullback-Liebler divergence and 𝑀 =
1

2
(𝑃 + 𝑄). The JS distance between 

the two histograms was then used as the convergence criterium: if the JS distance was less than or 

equal to 0.1, the simulation was terminated. If the JS distance was greater than or equal to 0.1 or 

the total number of decorrelated samples was less than 50, the production simulation was extended 
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for a pre-defined time. This was repeated until convergence, or until either of the following two 

scenarios were met: a total simulation time of 6.5 ns had been achieved and more than 50 

decorrelated samples were acquired in total, or a total simulation time of 10.5 ns had been achieved 

(Fig. 3). 

  

Figure 3. Flowchart of the on-the-fly resource optimization for high-throughput binding free energy TI MD 

simulations. This protocol is applied to each individual λ-window. 

The underlying idea behind the proposed algorithm is that the amount of simulation time 

needed to converge the gradient time series is difficult to predict a priori; thus, in order to ensure 

the application of the minimal necessary amount of simulation time, one must frequently check 

for convergence in an entirely automated fashion. Multiple contradictory objectives are balanced 

by the choice of several hyperparameters. The potentially fractal nature of these simulations 

implies that some simulations exhibit behavior that may not be sampled at short times. The 

observation of such behavior is controlled by the initial simulation length hyperparameter. The 

frequency of convergence checking is controlled by the additional simulation length 

hyperparameter. As the probability of the gradient time series being converged at any point in 

simulation time has nonzero probability density, more frequent convergence testing will result in 

a higher likelihood of obtaining faster convergence, but also a higher likelihood of a false positive. 

The JS distance convergence threshold hyperparameter has a similar effect: higher values increase 

the likelihood of obtaining faster convergence and false positives, while lower values decrease 
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them. Finally, some simulations may require large amounts of simulation time to obtain 

convergence, which may be greater than the computational budget allows. Balancing between the 

computational budget and allowance for long simulations is controlled by the maximum simulation 

length hyperparameters. In instances when convergence is difficult to achieve in the budgeted 

simulation length, more advanced methods such as Hamiltonian exchange variants10,59,62 may be 

necessary; however, their evaluation is beyond the scope of this work. 

Results and Discussion 

The on-the-fly simulation optimization approach described above was implemented in protocols 

for both RBFE and ABFE calculations and tested using three protein systems: CDK2 (RBFE), T4 

Lysozyme L99A/M102Q mutant (ABFE), and PLpro (RBFE and ABFE). CDK2 and Lysozyme 

are common benchmarking systems, allowing us to compare the results from our optimized 

protocols against published alternatives.7,41 The PLpro protein is a more flexible and less well 

characterized system, thus offering a more difficult challenge for both ABFE and RBFE. For this 

system, we compare our optimized protocols to long-run protocols ranging from 10-100 ns per λ-

window. In total, we evaluated six different implementations of our algorithm: Protocols A-E, and 

C12, summarized in Table 1. 

Table 1 Parameters of the various on-the-fly optimization protocols employed. 

Protocol Initial 

Simulation 

Length (ns) 

Additional 

Simulation 

Length (ns) 

Number of λ-

Windows 

A 2.5 0.5 9 

B 1.5 0.5 9 

C 1.0 0.25 9  

D 0.5 0.25 9 

E 3.5 0.5 9 

C12 1.0 0.25 12 

 

Protocols A-E differ solely in the amount of simulation time used in the initial and additional 

simulation steps. Protocol A uses a 2.5 ns initial simulation with 0.5 ns additional simulations, 

Protocol B uses a 1.5 ns initial simulation with 0.5 ns additional simulations, Protocol C uses a 1.0 
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ns initial simulation with 0.25 ns additional simulations, Protocol D uses a 0.5 ns initial simulation 

with 0.25 ns additional simulations, and Protocol E uses a 3.5 ns initial simulation with 0.5 ns 

additional simulations. Protocol C12 was only employed for RBFE calculations for CDK2 and 

utilized the 12-window λ-schedule with a 1.0 ns initial simulation and 0.25 ns additional 

simulations (see Methods for further details on the differences between the Protocols). 

RBFE calculations for CDK2. Experimental ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 values for each mutation were obtained 

from Song et al.41 Overall mean absolute error (MAE) and root mean squared error (RMSE) 

between experimental and computed ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑, when considering all 10 replicates per mutation, 

was 1.03 kcal/mol and 1.24 kcal/mol for Protocol A, 1.02 kcal/mol and 1.29 kcal/mol for Protocol 

B, 0.99 and 1.25 kcal/mol for Protocol C, and 0.96 and 1.24 kcal/mol for Protocol C12 (see Table 

1 for protocol details). The overall R2 of Protocols A, B, C, and C12 was 0.26, 0.23, 0.28, and 

0.30, respectively. A permutation test was performed, whereby 10,000 MAEs and RMSEs were 

computed by randomly permuting the experimental ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 values. For all protocols and both 

MAE and RMSE, the calculated values were less than 99% of these generated values, which 

indicates that there is a significant association between our predicted ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑s and their 

experimental values. This is important as the null model (∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 = 0 for each mutation) performs 

extremely well on this system, as others have noted,41 with MAE and RMSE of 0.95 and 1.23 

kcal/mol, respectively. Figure 4 displays simulated distributions of MAEs, RMSEs, and R2s of 

Protocol A with respect to the number of replicates, referred to hereafter as batch size, included in 

the calculation. These distributions were generated by taking 10,000 random combinations of the 

given sample size of replicates, averaging the ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑, and then calculating the MAE, RMSE, 

and R2, respectively. Tabulated summary statistics for these distributions are shown in Table S1.  
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Figure 4. RMSE, MAE, and R2 of RBFE calculations for CDK2 employing a 9-point Gaussian quadrature 

λ-schedule using Protocol A with respect to experimental values. Batch size refers to the number of 

replicates averaged together per mutation. 

∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 obtained from Protocol C12 and Protocols A, B, and C displayed good agreement, 

with R2 values of 0.926, 0.945, and 0.938, respectively, when considering all 10 replicates per 

mutation, as seen below in Figure 5.  
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Figure 5. A) Distributions of protein-ligand complex simulation step additional simulation times for all 

mutations by protocol. B) Distributions of solvated ligand simulation step additional simulation times for 

all mutations by protocol. C) Scatterplot of ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 values from Protocol C12 versus Protocols A, B, and 

C. 

The number of additional simulations performed varied by protocol, mutation, λ-window, and 

alchemical step, as seen in Figure 5. As expected, the protein-ligand complex step required more 
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average additional simulation time to achieve convergence than the solvated ligand step regardless 

of protocol employed. Protocol A generally required the least additional simulation time to achieve 

convergence in both alchemical steps (see Table 1 for protocol details). Overall, the additional 

simulation time was evenly distributed between λ-windows of the solvated ligand step, with more 

variation in the protein-ligand complex step; however, this pattern broke down when comparing 

specific mutations, as seen in Figure 6. Correlation was observed between the average additional 

simulation times of the λ-windows of the various protocols, which indicates that our protocol is 

correctly identifying λ-windows that require additional simulation to achieve convergence. 
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Figure 6. A) Distributions of average protein-ligand complex step additional simulation time performed 

per RBFE simulation of the LIY-L31 and L17-L21 mutations and of all 25 mutations. B) Distributions of 

average solvated ligand step additional simulation time performed per RBFE simulation of the LIY-L31 

and L17-L21 mutations and of all 25 mutations. Protocols A, B, and C are shown in blue, orange, and 

green, respectively. Error bars represent one standard error of the mean. 

 Truncated trajectories of all replicates were examined, with 10,000 MAEs and RMSEs 

generated via the resampling scheme described above. Mean MAE and RMSE and their respective 

standard errors are displayed below in Figure 7. In all protocols, significant accuracy improvement 

is observed during the first nanosecond of simulation time, with only minor accuracy improvement 

observed afterwards. After the initial simulation period, Protocols A and C12 do not display any 

gain in accuracy, whereas Protocols B and C do (see Table 1 for protocol details). These results 

suggest that a shorter maximum simulation time may be employed without a loss of accuracy.  
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Figure 7. CDK2 MAEs and RMSEs calculated from truncated gradients. The blue line represents the 

respective loss function (MAE or RMSE), the dashed line represents one standard error of the loss function, 

the red line represents the length of the initial simulation period, and the green line represents the value of 

the respective loss function achieved by Song et al. 

 Computational cost savings for both the protein-ligand complex and solvated ligand steps 

were calculated by taking 10,000 independent samples of a particular batch size of each mutation 

and summing up the total number of production nanoseconds of a batch of a given mutation for a 

given alchemical step. For Protocols A, B, and C, the complement of this number divided by 120 

was taken, representing the total number of nanoseconds simulated by Song et al. for a given 

mutation multiplied by two to account for their use of 1 fs time step. For Protocol C12, the 

complement of the sum simulation time divided by 60 was used. Mean and standard errors of 

savings were calculated from these distributions. Summary statistics of these savings are shown in 

Table S1.  

Overall, the accuracy of the optimized RBFE calculations were comparable to the 

benchmark results, regardless of protocol employed. The most directly comparable result—a 

single simulation per mutation using Protocol C12—had an MAE of 1.05±0.08, with comparable 

results achieved with Protocols A, B, and C (See Table S1). These values are on average slightly 

greater than the MAE and RMSE of 0.95 and 1.14 kcal/mol, respectively, reported by Song et al., 

but the difference in MAE is statistically insignificant for Protocols A, C, and C12 at the 95% 

confidence level. However, these results were achieved with over a 64% reduction in production 

computational cost. In the case of Protocol C, the average savings were over 85%. All protocols 

and all batch sizes achieved R2 values greater than the 0.15 reported by Song et al. (see Table S1). 

Repeated runs, on average, appear to have little benefit, as the average MAE and RMSE decrease 

only moderately, and the average R2 increases only slightly, when increasing the batch size from 

1 to 10 replicates for all protocols. However, one can see in Figure 4 that the spread of the MAE, 

RMSE, and R2 distributions significantly decrease with increasing batch size, meaning the 

likelihood of calculating a set of particularly poor (or outstanding) RBFEs decreases with repeated 

runs. This tradeoff should be considered when planning a high-throughput RBFE campaign: if one 

can accept a higher variance of calculations, then significantly more mutations can be explored at 

a similar cost. 
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RBFE calculations for PLpro. For each mutation, three 10-15 ns production simulations were 

performed at each λ-window (see Methods). The gradients were extracted and analyzed with three 

different equilibration methods: AED (see Approach), a 2 ns equilibration period, and a 5 ns 

equilibration period. The equilibrated gradients were then decorrelated and averages were 

extracted. 10 short-run simulations were performed with Protocols A, B, C, and D for each 

mutation (see Table 1 for protocol details). 

As with the CDK2 mutations, the amount of simulation time applied to each λ-window 

varied by λ-window, simulation protocol, alchemical step, and mutation, as seen below in Figure 

8. We note that λ-windows of the protein-ligand complex step with elevated simulation times in 

Protocol A also tended to have elevated simulation times in Protocols B-D, and the same pattern 

holds with respect to Protocols B and C. This demonstrates that different λ-windows converge at 

different rates and that this pattern is consistent. This pattern is not clear in the solvated ligand step 

as these λ-windows converged much faster than the protein-ligand complex step. 
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Figure 8. A) Average simulation time applied to each λ-window of protein-ligand complex step by protocol 

and mutation. B) Average simulation time applied to the solvated ligand step by protocol and mutation. C) 

Overall average applied simulation time per replicate by mutation, alchemical step, and protocol. Blue bars 
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represent Protocol A, orange bars Protocol B, green bars Protocol C, and red bars Protocol D. Error bars 

denote one standard error. 

 

Figure 9. A) Average Ligand 1 protein-ligand complex ΔG calculated from truncated gradients. B) Average 

Ligand 1 solvated ligand ΔG calculated from truncated gradients. C) Average Ligand 1 ∆∆𝐺𝑟𝑒𝑓→1
𝑏𝑖𝑛𝑑  

calculated from truncated trajectories. The blue line represents the mean ΔG or ∆∆𝐺𝑟𝑒𝑓→1
𝑏𝑖𝑛𝑑  and the blue 

dashed line represents one standard error of the mean. The green line represents the mean long-run ΔG or 

∆∆𝐺𝑟𝑒𝑓→1
𝑏𝑖𝑛𝑑

 calculated using AED, the green dashed line represents one standard error of the mean, and the 

red line denotes the length of the initial simulation. Convergence with the long-run simulations was 

typically achieved quickly, with a similar pattern observed for Ligands 2 and 3 (see Fig. S3 and S4). 

 

 

 

https://doi.org/10.26434/chemrxiv-2023-rtpsz-v2 ORCID: https://orcid.org/0009-0007-6643-7271 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-rtpsz-v2
https://orcid.org/0009-0007-6643-7271
https://creativecommons.org/licenses/by-nc/4.0/


22 

 

 

Figure 10. A) Average Ligand 4 protein-ligand complex ΔGs calculated from truncated gradients. B) 

Average Ligand 4 solvated ligand ΔGs calculated from truncated gradients. C) Average Ligand 4 ∆∆𝐺𝑟𝑒𝑓→4
𝑏𝑖𝑛𝑑  

calculated from truncated trajectories. The blue line represents the mean ΔG or ∆∆𝐺𝑟𝑒𝑓→4
𝑏𝑖𝑛𝑑  and the blue 

dashed line represents one standard error of the mean. The green line represents the mean long-run ΔG or 

∆∆𝐺𝑟𝑒𝑓→4
𝑏𝑖𝑛𝑑

 calculated using AED, the green dashed line represents one standard error of the mean, and the 

red line denotes the length of the initial simulation. Significant deviation in the protein-ligand complex step 

for this difficult mutation is observed for all short-run protocols and the long-run protocols. 

Average protein-ligand complex ΔG, solvated ligand ΔG, and overall ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 of the short-

run simulations and long-run simulations with all three equilibration methods are tabulated in 

Table 2.  ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 and alchemical step ΔG values obtained by each short-run protocol were within 

1.1 kcal/mol to those obtained by the long-run protocols. Ligand 4 ∆∆𝐺𝑟𝑒𝑓→4
𝑏𝑖𝑛𝑑  values deviated more 

from their long-run counterparts than those obtained for Ligands 1-3, with absolute error of 0.6-

1.1 kcal/mol compared to 0.1-0.2 kcal/mol, respectively. For Ligand 4, the protein-ligand complex 

step was the major contributor to the absolute error (0.6-1.0 kcal/mol), while the contribution of 

solvated ligand step was considerably smaller (0.1-0.3 kcal/mol). This deviation did not alleviate 

with more simulation time in Protocols A-D (Fig. 10), indicating that the relevant timescales are 
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outside the length of these short simulations (see Table 1 for protocol details). The larger error 

obtained for Ligand 4 can be explained by the difficulty of the mutation, which involves the 

mutation of the amine group into the methylaminosulfonyl group, as well as a benzene ring methyl 

group into a chlorine and a naphthalene ring hydrogen into a chlorine. This involves the mutation 

of seven heavy atoms as well as the overall addition of two rotatable bonds (Fig. 11). The 

methylaminosulfonyl group, which is flexible and solvent exposed, covers a larger area of the 

phase space and is thus more difficult to converge and requires more simulation time, as seen in 

Figure 12. Due to the presence of two rotatable bonds (C-S and S-N), the conformation of 

methylaminosulfonyl group can vary significantly during RBFE simulations (see Fig. 11 D-E and 

S5-S6). These conformations differ by interactions with the closest protein residues (D164, E167, 

Y268 and Q269; see Fig. 11 B-C). This results in considerable fluctuations in 
𝑑𝑉

𝑑𝜆
 gradient time 

series and therefore in a slow convergency of  〈
𝑑𝑉

𝑑𝜆
〉 at some λ-windows (see Fig S7). 

 

Figure 11. Fluctuations of the methylaminosulfonyl group of Ligand 4 in the protein-ligand complex step 

of RBFE simulations for PLpro. A) Structure of Ligand 4. Rotatable bonds of the methylaminosulfonyl 
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group are indicated by grey arrows. Carbons atoms forming the corresponding dihedral angles are 

numbered. B-С) The structures of PLpro in complex with Ligand 4 for the ligand conformation with C1-

C2-S-N dihedral angle of approximately 90° (B) and -90° (C) extracted from long-run MD simulations at 

λ = 0.5. The protein backbone is shown as the grey cartoon, the ligand and sidechains of residues within 5 

Å of the methylaminosulfonyl group are shown as sticks. D) The fluctuation of dihedral angles C1-C2-S-

N (left) and C2-S-N-C3 (right) during long-run MD simulations at λ = 0.5. The three independent replicates 

of long-run MD simulations are shown by green, orange and blue. E) Distribution of dihedral angles C1-

C2-S-N (left) and C2-S-N-C3 (right) at long-run MD simulations at λ = 0.5. 

 

Figure 12. A) Protein-ligand complex ΔGs from truncated gradients of long-run simulations calculated 

with AED. B) Solvated ligand ΔGs from truncated gradients of long-run simulations calculated with AED. 
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C) ∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑 values from truncated gradients of long-run simulations calculated with AED. Dotted lines 

represent individual replicates while the black solid and dashed lines represent means and standard errors, 

respectively. Ligand 4 does not converge until approximately 4 ns of simulation time, whereas Ligand 1 

converges much more quickly. 

To evaluate this discrepancy, we tested Protocol E on Ligand 4 (see Table 1 for protocol details), 

which yielded mean values of -6.61 ± 0.12, -5.01 ± 0.04, and -1.60 ± 0.12 kcal/mol for the protein-

ligand complex step, the solvated ligand step, and the overall calculation, respectively. Protocol E 

therefore provided the smallest absolute error in ∆∆𝐺𝑟𝑒𝑓→4
𝑏𝑖𝑛𝑑  with respect to long runs (0.46-0.49 

kcal/mol) compared to other protocols. This suggests that for difficult mutations, longer initial 

simulation times are necessary.  

For the protein-ligand complex step of Ligand 4, Protocols A and D obtained the smallest 

deviation (~0.6 kcal/mol) regardless of equilibration protocol (see Table 1 for protocol details). 

For Ligands 1-3, all protocols performed similarly. As one can see from Figure 9, convergence 

with the long-run simulations was achieved quickly, which supports the use of short protocols for 

these smaller RBFE mutations. Overall, Protocols B utilized approximately 75% and 65% of the 

computational resources utilized by Protocol A for the protein-ligand complex step and solvated 

ligand step, respectively, whereas Protocols C and D both utilized approximately 50% and 45%, 

respectively. This was achieved with no accuracy penalty for Ligands 1-3 and a moderate accuracy 

penalty for Ligand 4 (~0.47, ~0.43, and ~0.07 kcal/mol, respectively). 

Table 2. Average RBFEs and their components of short-run and long-run simulations for PLpro 

by alchemical step, ligand (L), equilibration method (eq.), and protocol. 

Alchemical 

step 
L 

Long run (kcal/mol) Short run (kcal/mol)  

AED eq. 2 ns eq. 5 ns eq. Protocol A Protocol B Protocol C Protocol D 

Protein-

Ligand 

Complex 

1 3.87 ± 0.15  3.80 ± 0.11 3.80 ± 0.16 3.84 ± 0.08  3.78 ± 0.10 3.75 ± 0.04 3.88 ± 0.10  

2 -1.96 ± 0.03 -1.98 ± 0.03 -1.99 ± 0.04 -1.93 ± 0.02 -1.90 ± 0.03 -1.98 ± 0.05 -1.79 ± 0.03 

3 4.75 ± 0.11 4.82 ± 0.09 4.82 ± 0.14 4.80 ± 0.04 4.83 ± 0.04 4.75 ± 0.04 4.90 ± 0.07  

4 -7.02 ± 0.13 -7.03 ± 0.22 -6.97 ± 0.28 -6.40 ± 0.18 -6.04 ± 0.13 -6.23 ± 0.12 -6.44 ± 0.17 

Solvated 

Ligand 

1 4.91 ± 0.01  4.84 ± 0.02 4.88 ± 0.04 4.77 ± 0.03 4.89 ± 0.02 4.82 ± 0.04  4.87 ± 0.03 

2 -2.06 ± 0.01 -2.07 ± 0.01 -2.06 ± 0.05 -2.09 ± 0.02 -2.10 ± 0.00 -2.12 ± 0.02 -1.98 ± 0.03 

3 3.50 ± 0.02 3.50 ± 0.02 3.53 ± 0.01 3.52 ± 0.02 3.54 ± 0.00 3.51 ± 0.02 3.53 ± 0.03 

4 -4.96 ± 0.07 -4.94 ± 0.06 -4.90 ± 0.10 -4.99 ± 0.06 -5.11 ± 0.01 -5.26 ± 0.06 -5.10 ± 0.05 

Total 

RBFE 

1  -1.04 ± 0.14 -1.04 ± 0.09 -1.09 ± 0.13 -0.93 ± 0.08 -1.10 ± 0.11 -1.07 ± 0.05 -1.00 ± 0.11 

2  0.10 ± 0.02 0.09 ± 0.03 0.09 ± 0.05 0.16 ± 0.03 0.20 ± 0.04 0.14 ± 0.05 0.19 ± 0.06 

3  1.24 ± 0.13 1.32 ± 0.07 1.29 ± 0.13 1.28 ± 0.04 1.28 ± 0.05 1.24 ± 0.04 1.36 ± 0.07 

https://doi.org/10.26434/chemrxiv-2023-rtpsz-v2 ORCID: https://orcid.org/0009-0007-6643-7271 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-rtpsz-v2
https://orcid.org/0009-0007-6643-7271
https://creativecommons.org/licenses/by-nc/4.0/


26 

 

(∆∆𝐺𝐴→𝐵
𝑏𝑖𝑛𝑑) 4 -2.06 ± 0.08 -2.09 ± 0.17 -2.06 ± 0.25 -1.41 ± 0.19 -0.94 ± 0.13 -0.97 ± 0.15 -1.34 ± 0.20 

 

ABFE calculations for lysozyme. Four different simulation protocols were utilized: Protocol A, 

B, and C (see Table 1 for protocol details), as well as Protocol O, which was utilized in our previous 

high-throughput screening study7 and was performed as a control protocol to evaluate the 

performance of our other protocol implementations. Protocol O consisted of 4.5 ns of production 

simulation time per λ-window. The gradient time series were then extracted, equilibrated with a 

0.5 ns equilibration period, and decorrelated. For each protocol, the average ∆𝐺𝑏𝑖𝑛𝑑
°  was computed 

as an average of the 39 independent calculations. The experimental ∆𝐺𝑏𝑖𝑛𝑑
°  value of -5.525 

kcal/mol was used to evaluate the protocol performance. The average ∆𝐺𝑏𝑖𝑛𝑑
°  computed with 

Protocol A, B, C, and O were -5.31 ± 0.12 kcal/mol, -5.59 ± 0.14 kcal/mol, -5.46 ± 0.19 kcal/mol, 

and -5.36 ± 0.14 kcal/mol, respectively. MAEs and RMSEs of all four protocols are shown in 

Table 3. Note that values of batch sizes greater than one were calculated by resampling every 

combination of ∆𝐺𝑏𝑖𝑛𝑑
°

 values of a given batch size and then averaging each sample. 

Table 3. MAE, RMSE and Computational Savings of ABFE Simulations for lysozyme.  

Simulation 

Protocol  

Batch 

Size 

MAE 

(kcal/mol) 

RMSE 

(kcal/mol) 

O 1 0.637 0.892 

A 1 0.617 0.772 

B 1 0.699 0.871 

C 1 0.945 1.176 

O 2 0.488 0.633 

A 2 0.457 0.566 

B 2 0.495 0.624 

C 2 0.676 0.834 

O 3 0.407 0.519 

A 3 0.376 0.468 

B 3 0.404 0.507 

C 3 0.541 0.672 

O 5 0.321 0.405 

A 5 0.299 0.372 

B 5 0.311 0.390 

C 5 0.407 0.506 

O 10 0.234 0.291 

A 10 0.227 0.279 

B 10 0.217 0.271 

C 10 0.266 0.331 
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In general, the MAE and RMSE of the control group (Protocol O) was comparable to that of 

Protocol A and B across all batch sizes, whereas Protocol C was significantly less accurate. 

Interestingly, Protocol A outperformed Protocol O with all batch sizes in both MAE and RMSE. 

Protocol B managed the same feat with batch sizes of 3, 5 and 10 in MAE and all batch sizes in 

RMSE. Significant computational savings were achieved on all alchemical steps using either 

Protocols A, B, or C, with Protocol C achieving approximately 60% average savings or greater 

across all alchemical steps (see Fig. S8), albeit with a significant accuracy penalty. Protocol A was 

able to improve accuracy across the board when measured by RMSE while achieving average 

savings of approximately 30-45% depending on the alchemical step. Of the protocols tested, 

Protocol B offered the best compromise between cost and accuracy with a batch size of 1, with 

approximately a 50% reduction in computational cost with comparable accuracy to Protocol O. 

All protocols and batch sizes obtained average error within 1 kcal/mol, which is comparable to the 

corresponding error reported in other studies.29,63,64 
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Figure 13. Lysozyme MAE, RMSE and overall ∆𝐺𝑏𝑖𝑛𝑑
°  calculated from truncated gradients. The dashed 

line represents one standard error of the mean value, the red line represents the length of the initial 

simulation period, and the green line represents the experimental value of ∆𝐺𝑏𝑖𝑛𝑑
° . 

 As seen in Figure 13, the most significant accuracy gains were observed during the first 

nanosecond of production simulation time for Protocols A and B, whereas Protocol C displayed 

more muted gains. Protocol C displayed elevated inaccuracy at 1 ns of production simulation time 

when compared to Protocol A and B at the same time period, despite the fact that all protocols are 

equivalent at this point (see Table 1 for protocol details). This may indicate that Protocol C suffered 

from an uncommonly inaccurate batch of simulations, which may help explain its relative 

underperformance. All protocol average ∆𝐺𝑏𝑖𝑛𝑑
°  converge within 1-2 ns to within a standard error 

of the experimental value, which indicates that shorter maximum simulation times may be 

employed while maintaining accuracy.  
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 As opposed to the RBFE results, repeated runs had a significant impact on MAE and 

RMSE. Within Protocol O, MAE decreased from 0.637 kcal/mol to 0.234 kcal/mol when moving 

from a batch size of 1 to 10. Protocols A, B, and C showed similar trends, with MAE decreasing 

from 0.617 kcal/mol to 0.227 kcal/mol, from 0.699 kcal/mol to 0.217 kcal/mol, and from 0.945 to 

0.266, respectively. The difference in MAE between Protocols A and B decreased from 0.082 

kcal/mol to 0.010 kcal/mol, with Protocol B becoming superior, as batch size increased from 1 to 

10. Similar results were achieved when comparing RMSE values, with Protocol B displaying an 

approximately three-fold RMSE decrease and the difference between Protocols A and B RMSE 

decreasing from 0.101 kcal/mol to 0.008 kcal/mol, with Protocol B becoming superior, as batch 

size increased from 1 to 10 replicates. These results suggest that in high-throughput virtual 

screening campaigns utilizing ensembles of ABFE simulations, Protocol A or B will outperform 

other protocols with uniform resource allocation. Furthermore, while Protocol A can achieve 

higher accuracy in one-off simulations, albeit with significantly higher cost, this advantage 

evaporates as batch size increases. At a batch size of 10 replicates, significant savings are realized 

with Protocol B with no relative accuracy penalty.  

ABFE PLpro. Three 100 ns simulations were performed at each λ-window. The gradients of the 

short-run simulations were evaluated against those of the long-run simulations in an analogous 

manner as described for the RBFE simulations. Similarly to the RBFE PLpro study, the amount of 

simulation time applied to each λ-window varied by λ-window, simulation protocol, and 

alchemical step (see Fig. S9). We note once again that λ-windows in the protein-ligand complex 

and restraint addition alchemical steps with elevated simulation times in Protocol A tended to have 

elevated simulation times in Protocols B and C, with the analogous pattern holding for Protocols 

B and C (see Table 1 for protocol details).  

For all protocols, the protein-ligand complex and solvated ligand step short-run 

simulations, as well as the overall ∆𝐺𝑏𝑖𝑛𝑑
𝑜  short-run simulations, converged quickly towards their 

respective long-run averages and were within error after 1-2 ns of simulation time, as seen below 

in Figure 14. The restraint addition step short-run simulations, however, remained well outside of 

error. Analysis of this alchemical step showed that regardless of equilibration protocol employed, 

over 40 ns of production simulation time per λ-window is required to achieve the average values 
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of approximately 2 kcal/mol (Fig. 15), which is significantly more resources than can be dedicated 

for this purpose.  

 

Figure 14. A) PLpro ABFE protein-ligand complex step ΔGs calculated from truncated gradients by 

protocol.  B) PLpro ABFE solvated ligand step ΔGs calculated from truncated gradients by protocol. C) 

PLpro ABFE restraint addition step ΔGs calculated from truncated gradients by protocol. D) PLpro ABFE 

overall ∆𝐺𝑏𝑖𝑛𝑑
°  values calculated from truncated gradients by protocol. The blue solid line represents the 

mean short-run value, the blue dashed line represents one standard error of the mean short-run value, the 

green solid line represents the long-run mean value calculated with AED, the green dashed line represents 

one standard error of the long-run mean value, and the red line represents the length of the initial simulation 

period. 
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Figure 15. A) PLpro ABFE long-run restrain addition step ΔG calculated from truncated gradients with a 

5 ns equilibration period. B) PLpro ABFE long-run restrain addition step ΔG calculated from truncated 

gradients with a 2 ns equilibration period. C) PLpro ABFE long-run restrain addition step ΔG calculated 

from truncated gradients with AED. The left column displays ΔG with a range of 2.5 kcal/mol, while the 

right column displays ΔG zoomed in. The dotted lines each represent an individual replicate while the black 

solid and dashed lines represent the average value and standard error, respectively. We note that the overall 

uncertainty was minimized with the AED equilibration protocol. 
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Average protein-ligand complex ΔG, solvated ligand ΔG, restraint addition ΔG and overall 

∆𝐺𝑏𝑖𝑛𝑑
°  of the short-run simulations and long-run simulations with all three equilibration methods 

were computed and are tabulated in Table 4. 

Table 4 ΔGs of Short-Run and Long-Run PLpro ABFE Simulations by Alchemical Step. 

 

Overall 

∆𝐺𝑏𝑖𝑛𝑑
°  

(kcal/mol) 

 

Protein-

Ligand 

Complex 

(kcal/mol) 

 

 

Solvated 

Ligand 

(kcal/mol) 

 

Restraint 

Addition 

(kcal/mol) 

Protein-

Ligand 

Complex 

Simulation 

Time (ns) 

Solvated 

Ligand 

Simulation 

Time (ns) 

Restraint 

Addition 

Simulation 

Time (ns) 

Long-run AED 

Equilibration -8.21 ± 0.47 31.02 ± 0.50 17.32 ± 0.15 2.02 ± 0.05 900  900  700  

Long-run 2ns 

Equilibration -7.65 ± 0.85 30.50 ± 0.91 17.33 ± 0.15 1.97 ± 0.07 900  900  700  

Long-run 5ns 

Equilibration -7.85 ± 0.67 30.71 ± 0.71 17.32 ± 0.16 1.97 ± 0.06 900  900  700  

Protocol A -8.50 ± 0.21 31.42 ± 0.18 17.10 ± 0.12 1.68 ± 0.01 27.8 ± 0.4 22.9 ± 0.1 26.5 ± 0.4 

Protocol B -8.64 ± 0.31 31.61 ± 0.28 17.15 ± 0.13 1.69 ± 0.01 20.1 ± 0.6  15.7 ± 0.2 19.2 ± 0.5 

Protocol C -8.59 ± 0.31 31.56 ± 0.27 17.14 ± 0.14 1.67 ± 0.01 16.7 ± 0.4 11.3 ± 0.2 14.1 ± 0.5 

 

For both the protein-ligand complex and solvated ligand steps, there was not a significant 

difference between ΔGs obtained from the any of the short-run protocols and any of the long-run 

equilibration methods. While the restraint addition step did show significant deviation, the overall 

magnitude is small, and the errors are cancelled on average in the other alchemical steps. However, 

computational cost did vary across short-run protocols, with Protocol C converging in 

approximately 50-60% of the simulation time allocated to Protocol A depending on the alchemical 

step, with Protocol B falling between the two but closer to C.  

Conclusions 

We have presented a data driven procedure for the optimization of computational resources usage 

for both ABFE and RBFE calculations with thermodynamic integration. Our RBFE scheme affords 

up to 85% computational resource reduction when compared to the CDK2 benchmark system 

results published by Song et al, while maintaining average MAE of approximately 1 kcal/mol. Our 

protocols have successfully approximated long-run simulations of small RBFE mutations 

performed on the PLpro system, with the larger Ligand 4 mutation deviating more significantly 

but still within 1 kcal/mol on average. Our ABFE schemes yield fast one-off calculations with 

similar accuracy when compared to a base case of uniform and constant resource allocation on the 
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T4 Lysozyme L99A/M102Q mutant in complex with N-phenylglycinonitrile, and several 

implementations become more accurate while maintaining computational efficiency as batch size 

increases. ABFE PLpro simulations displayed strong agreement between long-run 100 ns 

simulations and short-run simulations, with no significant deviation observed in the protein-ligand 

complex step, solvated ligand step, or overall computed ∆𝐺𝑏𝑖𝑛𝑑
° . 

For future high-throughput RBFE campaigns, we recommend dividing mutations into two 

groups: “easy” mutations, consisting of those with few changes in heavy atoms or rotatable bonds, 

and “difficult” mutations, consisting of those with many changes in heavy atoms and rotatable 

bonds. For the easy mutations, we recommend performing one-off simulations using very short 

protocols (Protocols C or D) as these have been shown to be just as accurate on both the CDK2 

and PLpro systems while achieving significant computational savings. For more difficult 

mutations, longer protocols are appropriate (Protocols A or E), as these require more sampling 

time to account for the larger amount of phase space available to the ligand. For future high-

throughput ABFE campaigns, we recommend the utilization of Protocol B as the best compromise 

between cost and accuracy. While Protocols C or D, or even shorter protocols, may be employed 

to further reduce cost, we caution that prior testing should be performed to ensure the requisite 

level of accuracy is maintained. The use of multiple replicates should be utilized to increase 

accuracy if resources allow it. In general, savings can be achieved by limiting the production 

simulation time of the solvated ligand and restraint addition steps, whereas resources should be 

concentrated on the protein-ligand complex step. This could be achieved by employing a mixed 

protocol utilizing Protocols A or B for the protein-ligand complex and Protocols C or D for the 

solvated ligand and restraint addition.  

In this work, we have benchmarked two hyperparameters of our workflow: the initial and 

additional simulation lengths. Future work should explore the role of the Jensen-Shannon distance 

convergence threshold and the maximum simulation lengths. By adjusting the convergence 

threshold, one may be able to further optimize these protocols for efficiency or accuracy. In cases 

where significant reorganization of the protein occurs upon ligand annihilation, it may be 

necessary to increase the maximum simulation lengths or by integrating more advanced enhanced 

sampling methods such as Hamiltonian exchange molecular dynamics into the workflow. Finally, 
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we note that our optimization algorithm is modular and users may replace the automated 

convergence testing scheme with one of their choosing. 

Supporting Information 

• Description of algorithm for the selection of virtual bond atoms 

• Schematic representation of virtual bond approach for protein-ligand restraints.  

• Average MAE, RMSE, and computational savings by alchemical step of RBFE simulations 

for the CDK2 benchmark system. 

• Representative RMSD plots for a long-run PLpro simulation. 

• Plots of average ∆𝐺𝑏𝑖𝑛𝑑
𝑜  and its components for PLpro ligand 2 and 3 calculated from 

truncated trajectories. 

• Plots of dV/dλ convergency and dihedral angles distribution for PLpro ligand 4. 

• Average total simulation time of ABFE simulations for Lysozyme and PLpro systems. 
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