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Abstract

Single atom catalysts (SACs) have attracted significant interest due to their unique properties and potential for enhancing
catalytic performance in various chemical reactions. In this study, we atomistically explore adsorption properties and catalytic
performance of single Cu atoms anchored at low-index Cu/CeO2 surfaces, focusing on the oxidation of CO and H2. Utilizing
density functional theory (DFT) calculations, we report that Cu adatoms bind favorably on different Cu/CeO2 surfaces,
following a stability order of (100)>(110)>(111). The charge transfer from a single adsorbed Cu atom to Ce leads to the
reduction of Ce4+ to Ce3+ and the oxidation of Cu0 to Cu+. This strengthens molecular bonds at Cu sites, particularly for
CO, while H2 shows a by ∼1 eV weaker adsorption. CO oxidation is energetically more favorable than H2 oxidation on the
Cu/CeO2(111) surface. The rate-controlling steps for the Mars-van Krevelen oxidation involve the formation of a bent CO−

2

intermediate for CO and H2O for H2. The lattice oxygen atom at the interface plays a key role for both oxidation processes.
Our findings highlight the potential of single atom catalyst, Cu/CeO2, for CO adsorption and oxidation in heterogeneous
catalysis.
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1 Introduction

Transition metal (TM) oxides are of great importance for var-
ious applications, including, energy generation and storage,
[1–5] gas sensing, [6–10] and heterogeneous catalysis. [11–18]
Among these, CeO2 (ceria) has been extensively studied as a
support material in heterogeneous catalysis due to its remark-
able redox properties, which are beneficial for oxygen stor-
age/release and the transport of excess electrons into Ce(4f)
states. [19–26] The use of ceria as a support for metal nan-
oclusters and nanoparticles, such as gold [27–32] and cop-
per, [11, 33–35] has been studied both experimentally and
theoretically. Gold and copper particles supported on ceria
have been frequently applied for (low temperature) CO oxida-
tion [11, 28, 35–38] as well as CO preferential oxidation (CO-
PROX) under hydrogen-rich conditions, [11,39] and water-gas
shift reactions. [20,29,40,41] In all cases the catalytic activity
is related to the high redox ability of the ceria support.

When metals like Au or Cu engage in interfaces with ce-
ria, electron transfer occurs from the metal atoms to the Ce
atoms of the ceria surface. [42] This electron transfer results
in the mutual formation of oxidized metal centers (Mδ+) and
reduced ceria atoms (Ce3+), leading to changes in both their
oxidation states. [43] These changes in oxidation state en-
hance the interactions of adsorbed molecules and the active
centers on the metal, support, and interface, altogether im-
proving catalytic performance.

Driven by the goal of reducing the use of costly precious
metals, the strategy of placing isolated metal adatoms on ox-
ide supports has recently gained considerable attention in the

field of heterogeneous catalysis. Such systems, termed single
atom catalysts (SACs), exhibit unique atomic and electronic
structures, sometimes resulting in extraordinary catalytic ac-
tivities. [44–50] Various metal oxides, including FeOx, [45,51]
Fe2O3, [52] Fe3O4, [53–55] TiO2, [56–58] and CeO2 [46,59–62]
have been employed as supports for SACs. On the latter,
several metal adatoms, such as Pt, Pd, Ag, and Cu have
been successfully synthesized and tested for catalytic perfor-
mance. [46, 55, 59–61, 63–65] For instance, Cu/CeO2 is very
effective in oxidation reactions, particularly CO oxidation,
combining active Cu sites with the oxygen storage and re-
lease of ceria (oxygen buffer capacity). [46, 66,67]

Jiang et al. synthesized single Cu atoms on CeO2 clus-
ters (2.4 nm in size) which were tested for CO2 electroreduc-
tion. [68] Mosrati et al. reported high CO oxidation activity
on single Cu sites supported on CeO2-TiO2 using operando
techniques. [69] Building on previous studies of Cu/CeO2 cat-
alysts for CO and H2 oxidation (PROX), [11,70,71] this work
examines single Cu atoms supported on CeO2 surfaces using
density functional theory (DFT) calculations. We focus on
the adsorption of molecular CO and H2 and their subsequent
oxidation reactions, as relevant for CO-PROX. In particular,
the role of interfacial sites in the reactions, the redox activi-
ties, and formation of oxygen vacancies were evaluated. Our
findings demonstrate that the oxidized single Cu site on CeO2

serves as an active center for molecular adsorption of CO and
H2, thereby facilitating CO oxidation while H2 remains in-
tact. Overall, this underlines the catalytic potential of the
Cu/CeO2 single atom catalysts.
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2 Computational details

Spin-polarized Kohn-Sham density functional theory (DFT)
calculations were carried out using the Vienna ab initio
simulation package (VASP) [72, 73] utilizing the projector-
augmented-wave (PAW) method. [74,75] The Perdew-Burke-
Ernzerhof (PBE) approximation to the generalized gradient
approximation [76] was employed together with a Hubbard
model using the Dudarev scheme, [77] where Ueff = 5.0 eV was
used for the localization of electrons in the 4f -orbitals of Ce
atoms. [37, 67] The occupation matrix control technique was
applied to search for stable configurations of f -electrons at Ce
atoms. [78] Initially, localized sites were individually screened
for minimum energy at the upper and lower layers of CeO2

surfaces with adsorbed Cu (Cu/CeO2) by controlling the or-
bital occupation via the occupation matrix, subsequently, the
resulting wavefunction was used as a starting guess for a SCF
minimization without controlling the occupation matrix. The
total energy was corrected by the D3 dispersion term pro-
posed by Grimme et al. [79,80] Cutoff energy (Ecut) for plane
wave basis set for bulk (slab calculations) was 600 eV (450 eV)
with a 6×6×6 (2×2×1) k-point sampling using a Monkhorst-
Pack mesh. [81] The electronic self-consistency was considered
converged, when the change of the total energy was smaller
than 10−6 eV. All atoms were optimized until the forces act-
ing ions were less than 20 meV/Å. Energy barriers were calcu-
lated using the nudged elastic band method (NEB). [82] The
net atomic charge of individual atoms was analyzed using the
Bader method. [83,84]

The pristine low Miller index slabs, (111), (110), and (100)
of CeO2 with thicknesses of 11.03 Å, 9.68 Å, and 10.72 Å were
cut from the optimized bulk CeO2 and used for the adsorption
of a single Cu atom. The non-polar CeO2(111) surface was
reported to be the most stable among the low-index surfaces,
0.91 J m−2, the surface energy of (110) and (100) are de-
scribed as substantially higher in energy, 1.56 J m−2 and 1.96
J m−2, respectively. [85] Step edge morphologies have been re-
ported on defective ceria surfaces (e.g., CeO2(111)), [86–88]
nevertheless; only pristine ceria surfaces were considered in
the current study. A 12 Å vacuum gap and dipole moment
correction were included in all surface slab models in the di-
rection normal to the surfaces. [89] The binding energy of a
single Cu atom was calculated by

Eb(hkl) = ECu/CeO2
− (ECeO2

+ ECu) (1)

where ECu/CeO2
, ECeO2

, and ECu are total energies of
CeO2(hkl) surface with an adsorbed Cu atom, bare CeO2

surface, and isolated Cu atom in a gas phase. With this def-
inition negative energies correspond to a favorable binding
energy. In the same fashion, the molecular adsorption was
calculated by

Eads(X) = EX/Cu/CeO2
− (ECu/CeO2

+ EX) (2)

where the EX/Cu/CeO2
is the total energy of a Cu/CeO2

surface with an adsorbed molecule X and EX describes a
molecule X in a gas phase. Inversely, the desorption energy
of molecule X was defined as the negative value of Eads(X).
The oxygen vacancy formation energy at the surface was cal-
culated as follows

Evac = ECu/CeO2−x
+

1

2
EO2 − ECu/CeO2

(3)

where ECu/CeO2−x
and EO2 are total energies of a defective

CeO2 surface and a triplet oxygen in the gas phase, respec-
tively. Reaction energies Er and activation energies Ea were
calculated by Er = Epro − Ereact and Ea = ETS − Ereact, re-
spectively, where Ereact is the total energy of a reactant state,
Epro is a total energy of a product state, and ETS is a total
energy at a transition state. Structure visualization and slab
models were generated by VESTA [90] and ASE. [91]

3 Results and discussion

3.1 Geometry optimization of bulk CeO2

Stoichiometric cerium oxide CeO2 has a face-centered cubic
structure within the Fm3̄m space group, the unit cell consist-
ing of 4 cerium and 8 oxygen atoms (Fig. 1a). The cerium
cations are coordinated by eight nearest-neighbor oxygen an-
ions. Table S1 of the SI shows the lattice constant of bulk
CeO2 obtained by DFT with varying density functionals. In
our study, we obtained a lattice constant, a0 = 5.46 Å, which
agrees well with the experimental value, 5.41 Å. [92, 93] An
average Ce-O interatomic distance of 2.36 Å was determined.
The average Bader charges of Ce and O atoms in a unit cell
were +2.34 e− and -1.17 e−, presenting 4+ and 2- oxidation
states for Ce and O, respectively. Surface slabs were then
modeled from the optimized bulk CeO2 structure.

Figure 1: Cu/CeO2 unit cell and its low-index sur-
faces: Side views of a) a bulk CeO2 unit cell of cubic struc-
ture and its low Miller index surfaces, b) (111), c) (110), and
d) (100). Cerium and oxygen atoms are color-coded in silver-
white and red, respectively. In surface models, surface oxygen
(Osurf) is presented in red, while subsurface oxygen (Osub) is
depicted in maroon.

3.2 Surface structures and adsorption of a
single Cu atom

The low-index surfaces of CeO2 show a stability in the or-
der of (111)>(110)>(100), according to the reported surface
energies. [23] The most stable non-polar (111) surface is ter-
minated by three-fold coordinated oxygen atoms (Fig. 1b).
The (110) and (100) surfaces are terminated by six-fold coor-
dinated Ce and three-fold coordinated O, and two-fold coor-
dinated O atoms (Fig. 1c,d). [23, 59]

Adsorption of a single Cu atom was modeled on stable
sites of (111), (110), and (100) surfaces, analogous as re-
ported by Qin et al. and Ji et al. [66, 67] We determined
that low-index surfaces exhibit favorable binding energetics
when a single Cu atom is attached, with its stability follow-
ing the order (100)>(110)>(111) (Fig. 2 and Tab. 1). A
Cu atom on the (100) surface has the highest binding energy

2
https://doi.org/10.26434/chemrxiv-2024-q61wb ORCID: https://orcid.org/0000-0003-3968-7156 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-q61wb
https://orcid.org/0000-0003-3968-7156
https://creativecommons.org/licenses/by-nc-nd/4.0/


of Eb(100) = −4.62 eV when it is bound on the bridging
oxygen site, whereas the binding energy was less favorable
on the other low-index surfaces, Eb(110) = −3.84 eV and
Eb(111) = −3.14 eV, aligning reasonably well with previous
studies. [67,94] Energy difference may arise from the binding
environment of the adatom (e.g., nearest neighbors) on each
surface (see Tab. 1). In addition, an adsorption energy of a
single Cu atom on a larger cell, (4×4)-CeO2(111), was calcu-
lated to be -2.94 eV (0.2 eV higher than (2×2)-CeO2(111)).
For Cu adatoms on pristine CeO2(111), James et al. reported
an experimental value of -2.32 eV at 100 K. [95] The calcu-
lated value in our study is substantially stronger, by 0.82 eV,
as the calculations were carried out without accounting for
zero point energy.

The adsorbed Cu atom is oxidized to Cu+ by donating an
electron to a surface Ce4+ atom, so that subsequently the
cerium atom is reduced to Ce3+, indicated by a change in
charge, magnetic moment, and spin density of the Ce and Cu
atoms, as shown in Fig. 2 and Tab. 1. The additional charge
of ∼-0.5 e− of Cu adatoms and magnetic moment of 0.96 µB

obtained for localized Ce atoms are in good agreement with
previous works. [33, 67] The adsorbed Cu atoms are coordi-
nated by three, two, and two nearest oxygen neighbors on
(111), (110), and (100) surfaces, respectively.

Figure 2: Top views (upper) and side views (lower)
of optimized geometries of a single Cu atom (brown)
adsorbed on truncated CeO2: a) (111), b) (110), and c)
(100) surfaces. Spin density isosurfaces are shown in yellow,
presenting reduced Ce atoms (Ce3+ species).

To gain insight into electronic contributions, the projected
electronic density of states (PDOS) of pristine CeO2 and Cu
adsorbed CeO2 surfaces were calculated (Fig. 3). A wide
gap of 2.29 eV between the valence-band and conduction-
band edges was determined for the CeO2(111) surface, con-
sistent with the study of Piotrowski et al., ∼2.1 eV. [96] For
CeO2(110) and (100) surfaces, gaps of <2.0 eV were obtained.
Upon adsorption of a Cu adatom, localized states of Ce(4f)
show up (between -0.75 and 0 eV), resulting from the local-
ized charges introduced by the adsorbed Cu atom. At the
Fermi level (shifted to 0 eV), the Cu(3d) states are populated
for Cu/CeO2(111) and Cu/CeO2(110) surfaces, while the lo-
calized Ce(4f) state is predominant for the Cu/CeO2(100)
surface.

The Cu/CeO2 surfaces were subsequently utilized to study
CO and H2 interactions occurring in surface reactions, as dis-
cussed below.

3.3 Molecular interaction of CO or H2 with
Cu/CeO2

The interaction of molecular CO or H2 was studied in terms
of stability and oxidation processes on single Cu adatoms at

Figure 3: Projected electronic density of states
(PDOS) of pristine (upper) and Cu-decorated (lower)
ceria surfaces: a) CeO2(111), b) CeO2(110), and c)
CeO2(100) surfaces. PDOS of Ce(f), O(p), and Cu(d) are
plotted in silver-white, red, and brown, respectively. A state
of reduced cerium (Ce3+) is indicated by a black arrow. The
energy level is subtracted by Fermi energy.

CeO2 surfaces. The interactions in the presence of CO or H2

molecules at Cu sites on CeO2 surfaces, including adsorption
energies and atomic distances were examined.

3.3.1 CO adsorption:

CO chemisorbs (-1.39 eV) at a Cu atom on the CeO2(111)
surface, as illustrated in Fig. 4a. The distance between an
atomic carbon of adsorbed CO and the Cu atom is 1.79 Å,
and the C-O distance is slightly larger by 0.01 Å than calcu-
lated in the gas phase (1.14 Å). CO binds more strongly to
the Cu site of Cu/CeO2(111) than the Ce site of the pristine
CeO2(111) surface; for the latter with a reported unfavor-
able adsorption energy (ranging from -0.26 to 0.26 eV/CO)
and a longer CO-surface distance (ranging from 2.86 to 2.88
Å). [97, 98] According to our previous study, CO adsorption
on a Cu+ site of Cu/CeO2(111) is more stable than on the
Cu+ site of the reduced CuO(111) surface, -1.39 eV vs. -1.29
eV. [11] On Cu/CeO2(110) and Cu/CeO2(100) surfaces, the
adsorption energies of CO are -1.29 eV and -0.80 eV, respec-
tively (Fig. 4b,c). The C-O bond length of adsorbed CO is
1.16 Å in both cases, marginally increased from the gas phase.
The CO adsorption energy at Cu under the 2-fold coordina-
tion is similar to Cu/Fe3O4(001) [55] due to the similar bind-
ing environment of the Cu adatom and electronic structure.
The Cu/CeO2(111) surface provides the highest adsorption
strength among the studied surfaces. The strong binding of
CO on the Cu sites of Cu/CeO2(111) and Cu/CeO2(110) can
be interpreted via the Cu(d) orbitals that are populated near
the Fermi level, providing orbital interactions (back-donation)
between the Cu atom and CO molecule (Fig. 3a,b). [99]
Note that, upon CO adsorption on the Cu adatom, no lateral
movement of the adatom occurs, as observed on Cu single
crystals [100] or Au/CeO2. [101] For Au/CeO2(111), it was
reported that Au adatom with adsorbed CO spontaneously
diffused to the nearest site by relaxation. This shows the sta-
bility of single Cu adatoms on the CeO2 surface during CO
adsorption.

3.3.2 H2 Oxidation:

In contrast to CO, H2 shows weak interaction with the
Cu sites of Cu/CeO2(110) and Cu/CeO2(100) surfaces (Fig.
4e,f), with negligible adsorption energies of -0.07 eV and -0.05
eV, respectively. These energies primarily arise from the con-
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Table 1: Adsorption of a single Cu atom on CeO2 (111), (110), and (100) surfaces: adsorption energies (Eads),
nearest neighbors of the adsorbed Cu atom, Bader charge difference of oxidized Cu, and magnetic moment of reduced Ce.
Previously reported adsorption energies are in parentheses.

Surface Eb (eV) Cu NN ∆qCu (e−) MCe (µB) Method
(111) -3.14 (-2.83, -3.03) [67,94] 3 -0.65 0.96
(110) -3.84 (-3.81) [67] 2 -0.49 0.96 DFT+U
(100) -4.62 (-4.45) [67] 2 -0.49 0.96
(111) (-2.94) [95] - - - Experiment

tribution of dispersion forces. The average H-Cu distance is
2.66 Å, with the H-H bond distance unchanged from the gas
phase (0.75 Å), indicating a mere physisorption on (110) and
(100) surfaces. In contrast, when H2 adsorbs on the Cu site
of Cu/CeO2(111) (Fig. 4d), the H-H bond slightly elongates
to 0.82 Å, representing a 9% increase with respect to the gas
phase, indicative of H2 activation. The calculated adsorption
energy is -0.37 eV, with a H-Cu distance of 1.68 Å. This find-
ing aligns with a previous study by Righi et al., which demon-
strated the activation of H2 on noble metal single atoms (Cu,
Ag, Au) deposited on the CeO2(111) surface. [102] In their
study, H2 adsorbed on the Cu site with an energy of -0.35 eV,
and the H-H bond elongated to 0.84 Å.

H2 activation is known as Kubas interaction, [103] which
occurs when molecular H2 in a side-on orientation interacts
with transition metal centers. [104,105] This process involves
the donation of σ-electrons from H2 to the d-orbitals of the
metal center, along with a simultaneous back-donation from
the occupied d-orbitals of the metal center to the σ anti-
bonding (σ∗) of H2, resulting in elongation of the H-H bond.

Figure 4: Side views of molecular adsorption on
Cu/CeO2 surfaces: a-c) CO and d-f) H2 on Cu sites ad-
sorbed on CeO2 (111), (110), and (100) surfaces. Adsorption
energies and atomic distances are shown. Carbon and hydro-
gen atoms are color-coded in dark-gray and pink, respectively.

In summary, the interaction of CO on a Cu site on CeO2

surfaces represents chemical adsorption, with adsorption en-
ergies <-1.50 eV/CO observed for all studied surfaces except
Cu/CeO2(100), which shows an energy of -0.80 eV/CO. Our
study indicates that the presence of a single Cu atom on CeO2

surface enhances the adsorption strength of a CO molecule,
while on pristine CeO2, only weak interaction occurs. [98,106]
For H2 adsorption, a weak interaction is observed, with ad-
sorption energies ranging from -0.37 to -0.05 eV across the
studied surfaces. Interestingly, a Kubas interaction occurs
upon the adsorption on the Cu site of Cu/CeO2(111), re-
sulting in non-dissociative elongation of the H2 molecule. It

is noteworthy that, compared to pure Cu NPs, CO adsorbs
with energy ranging from -1.59 to -1.05 eV (depending on the
size of NP), [107] while energies of -0.58 eV and -0.20 eV were
reported for H2 adsorption on a pure Cu4 cluster [108] and
Cu37 NP, [109] respectively.

Overall, our findings suggest that a single Cu atom ad-
sorbed on the energetically most stable pristine CeO2(111)
surface enhances the molecular CO adsorption strength, but
only a weak interaction for H2. These adsorption results serve
as basis to rationalize various catalytic reactions, such as
CO and H2 oxidation, as well as the preferential oxidation
of CO. [11] Below, Cu/CeO2(111) will be examined for such
reaction studies, including the formation of oxygen vacancies
(VO).

3.4 Oxygen vacancy (VO) formation on
Cu/CeO2(111)

Oxygen vacancies (VO) play a vital role in various catalytic
reactions on metal oxides by creating active sites and improv-
ing reaction activity. [11, 110–112] In this study, we modeled
two types of VO sites: at the Cu/CeO2 interface, where the
oxygen atom is coordinated by four nearest neighbors (O4NN),
and at the site where the oxygen atom is coordinated by three
nearest neighbors (O3NN) (Fig. S1). Oxygen vacancy forma-
tion energies of 3.08 eV and 3.28 eV were obtained for VO3NN

and VO4NN, respectively (see Tab. S2). The formation of VO

at O3NN site is by 0.20 eV more stable than at the O4NN site.
After the formation of VO4NN, a pseudo-linear Cu with sur-
face oxygens is created. These energies are higher than those
for the pristine CeO2(111) surface, which range from 2.00 to
2.50 eV per VO using the same level of theory, PBE+U. [113]

The formation of a VO results in two excess valence elec-
trons that occupy the empty 4f -orbitals of Ce atoms, leading
to the reduction of Ce atoms, as visualized by the spin den-
sities (Fig. S1b,c). In both cases (VO3NN and VO4NN), two
Ce atoms are reduced, creating two additional Ce3+ species
on the surface (in addition to one Ce atom reduced by the
Cu adatom). For VO3NN, one Ce3+ species is determined
stable at the nearest neighbor sites to the oxygen vacancy,
while the other is localized at a next-nearest neighbor in the
subsurface. For VO4NN, both Ce3+ species are located at the
nearest neighbor sites to the vacancy.

Projected electronic density of states (PDOS) shows pro-
nounced localized states of Ce(f) forming at the valence-band
edges for both VO3NN and VO4NN (Fig. S2c,d). Compared
to Cu/CeO2(111), these localized states are up-shifting to
the Fermi levels, as indicated by pink arrows, resulting in
a reduction in the bandgap between valence-band edge to
conduction-band edge.

Our findings reveal that the presence of a Cu adatom in-
creases the formation energy of VO as compared to the pris-
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tine CeO2(111) surface. However, this higher energy suggests
a more active surface for O2 adsorption, facilitating the re-
plenishment of surface vacancies and redox activities. [114]
Additionally, the pronounced localized states of Ce(f) at the
Fermi levels, resulting from VO formation, are believed to en-
hance interactions with adsorbed molecules due to the pres-
ence of Ce3+ species. Nolan reported that Ce3+ promotes
the interaction with NO2. [115, 116] Regarding CO adsorp-
tion, both experimental and theoretical evidence suggest that
CO adsorbs weakly on the ceria sites, even in the presence of
Ce3+ species. [117] This confirms that noble metal adatoms,
like Cu, are beneficial for promoting CO adsorption on ceria
surfaces.

The presence of oxygen vacancies (VO) on the Cu/CeO2

surface, particularly at the Cu/CeO2 interface, is crucial for
governing oxidation processes, especially via Mars-van Krev-
elen mechanism in heterogeneous oxide catalysts. The role
of VO in facilitating the oxidation reactions of CO and H2 is
described below.

3.5 Oxidation reactions of CO or H2 on
Cu/CeO2(111)

3.5.1 CO oxidation:

The oxidation of CO to CO2 was studied following a Mars-
van Krevelen mechanism, a common pathway in heterogenous
oxide catalysis, [11,12,118,119] including CeO2. [120–125] Ini-
tially, we examined CO oxidation on the Cu/CeO2(111) sur-
face (Fig. 5). A gas phase CO molecule easily adsorbs on
a Cu site with a reaction energy Er(1 → 2) = −1.39 eV.
The interaction between the adsorbed CO and lattice oxy-
gen, forming a bent CO−

2 intermediate, [67,87] is endothermic
with Er(2 → 4) = 0.63 eV and a reaction barrier Ea(3) of
0.64 eV. The calculated barrier is similar to that determined
in a previous DFT study (0.51 eV). [67] The C-O bond dis-
tance and O-C-O angle of bent CO2 are reduced by 2.5% and
34.2%, respectively, compared to the gas phase. The stabil-
ity of this intermediate was confirmed as no imaginary modes
were found in the frequency calculations. In a similar fashion,
a CO2 molecule may be activated at a vacancy site VO.

After the formation of a bent CO−
2 intermediate, it desorbs

into the gas phase, generating an oxygen vacancy (VO) at the
Cu-CeO2 interface, with a reaction energy Er(4 → 5) = 0.59
eV. As described above, VO creates two additional Ce3+

species. Subsequently, an O2 replenishes the VO site in a
downhill process, Er(5 → 6) = −3.03 eV. The adsorbed
O∗

2 is a singlet O−
2 species with a O-O bond elongation of

21.1% from the gas phase and, simultaneously, two Ce3+ are
re-oxidized back to Ce4+ states. This shows that the oxy-
gen molecule is spontaneously activated by VO as observed
for various oxide catalysts. [11, 111, 126, 127] The second CO
oxidation then proceeds exothermically without a barrier on
the 1

2O∗
2 site with Er(6 → 7a) = −3.66 eV, while being less

exothermic on the Cu site, Er(6 → 7b) = −0.91 eV. Fi-
nally, the desorption of CO2 from step (7a) proceeds with a
desorption energy of 0.42 eV, completing the catalytic cycle
(8).

3.5.2 H2 oxidation:

The oxidation pathway of H2 to H2O was examined (Fig.
6). Firstly, an H2 molecule adsorbs on a single Cu site with
a small adsorption energy Er(1 → 2) = −0.37 eV, causing

Figure 5: Reaction pathway of CO oxidation. Starting
from the bare Cu/CeO2(111) surface (1), CO first adsorbs on
a Cu site (2) and forms with lattice O into a bent CO−

2 inter-
mediate (4) by crossing a transition state TS (3). A vacancy
site VO is generated after the desorption of CO2 into the gas
phase (5). A gas phase O2 (cyan spheres) then replenishes
the VO (6). A second CO adsorbs on 1

2O∗
2 (7a) or on Cu

(7b), the former directly forms CO2 and then desorbs as gas
phase CO2 (8). Desorption energy and transition states (TS)
are labeled by red bars/numbers.

the H-H bond to elongate from its gas phase distance, as
previously described. The H atom then interacts with a lat-
tice O to form a stable OH species, with a reaction energy
Er(2 → 4) = −0.42 eV and a barrier Ea(3) of 0.52 eV. Com-
pared to the CO oxidation barrier (0.64 eV), the barrier for
OH formation is lower by 0.12 eV, suggesting that OH species
may occur during the oxidation in mixed-gas environments
(e.g., preferential CO oxidation conditions).

To complete H2 oxidation, the adsorbed H reacts with an
OH species to form H2O (step 4 → 6). This reaction is
endothermic with Er(4 → 6) = 0.41 eV and a high barrier
Ea(5) = 1.43 eV. The desorption of the formed H2O into
the gas phase requires an energy of 0.93 eV (7). Thus, H2O
formation and desorption are more challenging compared to
CO2.

The formation of H2O creates a VO that is favorable to be
filled by molecular O2 (step 7 → 8) as described in Section
3.5.1. A second H2 molecule then adsorbs energetically on a
Cu site with Er(8 → 9) = −0.22 eV, causing a slight H-H
bond elongation. Once again, an H atom proceeds to react
with a 1

2O∗
2 species to form an OH species with Er(9 → 11) =

−1.27 eV and a barrier of 0.14 eV. The resulting OH species
is attached on a Cu site adjacent to the adsorbed H (11).
Finally, the adsorbed H exothermically reacts with OH to
form H2O with Er(11 → 13) = −1.81 eV and a low barrier
Ea(12) = 0.10 eV, and the formed H2O then desorbs into a
gas phase with Er(13 → 14) = 0.74 eV.

Overall, the rate-determining step of CO oxidation on the
Cu/CeO2(111) surface is the formation of the bent CO−

2 inter-
mediate (a CO spillover to the oxide support) with a reaction
barrier of 0.64 eV (step 3). In contrast, the rate-determining
step for H2 oxidation is the reaction between the adsorbed H
and OH to form H2O, which has a significantly higher bar-
rier of 1.43 eV (step 5). These findings highlight that CO
oxidation proceeds more favorably on this surface than H2

oxidation due to its lower rate-limiting step. Additionally, it
is notable that OH species may form during H2 oxidation,
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Figure 6: Reaction pathway of H2 oxidation. Starting
from the bare Cu/CeO2(111) surface (1), H2 first adsorbs on
a Cu site (2) and 1

2H2 forms with lattice O into a OH species
(4) with a barrier (3), leaving Cu-H. Then, the adsorbed H
atom on Cu site forms with the OH species into H2O (6) by
crossing a high barrier (5) and then desorbs into a H2O(g),
creating a vacancy site VO (7). A gas phase O2 (cyan spheres)
fills exothermically at the VO (8). A second H2 adsorbs on
a Cu site (9), crossing a barrier (10), to forms a second OH
species that attached on the Cu site (11). By crossing a
low barrier (12), the adsorbed H interacts with an OH to
form a second H2O (13) and subsequently desorbs into a gas
phase H2O(g), completing a cycle (14). Desorption energy
and transition states (TS) are labeled by red bars/numbers.

which could influence the catalytic reactions, [128, 129] par-
ticularly in mixed-gas environments.

Conclusions

In this study, we investigated the adsorption characteristics
and catalytic activity of single Cu atoms on different CeO2

surfaces, focusing on the oxidation of CO and H2 and the role
of oxygen vacancies. Our findings demonstrate that low-index
CeO2 surfaces may stabilize Cu adatoms, following a stability
trend of (100)>(110)>(111). The Cu adatoms donate charge
to a Ce, reducing Ce4+ to Ce3+ and oxidizing Cu0 to Cu+.
This enhances molecular adsorption energetics at the Cu site
compared to the pristine CeO2.

CO adsorption is notably strong at the Cu site on the
CeO2(111) surface due to favorable interactions between the
CO and Cu(d) orbitals, while H2 adsorption is weaker, involv-
ing a Kubas-type interaction that modestly activates the H-H
bond. The Mars-van Krevelen type mechanism was applied
to model CO and H2 oxidation, where an oxygen vacancy VO

formation plays a key role. For CO oxidation, interaction be-
tween CO and lattice O forms a bent CO−

2 intermediate that
subsequently desorbs as a gas phase CO2. For H2 oxidation,
it involves H2 dissociation into Cu-H and OH species, which
then combine to form H2O. Following the formation of both
CO2 and H2O, VO are created, which facilitates subsequent
O2 adsorption and then creates highly active O species, pro-
moting the catalytic cycle. In the case of H2 oxidation, the
pathway is energetically less favorable due to a higher rate-
determining barrier compared to the CO oxidation pathway.

In summary, single Cu atoms on CeO2 significantly enhance
CO adsorption and promote CO oxidation, while also offering
some interaction with H2, although less strongly. The findings
highlight that Cu/CeO2 provides a stable, active surface for

CO oxidation, with potential applications in heterogeneous
catalysis, particularly for reactions involving CO.
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and Günther Rupprechter. Operando Insights into
CO Oxidation on Cobalt Oxide Catalysts by NAP-
XPS, FTIR, and XRD. ACS Catalysis, 8(9):8630–8641,
September 2018.

[13] Nevzat Yigit, Alexander Genest, Schamil Terloev, Jury
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