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Abstract

Machine Learning (ML) methods that relate molecular structure to properties
are frequently proposed as in-silico surrogates for expensive or time-consuming
experiments. In small molecule drug discovery, such methods inform high-stakes
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decisions like compound synthesis and in-vivo studies. This application lies at the
intersection of multiple scientific disciplines. When comparing new ML methods
to baseline or state-of-the-art approaches, statistically rigorous method com-
parison protocols and domain-appropriate performance metrics are essential to
ensure replicability and ultimately the adoption of ML in small molecule drug
discovery. This paper proposes a set of guidelines to incentivize rigorous and
domain-appropriate techniques for method comparison tailored to small molecule
property modeling. These guidelines, accompanied by annotated examples and
open-source software tools, lay a foundation for robust ML benchmarking and
thus the development of more impactful methods.

Keywords: Machine Learning, Drug Discovery, Benchmarks, Datasets, Method
Comparison, Statistical Significance, Cross-Validation, Performance Metrics

1 Introduction

In drug discovery, expensive and time-consuming experiments are used to pro-
file molecules and gain insights into their therapeutic potential. Such experimental
assays are typically organized in a cascade, where subsequent experiments test fewer
molecules at a higher cost per molecule. As in-silico surrogates to such experiments,
both regression and classification ML models can be trained to estimate molecular
properties (i.e., experimental results) from chemical structure. Such models could
inform drug design and prioritize experiments by scoring a set of candidate molecules.
These ML models thus inform high-stakes decisions and help drug discovery research
progress more quickly and efficiently. Hence, it is important that models provide
reliable forecasting of experimental results.

When deploying a new model in industry or when publishing a new approach in the
scientific literature, we employ method comparison protocols. In industry, established
methods, which have shown robustness over time or for which mature technology is
available for deployment, might be preferred. Reliable results are essential to justify
the investment in deploying a new type of model. Furthermore, scientists who use ML
models to inform their decision-making are typically not the ones who have developed
the models. To build trust among such interdisciplinary teams, it is important that per-
formance during testing accurately represents the performance once deployed in real
drug discovery programs. When proposing a new method in the scientific literature,
it is important to contextualize the results by comparing its performance to a simple
baseline and the current state of art. Hence, in both cases, appropriate statistical tests
and performance metrics are needed to identify robust improvements [1].

These circumstances highlight the need for statistically rigorous method comparison
protocols and domain-appropriate techniques. The stochasticity in modeling meth-
ods necessitates the comparison of populations of models different methods generate
(e.g. through cross-validation). Furthermore, appropriate statistical methods should
be used to compare performance distributions and determine whether the differences
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could be attributed to random chance. Similarly performing methods can produce
seemingly large differences, especially with the classically smaller (i.e., ≤ 104 sam-
ples), imbalanced, and noisy datasets that are publicly available in drug discovery. To
account for this, tests to establish the statistical significance of differences are common
in many other fields, such as engineering and clinical medicine. However, this prac-
tice has been largely absent from ML-based cheminformatics literature. For ML-based
property modeling, most ML benchmark studies simply report mean performance
values over a series of replicates, disregarding that distributions are being compared.

Furthermore, despite the importance of hypothesis testing, establishing that there
is a statistically significant difference does not directly imply practical significance.
In molecular property modeling, statistically significant differences in performance
distributions might not translate to key decisional impact for drug discovery, such as
what compounds to synthesize. Method comparison protocols should, therefore, also
analyze the effect size and use performance metrics that better translate to decisional
impact.

Proposing statistically rigorous and domain-appropriate method comparison protocols
for small molecule drug discovery is an inherently difficult task due to its mul-
tidisciplinary nature. Lacking such protocols or methodological guidelines risks a
disconnect between perceived progress and real-world impact, slowing the adoption of
ML methods in small molecule drug discovery.

In this work, we first establish the importance of statistical testing in Section 2. We
then present a set of beginner-friendly guidelines for method comparison in Section 3,
tailored to small molecule property modeling applications. In Section 4, we present
annotated code examples to accompany these guidelines. The code examples use open-
source software to demonstrate each step. We cover several key aspects, including
cross-validation techniques, post hoc tests, multiple comparisons, visualizations, and
effect size. All of the code can be found on Github. Finally, in Section 5, we summarize
the method comparison protocol and suggest future research directions.

2 Motivation: Replicability crisis in ML-based
science

As in any other scientific discipline, in ML-based drug discovery experiments are car-
ried out to improve our understanding of the system under study. These experiments
add to a shared body of knowledge that new research can then build upon. Therefore,
the adherence to good scientific principles to obtain reliable and replicable insights
from experiments is key [2]. Otherwise, research directions might be pursued based on
fragile assumptions.

In a recent survey, the majority of researchers in the broader scientific community
indicated that they have failed to replicate others’ or even their own published results,
which led 90% of them to proclaim a replicability crisis [3]. While this is thus not
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specific to ML-based science, researchers were also unable to replicate a large fraction
of research from the ML community [4]. If a method is claimed to be superior to the
current state of the art on a benchmark, then we expect this result to be replicable
by other ML scientists or on similar benchmarks, but this is frequently not the case.

It is important to differentiate the terms replicability and reproducibility. Authors
at times use the terms interchangeably, but in many fields (e.g., statistics, computa-
tional biology) there are distinct meanings. We follow the convention of the National
Academies of Sciences, Engineering, and Medicine [5]. We define replicability to mean
the ability of an independent group to recreate results on a new data set collected
under the same conditions. This is a stronger condition than reproducibility which is
the ability for an independent group to recreate results if given access to the same code
and data. While researchers often focus on reproducibility in ML research, replicability
is the ultimate goal [6].

McDermott et al. [7] identify three main components of replicability:

• Technical Replicability: Can results be replicated under technically identical
conditions?

• Statistical Replicability: Can results be replicated under statistically identical
conditions?

• Conceptual Replicability: Can results be replicated under conceptually identical
conditions?

Technical replicability refers to the ability to replicate results using the code and data
shared by authors. Conceptual replicability refers to ability to replicate results under
conditions that match the conceptual description of the study. For example, results
should be able to be replicated when methods are applied to a new data set generated
under the same conditions.

In this work we focus on statistical replicability. Statistical replicability is demonstrated
when the same results are observed across experiments performed under equivalent
conditions. To draw a parallel with wet lab experiments, statistical replicability is often
established by performing several replicates of the same experiment (i.e. same day,
instrument, conditions). In ML research, statistical replicability can be assessed using a
single dataset with approaches like data resampling. Considering statistical replicabil-
ity is important because it can eliminate results that are confidently not reproducible,
which has the potential to substantially reduce the number of false positives (i.e. overly
optimistic results). [8–11]

While some researchers in ML recognize the importance of statistical replicability [7],
there is still substantial room for improvement. In fields such as computer vision and
natural language processing, where fit-for-purpose datasets with millions of observa-
tions are available, a statistical replicability assessment is less critical because even
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small differences are likely statistically significant. With such extremely large datasets,
an in-depth statistical analysis may also be computationally infeasible. In contrast,
datasets in small molecule property modeling tend to be expensive to generate. They
are substantially smaller than in these other ML fields and tend to be highly hetero-
geneous, imbalanced, and noisy. All of these factors increase the expected variability
in performance metrics one will see when carrying out several random data splits,
making statistical replicability analysis essential.

There are many reasons that contribute to the gap between the perceived impor-
tance of statistical replicability and the usage of appropriate statistical methods in
research papers. Few user-friendly tools exist for these analyses, and the statistical
knowledge required to perform them is often a barrier. Beyond these more technical
reasons, researchers and research institutions also play a role, e.g. replicability and
robust statistical analyses could be incentivized more [12]. We try to address this gap
by providing clear guidelines, annotated examples, and by integrating the suggested
techniques in open-source software to simplify the adoption of best practices

3 Method Comparison Guidelines

In this section, we will review best practices for method comparison and translate these
to a set of guidelines specific to small molecule property modeling for drug discovery.
Figure 1 summarizes these guidelines and serves as a visual table of contents to easily
navigate this paper.

Throughout this section, we will recommend ways to examine a model’s performance
and the assumptions behind each proposed technique. Please keep in mind, however,
that these guidelines are not a cookbook and, in practice, each case scenario will likely
require its own unique considerations. Based on the characteristics of the dataset or
project’s goal, deviations from this workflow are reasonable. Transparency is key in
the absence of a perfect solution for every scenario.

In the rest of this section, we will discuss different techniques for sampling the per-
formance distribution in Section 3.1. Then, in Section 3.2, we will discuss different
statistical tests that can be used to compare the performance sampling distributions.
In Section 3.3, we will explain the importance of domain-appropriate performance met-
rics in achieving practical significance. Finally, Section 3.4 will discuss how to present
the results of these tests.

3.1 Performance Sampling Distribution

New methods are often benchmarked against control baselines and state-of-the-art
methods to contextualize performance. This type of comparison is typically done using
retrospective benchmarks for the sake of practicality, where a dataset is split in training
and test sets. The more representative the test set is of the downstream application,
the better one can prospectively assess the performance of a model.
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Fig. 1: The method comparison guidelines presented in this work are summarized by
this decision tree. The path through the decision tree shown in blue should apply to
most use cases, but solutions for exceptional cases are presented as well.
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To avoid biasing the results, a test set should ideally be used only once. In practice,
however, many modeling attempts (e.g., different methods or model architectures)
are typically made. While this goes against best practices, the scientific community
relies on static test sets because the cost of data generation limits the availability and
accessibility of newly generated data. When all methods are repeatedly evaluated on
a single test set, it is common to find differences by chance that are dependent on the
particular split of the data. In these cases, different splits will likely result in different
conclusions. Method comparison should therefore not be performed on a single split
of the data.

Using only a single split of data is akin to running a bench experiment with only a sin-
gle replicate, something that is usually not acceptable in science. To properly account
for stochasticity, a method comparison protocol should run replicates and compare the
performance distributions of the populations of models the different methods produce.
This allows the identification of robust improvements that are expected to generalize
to similar datasets.

There are different mechanisms to accurately estimate a method’s performance distri-
bution based on a finite number of random samples from this distribution, also known
as performance sampling distribution. We recommend the following data resampling
mechanism:

Guidelines 1 (Performance sampling distribution). We recommend using a 5x5
repeated cross-validation procedure to sample the performance distribution. This pro-
cedure suits typical dataset sizes used in small molecule property modeling (e.g., 500
- 100,000). The training set can be further split into a training and validation set if
needed.

In the exceptional case of a dataset having fewer than 500 or more than 100,000
molecules, we provide additional guidance in Appendix A.1.

3.1.1 Sampling mechanisms

We can use two different mechanisms to sample the distribution: introducing variance
in the model’s parameters (e.g. different random seeds or initializations in a neural
network), or resampling the dataset (e.g. different data splits). It is good practice
to use both sampling mechanisms jointly. Since introducing variance in the model’s
parameters is trivial, this work focuses on data resampling techniques. Our goal with
these sampling mechanisms is to reduce the dependence between samples collected
and obtain an accurate estimate of variance in performance, and we will thus focus
our guidelines on data splitting techniques.

Cross-validation (CV, see Figure 2) is a popular method for resampling a dataset. It is
worth noting, however, that CV is not a single approach. CV refers to a set of different
techniques by which one can resample (or split) a dataset, and there exists no perfect
solution that will work in every case. What works best depends on the specific dataset
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(a) Vanilla CV (b) Repeated CV (5x2) (c) Nested CV

Fig. 2: Visualization of different cross-validation resampling techniques.

and modeling objective. New techniques to sample performance distributions are also
actively being researched [13].

3.1.2 Different cross-validation techniques

In vanilla CV, the data is split into n disjoint sets (or folds), with one fold used as the
test set and the remaining folds used for training. When comparing methods, the same
data split (i.e., using the same random seed) is typically performed, offering a more
direct head-to-head comparison that usually results in increased precision. Figure 2a
illustrates this with 10 folds. This raises the question of how many folds to use. With
many folds, the different training sets overlap substantially, creating strong depen-
dence between the samples. This underestimates variance, violates the assumptions of
statistical tests, and results in elevated false positive rates (see Section 3.3 for a review
of statistical testing). With few folds, the statistical tests will be underpowered (i.e.,
have low statistical power) due to the small sample size of the performance sampling
distribution. Commonly used alternatives to CV like bootstrapping and repeated ran-
dom splits of the data have also been shown to result in strong dependency between
samples and are generally not recommended [13].

Dieterrich proposed a 5x2 repeated CV to address some of these concerns (see
Figure 2b). 5x2 CV splits the dataset five times, with two folds each time. Having only
two folds reduces the dependence across CV folds within a split because the train-
ing sets do not overlap. Repeated splitting does introduce dependence across splits as
training and test sets overlap between replicates. However, such overlap is less sub-
stantial than what would be observed when getting the same number of samples with
vanilla 10-fold CV.

8

https://doi.org/10.26434/chemrxiv-2024-6dbwv-v2 ORCID: https://orcid.org/0009-0006-2742-4817 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-6dbwv-v2
https://orcid.org/0009-0006-2742-4817
https://creativecommons.org/licenses/by-nc/4.0/


Even though Deitterich found that 5x2 repeated CV struck the right balance, his paper
was based on simulations with datasets of only 300 observations. For modern data
set sizes, the 5x2 settings result in an underpowered test as well as poor performance
estimates because 2 fold CV is used. This was addressed in a recent paper by Bates et
al. [13], derived a nested CV procedure (see Figure 2c) more accurate than vanilla CV
and other sampling methods. Unfortunately, this procedure is too computationally
expensive for most small molecule property modeling applications and the procedure
also limits the performance metrics one can use.

Although the nested CV procedure by Bates et al. is computationally expensive, other
CV procedures can be evaluated against their method. Through an experiment (see
Appendix B), we show that for representatively sized datasets, 5x5 repeated CV (i.e.
5 replicates of 5 fold CV) provides a reasonable approximation and a more stable
and accurate variance estimate than the commonly recommended Deitterich’s 5x2 and
McNemar procedures. This experiment leads us to suggest the use of 5x5 repeated CV
in our guidelines for improved statistical testing.

3.1.3 Cross-validation with advanced splits

When evaluating a method, it is critical to avoid a model simply “memorizing” the
training data, known as overfitting. To assess the ability of a model to generalize,
the similarity between training and test sets should accurately reflect the downstream
application. There are many ways to split a dataset and which split is best depends
on the application. One can split a dataset randomly, based on temporal information
(e.g. compound synthesis or measurement dates), or to minimize the structural overlap
between train and test. In this last case, the splitting procedure can be based on
chemical scaffolds or similarity clustering. We aim to provide guidance on measuring
generalization through data splitting in future work.

Within the context of this work, it is worth noting that CV is compatible with these
more advanced splitting methods as long as the dataset can be partitioned into non-
overlapping, roughly equally-sized groups. It is essential to check that folds do not
significantly overlap across replicates and that target distributions stay reasonably
similar. It is recommended to visually inspect these constraints (see Appendix E).

3.1.4 Cross-validation with hyperparameter optimization

Besides assessing generalization with a hold-out test set that is not used during method
development and selection, there are also cases where one might want to use a second
evaluation set during method development, such as with hyperparameter optimization.
In such cases, nested CV is commonly recommended to split the data into three
subsets: training, validation, and test. However, this substantially increases the total
number of iterations (i.e., the number of models to train). For each iteration of 5x5
repeated CV, we recommend performing a single split of the training set into training
and validation for hyperparameter optimization. This is comparable to performing one
iteration of the inner loop of nested CV (see Figure 2c). Because many CV replicates
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Fig. 3: Visualization of a paired t-test for difference in performance between two
methods. Intuitively, the t-test estimates the probability of observing a test statistic as
extreme or more extreme assuming both samples come from the same distribution. The
test statistic measures how closely the observed distribution matches the distribution
assumed by the null hypothesis. The assumed distribution under the null is shown
above along with the observed test statistic and the estimated p-value (in yellow). In
this specific example, since the p-value is higher than the chosen significance level (in
blue), this test would fail to reject the null hypothesis. Tukey HSD is an extension
of the t-test to the scenario where there are more than two models and all pairwise
comparisons are performed.

are already performed by 5x5 repeated CV, this will collect a sufficient number of
samples for method comparison.

3.2 Statistical Significance

After collecting the performance sampling distributions for each of our methods, an
appropriate technique for comparing these distributions should be selected.

Since finite samples of a distribution are being compared, we cannot unequivocally
state that the two sampled distributions are different. However, we can hypothesize
that the two samples come from distributions having the same mean value and com-
pute a p-value for testing that null hypothesis (see Figure 3). The p-value estimates the
probability of observing the test statistic at least as extreme under the null hypothesis.
If that probability is lower than a chosen significance level, we reject the hypothe-
sis and conclude that there is a statistically significant difference between the two
distributions.

The false positive rate (or type I error rate) of a test is the probability of falsely
rejecting the null hypothesis, i.e. falsely concluding that there is a difference between
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the performance distributions of two methods while there is not. If the assumptions
of the test are met, then the false positive rate will be less than the significance level.
The significance level is set by the researcher based on the amount of confidence that
is needed in the conclusion. A commonly used level is 0.05, which should provide
reasonable control of false positive rate for methods comparisons after correction for
multiple comparisons (see Section 3.2.2).

The type II error rate of a test is the probability of failing to detect a difference
between performance distributions when one exists. Statistical power is equal to 1 –
type II error rate, and is the probability that a true difference in distributions will be
detected by the test.

An optimal statistical test will have 1) a false positive rate at the level advertised
and 2) high statistical power. Condition 1 should be met first for method comparison.
When we claim statistical significance this gives researchers confidence that a real
difference in performance exists between methods. We want to be confident that we
are not giving people an inflated sense of certainty. If the assumptions of the statistical
test are violated, then the test may have false positive rate higher than advertised
or low statistical power. This is why it is important to understand and examine the
assumptions of a test, as explained in the next section.

There are various tests for statistically significant differences, which differ in the
assumptions they make on the sampling distributions under comparison. We recom-
mend the following test:

Guidelines 2 (Statistical testing). We recommend repeated measures ANOVA (anal-
ysis of variance) with the post hoc Tukey’s HSD (honestly significant difference) test
for pairwise comparisons between models. We recommend always checking the para-
metric assumptions of the tests, but if you follow Guidelines 1, these assumptions
should be reasonably met in most applications in small molecule property modeling.

In the exceptional case in which the parametric assumptions are not met, we provide
additional guidance in Appendix A.2.

3.2.1 Statistical tests

Statistical tests for differences between distributions can be broadly separated into
parametric and non-parametric tests. Parametric tests make stronger assumptions
about the distributions under comparison (e.g. normality, see also Appendix C), com-
pared to non-parametric tests. One common misconception is that non-parametric
tests do not make assumptions. Even though non-parametric tests have weaker dis-
tributional assumptions, they do still make assumptions and these are often harder
to understand and examine than parametric tests. The most important assumption
made by both parametric and non-parametric tests is that samples are independent,
which means that an appropriate CV protocol (see Section 3.1) that minimizes the
dependence between samples is necessary for both tests.
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It is common for researchers to use a non-parametric test because they make fewer
assumptions. However, researchers are often unaware of the disadvantages of these
tests. For method comparisons, the most important is that non-parametric tests typi-
cally focus on hypothesis testing and less on estimation of an interpretable effect size.
While it is possible to estimate effect size and confidence intervals with non-parametric
methods it is typically not straightforward. Because our method comparison workflow
focuses on estimating effect size in addition to hypothesis testing, a parametric test
with an interpretable associated effect size (e.g., the difference in means) is preferred.
Non-parametric tests can also be substantially less powerful than parametric tests if
the distributional assumptions of the parametric tests are met. See Appendix C.2 for
more details on the advantages and disadvantages of parametric and non-parametric
tests.

We recommend the following parametric testing workflow: repeated measures ANOVA
followed by the Tukey HSD test. During the repeated CV procedure, competing
methods are being fit to the same splits of data. To appropriately account for this
dependency, we perform repeated measures ANOVA, and then provide the sum of
squared errors output to the Tukey HSD procedure. This results in a test with higher
statistical power than TukeyHSD alone.

The parametric workflow compares the means and is known to be highly robust
to moderate violations of the underlying assumptions. This is particularly true in
the context of a method comparison protocol (see Appendix C.1 for details). If
the assumptions of the parametric test are strongly violated, then we recommend
a non-parametric test workflow that will also be suitable for method compar-
isons (Appendix A.2). We provide an example of examining the parametric testing
assumptions in the supplementary notebooks.

3.2.2 Pairwise comparisons and corrections for multiple testing

We typically compare more than two methods in ML benchmarks and are interested
in all pairwise comparisons. This results in a large number of tests. When we perform
many comparisons simultaneously, the probability of falsely rejecting the null hypoth-
esis increases. For example, say we picked a significance level of 0.05. In other words,
in 5% of tests, we expect to conclude that there is a statistically significant difference
between distributions while there, in reality, is no such difference. If we run this test N
times, the expected number of falsely rejected null hypotheses linearly increases with
N. For N=100, we would thus expect to falsely reject 5 null hypotheses. The number
of pairwise comparisons N in turn grows combinatorially with the number of methods
under comparison, because of which multiple testing can quickly become problematic.
There are several techniques to correct for this, see Chen et al. [14] for a review. The
Bonferroni correction [15] is a simple approach that is commonly used. However this
correction is known to have low statistical power when the number of comparisons is
large.
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The recommended Tukey HSD test, which is specifically designed for pairwise compar-
isons and incorporates a correction for multiple testing. Compared to other multiple
testing correction procedures like Bonferroni, it has good statistical power for all
pairwise comparisons. It ensures that the family-wise error rate (FWER), which is
the probability that at least one false positive occurs in a set of tests, is less than
a given significance level (e.g., 0.05), regardless of the number of tests performed.
See Appendix A.2 for guidance on multiple testing for a large number of method
comparisons (> 10).

3.3 Practical Significance

With statistical significance, we establish that there is a difference between means, but
we can not yet conclude the magnitude of that difference. The Tukey HSD procedures,
however, not only provide us with statistical significance (i.e., an assessment that the
means of the distributions under comparisons are the same) but also with effect size
(i.e., the magnitude of the difference in mean between two distributions).

However, this raises the question whether any given effect size is also practically sig-
nificant. Practical significance is established when there is a large enough difference
between methods to be meaningful in practice. In small molecule property modeling,
this boils down to whether a new method impacts a drug discovery scientist’s decision-
making regarding which experiments to prioritize. To measure practical significance,
we need to use relevant, contextualized performance metrics that are informed by our
downstream application. We recommend the following:

Guidelines 3 (Practical significance). When reporting a significant difference between
methods, also provide an explanation of how the result is practically significant. Use
metrics that are motivated by the downstream application and contextualize results by
estimating the lower and upper performance limits.

Over the past century, statisticians have developed many valuable metrics for eval-
uating the performance of regression and classification models. Appendix D reviews
several of these metrics and provides recommendations to ensure accurate and
meaningful model evaluations from a statistical point of view. The rest of this
section specifically describes different ways to measure impact in small molecule drug
discovery.

3.3.1 Relevant performance metrics

Decisional impact

A typical application of a property model is to inform two key decisions: 1) decid-
ing what compounds to make and 2) deciding what compounds not to make. When
prioritizing a set of molecules, drug discovery scientists typically classify each of the
properties of interest in two or three bins (or categories), e.g. “soluble” and “insol-
uble”, to inform their decision-making. To measure the real-world utility of small
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Fig. 4: An example using post hoc classification for a regression model to investigate
practical significance with precision and recall.

molecule property models, one can thus investigate whether a model can help decide
which molecules to make or not to make by using these bins.

When deciding what compounds to make, a filter is often applied to a large set of
compounds by applying a threshold to a property estimation. We would like to be
confident that everything left after filtering will have a good property value when
measured. We would also like the set to be as large as possible because this provides
chemists with more diversity for design. One approach to achieve this task is to select
a minimum acceptable precision (e.g. 75%), and then select the threshold with the
maximum recall subject to this constraint. The model with the best performance
will have the largest recall. This typically referred to as recall@precision in the ML
literature [16, 17].

Another decision is what compounds to not make. In this context we would like to
eliminate a large number of bad compounds while eliminating as few positives as
possible. One approach is to select a minimum acceptable recall for the positive class.
For example, we may require 90% recall, so that no more than 10% of true positives
are thrown out. We then select the threshold with the maximum true negative rate
(TNR) subject to this constraint. The model with the best performance will thus have
the largest TNR@recall.

This can also be done in a regression setting by using post hoc classification (see section
AppendixD.2 for details).

Figure 4 shows a comparison of three machine learning models, ChemProp Multi-
task [18] (chemprop mt), ChemProp Single Task (chemprop st), and Light Gradient
Boosting Machines (lightGBM) on the same dataset. In drug discovery, we typically
screen early for molecules with good aqueous solubility, as that property often trans-
lates to solubility in intestinal fluid for oral drugs, as well as solubility in intravenous
formulations for when not orally administered. A typical threshold for good solubility
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is > 100 µM. After training three regression models for solubility, statistically sig-
nificant differences in MAE, MSE, and R2 are found between lightGBM and the two
ChemProp models. To assess whether such difference was large enough to be mean-
ingful, post hoc classification with a 100 uM threshold was carried out. Precision is
essentially equivalent across methods but recall is substantially lower for lightGBM. If
one used these models as a compound filter at 100 µM, lightGBM would thus reject
more molecules with good solubility. As we will later show in Figure 8 and Table 1,
the estimated improvement in recall of chemprop st over lightGBM is .17 (.15, .19),
meaning chemprop st would identify 17% more molecules with good solubility. This
would likely have a real practical impact on drug discovery programs.

Interpretability

Domain experts who use an ML model in a real drug discovery program need context
on which differences are impactful. For those with a limited statistical background,
statistical measures can be hard to interpret. To facilitate interdisciplinary communi-
cation, it can therefore be helpful to report the Mean Absolute Error (MAE). Although
this metric is not the only metric that should be used for method development (see
Appendix D), it is important to report because the unit of MAE is the same as the
property being modeled. MAE is often used in log scale by medicinal chemists or phar-
macologists to indicate fold differences between observed and measured values (where
a MAE of 0.3 log units would correspond to 2-fold error). Thus, average fold errors
or percentage of errors within 2- or 3-fold are often reported to facilitate discussions
within drug discovery teams.

Dynamic Range

Both correlation and error metrics are influenced by the dynamic range of the data
being modeled. Achieving a high correlation on datasets with a broader range of
experimental values is generally easier, whereas datasets with a smaller dynamic range
can produce unrealistically small values for error metrics. This can lead to deceptive
conclusions.

For instance, consider the Delaney solubility dataset [19] in the MoleculeNet [20]
benchmark. This dataset reports the log of the aqueous solubility (LogS) for 2,173
compounds. The LogS values span more than 13 logs, significantly larger than the 3-4
log dynamic range typically encountered in drug discovery. Consider a simple model
that uses a calculated octanol-water partition coefficient (LogP) to estimate LogS. If
we calculate R2 for LogP vs LogS for the full 13-log range of the Delaney solubility
dataset, we achieve a respectable Pearson r2 of 0.68. However, if we only consider
values in the 1 µM to 1 mM (log solubility -6 to -3) range typically observed in drug
discovery projects, the R2 value drops to a less impressive 0.33. Figure 5 illustrates this
issue by showing the full range of the Delaney dataset, with a more realistic dynamic
range between the red lines.
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Fig. 5: Examining the impact of dynamic range on correlation. If the entirety of this
dataset, which spans 13 logs of dynamic range, is considered, there is a high correlation
between measured and estimated values. However, the correlation is much lower if the
more realistic 3-log range between the red lines is considered.

Class imbalance

Classification metrics can be misleading in cases where classification datasets are
highly imbalanced, as is common in small molecule drug discovery. In this case, using
metrics that account for this imbalance is important (see Appendix D.2).

3.3.2 Cohen’s D

In Section 3.3.1, we covered some ways of measuring performance of a ML model in
the context of small molecule drug discovery. Often researchers understand whether
a performance difference is large enough to be practically significant, and in these
contexts a simple difference in means is recommended as an interpretable effect size.
However, providing meaningful context to a difference is sometimes problematic, and
in these cases Cohen’s D can be a useful measure of effect size. Cohen’s D standardizes
the difference in means by the pooled standard deviation. This results in a unitless
measure of difference in distribution which considers the variance of both distributions
(Figure 6).

d =
µ1 − µ2√

σ2
1+σ2

2

2

Commonly used cutoffs for interpreting Cohen’s d are d ≥ 0.2, d ≥ 0.5, and d ≥ 0.8,
implying a small, medium, or large effect size, respectively [21]. Statisticians often
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Fig. 6: An illustration of effect size. In all of the subplots, the two distributions show
a statistically significant difference. For each column, the mean of the same-colored
distributions is equal. However, because the distributions in the top row have a lower
variance, the effect size of these comparisons is higher than for the distributions in the
bottom row.

advise using these cutoffs as a last resort when there is insufficient understanding of
whether a difference is meaningful from domain knowledge [22].

3.3.3 Lower and upper performance limits

As discussed in Section 3.3.1, performance metrics can be misleading depending on
the underlying distribution being modeled. Furthermore, the endpoints we are esti-
mating are subject to experimental noise, which implies a maximum expected model
performance. To address these concerns and help improve the interpretability of the
performance metrics, it is important to contextualize results with both a lower and
upper limit for the performance.

Lower limit: Null models

Null models consistently assign the majority class for a classification task, or the mean
(or median) of the training set for a regression task. If the performance metrics for a
model are close to those of the null model, one should question the results.
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Upper limit: Experimental variability

If the experimental variability of the underlying assay is known, it can be used to
estimate the maximum expected performance [23]. For example, the noise in activity
biochemical assays measuring half-maximal inhibitory concentration (IC50) is com-
monly estimated to be 0.3 log units (i.e. 2-fold). If the MAE of an IC50 model is
less than 0.3, one should question the results. In a case where the experimental vari-
ability is not known, it is common to assume experimental variability of 2- or 3-fold,
depending on the dynamic range and nature of the data [24].

In the special case of correlation metrics for regression models, Brown et al. [25]
outlined a procedure for a dataset X with N values and an experimental fold error A.
For 1000 trials:

1. Generate N normally distributed random variables R with a mean of 0 and a
standard deviation of log10(A).

2. Add R and X to create a new vector RX
3. Calculate the correlation between X and RX

The mean of the correlations over the 1000 trials calculated above typically provides
a reasonable estimate of the upper limit of achievable correlation. If the observed
correlation exceeds this value, the benchmark result should be questioned.

3.3.4 Holistic evaluation

A single performance measure is unlikely to capture real-world utility. Instead, prac-
titioners typically rely on a holistic view that evaluates performance along multiple
dimensions to inform the usage of a ML model in a real-world context, which can span
various applications. We therefore recommend at least reporting multiple performance
measures. Furthermore, a thorough investigation of the capabilities and limitations
of a ML method (e.g. performance on activity cliffs [26], performance per chemi-
cal series [27], or uncertainty estimation [28]) significantly increases its scientific and
real-world utility.

3.4 Presenting the Results

Using statistical tests produces information beyond a performance metric table. Typ-
ical methods for presenting the results, such as leaderboards, are unsuitable for
presenting this information. We therefore provide guidance on appropriate visualiza-
tions:

Guidelines 4 (Presenting the results). We recommend an extension of the sign plot,
which includes statistical significance and effect size in a single plot. We recommend
including an additional plot in the supplementary material that conveys the confidence
intervals of the effect size of the pairwise comparisons.
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Fig. 7: An example of the Multiple Comparisons Similarity (MCSim) plot. Color is
used to convey the effect size, whereas star annotations are used to convey statistical
significance. The effect size reported is the difference in average performance between
methods. A numeric difference is shown in the cells, but this can be suppressed if a
large number of comparisons is performed.

In the exceptional case where the reader requires a leaderboard, we provide additional
guidance in Appendix A.3.

3.4.1 The Multiple Comparisons Similarity plot

The first plot is an extension to the sign plot provided by the scikit-posthocs Python
package. The original sign plot showed a heatmap of all pairwise p-values. Our exten-
sion, which we call the Multiple Comparisons Similarity (MCSim) plot, uses color to
convey effect size instead of p-values since practical significance is more important
than statistical significance in the context of a method comparison protocol.

To simplify the interpretation of the plot, the MCSim plot sorts the methods in the
rows and columns by their average performance, which are also annotated in the
margins. The top left block of methods without statistically significant differences
are thus the plausible top performers. Cells are colored by the difference in average
performance between methods. Each cell in the heatmap also has a star annotation
to indicate the level of significance (* p < .05, ** p < .01, *** p < .001). The color
range is determined by the user and should be set to be large enough to cover a range
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of practically significant differences. The ranges will differ by metric, so different color
scales are necessary for each plot.

3.4.2 Confidence intervals of the difference in mean performance

Fig. 8: Confidence Intervals (CI) of the difference in mean performance between meth-
ods, presented as a plot. Intervals that do not cross the zero line imply statistical
significance.
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MAE MSE R2 Rho Precision Recall
chemprop mt - chemprop st 0.02 0.00 0.00 0.00 0.02 -0.08

(0.01, 0.02) (-0.01, 0.01) (-0.02, 0.02) (-0.01, 0.01) (0.00, 0.03) (-0.10, -0.06)
chemprop mt - lightGBM -0.06 -0.07 0.15 0.08 0.01 0.09

(-0.06, -0.05) (-0.08, -0.06) (0.13, 0.17) (0.07, 0.09) (-0.01, 0.02) (0.07, 0.11)
chemprop st - lightGBM -0.07 -0.07 0.15 0.08 -0.01 0.17

(-0.08, -0.06) (-0.08, -0.07) (0.13, 0.17) (0.07, 0.09) (-0.02, 0.01) (0.15, 0.19)

Table 1: Confidence Intervals (CI) of the difference in mean performance between
methods, presented as a table.

Package Language Description
scikit-posthocs [30] Python Implements Multiple Pairwise Comparisons Tests in Python
scikit-learn Python This well-known machine learning library for Python has a

mature cross-validation API.
pingouin [31] Python Implements various statistical methods in Python.
chemmodlab [32] R A Cheminformatics Modeling Laboratory for Fitting and

Assessing Machine Learning Models

Table 2: An overview of useful open-source software.

The results of the Tukey HSD test can be used to construct confidence intervals for
the differences between methods. These confidence intervals allow us to understand
the uncertainty associated with the differences reported. A point estimate for the
difference between methods may appear substantial, but if the associated confidence
interval is large, then the result is less convincing. While confidence intervals can be
easily calculated for parametric methods, they are not straightforward to obtain with
the non-parametric workflow.

As the number of pairwise comparisons is often large (i.e., the number of compar-
isons grows combinatorially with the number of methods under comparison), the
relationships between methods will be difficult to visualize in a single plot, especially
if multiple metrics are used. We therefore recommend providing these results in the
supplementary materials as either a plot (see Figure 8) or tabular form (see Table 1).
Alternatively, practitioners may find it optimal only to show a few differences of inter-
est, such as comparing a new method to a set of baselines. However, it is important to
apply the Tukey HSD to all comparisons that were examined originally to avoid data
dredging [29].

4 Annotated Examples

To simplify the adoption of the guidelines we presented in this work, all guidelines
presented throughout this paper are accompanied by a set of annotated examples
that use open-source software to implement the proposed method comparison pro-
tocol. These annotated examples provide an easy to use template to incorporate
these guidelines in your own research. These annotated examples can be found at
https://github.com/polaris-hub/polaris-method-comparison. An overview of Open-
Source Software that can be used to implement these guidelines can be found in
Table 2.
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5 Conclusion

ML-based research is facing a replicability crisis. These issues are further amplified in
small molecule property modeling due to the high-stakes applications, the heteroge-
neous, imbalanced, and noisy datasets, and the interdisciplinary teams. It is essential
that statistically robust and domain-appropriate method comparison protocols are
employed to close the gap between perceived progress and real-world impact.

In this work, we proposed beginner-friendly guidelines for method comparison pro-
tocols in small molecule property modeling. We simplified the adoption of these
guidelines with annotated examples that use open-source software. These guidelines
are:

1. We recommend using a 5x5 repeated cross-validation procedure to sample the
performance distribution. This procedure suits typical dataset sizes used in small
molecule property modeling (e.g., 500 - 100,000). The training set can be further
split into a training and validation set if needed.

2. We recommend the Tukey HSD test for pairwise comparisons between models. We
recommend always checking the parametric assumptions of the Tukey HSD test,
but if you follow Guidelines 1, these assumptions should be reasonably met in most
applications in small molecule property modeling.

3. When reporting a significant difference between methods, also provide an explana-
tion of how the result is practically significant. Use metrics that are motivated by
the downstream application and contextualize results by estimating the lower and
upper performance limits.

4. We recommend an extension of the sign plot, which includes statistical significance
and effect size in a single plot. We recommend including an additional plot in the
supplementary material that conveys the confidence intervals of the effect size of
the pairwise comparisons.

5. Statistical testing is not a cookbook and there are valid reasons to deviate from the
above guidelines. Transparency is key in the absence of a perfect solution for every
scenario.

In future work, we aim to tackle other important aspects of benchmarking ML mod-
els in small molecule property modeling, such as dataset curation and measuring
generalization (e.g. through data splitting methods).
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Appendix

A Exceptional Cases

A.1 Performance Sampling Distributions

We provide recommendations for the following exceptional cases. If the dataset is small
(< 500), we recommend performing 5x2 repeated CV. This is supported by Deiterrich’s
original simulation experiments [33]. If the dataset is very large (e.g., > 100, 000),
such that repeated CV is no longer computationally tractable, then statistical testing
is unlikely necessary, as even small differences between methods are likely statistically
significant.

There have been statistical tests proposed for large data sets where only one split
and model fit are required (e.g., McNemar’s test for classification models) [34]. We do
not recommend these tests because they do not assess the variability of performance
across multiple data splits, potentially resulting in an elevated false positive rate.

A.2 Statistical Testing

If the Tukey HSD assumptions are egregiously violated, a non-parametric test should
be used. The supplementary notebooks provide an example of the non-parametric
testing workflow. We recommend using the Conover-Friedman test for pairwise
comparisons and the Holm-Bonferroni correction for multiple testing.

If a large number of tests are being performed (e.g., all pairwise comparisons between
> 10 methods), the Tukey HSD and Conover-Friedman test will have low power to
detect significant differences. In this case, it may be preferable to perform a mul-
tiplicity adjustment designed for a large number of tests. The Benjamini-Hochberg
correction [35] is recommended in these settings. Compared to Bonferroni or Tukey
HSD, which control the familywise error rate (FWER), the Benjamini-Hochberg (BH)
procedure has greater statistical power, especially when dealing with a large number
of comparisons. While FWER control methods aim to limit the probability that at
least one false positive occurs in a set of tests, the BH procedure focuses on controlling
the false discovery rate, the expected proportion of false positives among the rejected
hypotheses. This makes the BH procedure particularly useful for a large number of
tests, where maintaining a balance between Type I error control and statistical power
is key.

A.3 Leaderboards

For leaderboards, we recommend selecting a primary performance measure and rank-
ing methods according to this metric. Statistical tests may also be performed according
to the metric, and results are presented as a compact letter display [36].
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In the Table 3 MSE was selected as the primary metric for demonstration purposes. A
significant difference was not found between chemprop st and chemprop mt so a letter
“a” is assigned to both methods. lightgbm was significantly worse than both methods
so it is assigned a letter “b”.

CLD Method MAE MSE R2 Rho Recall Precision
a chemprop st 0.37 0.30 0.40 0.60 0.66 0.84
a chemprop mt 0.38 0.30 0.40 0.60 0.58 0.86
b lgbm morgan 0.44 0.37 0.25 0.52 0.49 0.85

Table 3: Example of leaderboard with compact letter display.

B Cross-Validation Experiment

We provide an experiment in the supplementary that compares several approximation
methods against the estimate from Bates et al. [13] We use a representative dataset for
small molecule property modeling with 2,000 observations. We show that 5x5 repeated
CV will provide a more stable and accurate variance estimate than the commonly
recommended Deitterich’s 5x2 and McNemar procedures. We also extend the Bates
et al. R package to support a variety of classification metrics relevant to imbalanced
datasets. Our results were reproduced across performance metrics. Since variance is
the crucial parameter to estimate for method comparison statistical testing, these
results imply that 5x5 repeated CV will result in a more performant test. Also, the
increased number of samples collected will lead to a more powerful test and tighter
confidence intervals for the difference between methods. Furthermore, the increased
number of CV folds results in more training data being used in each replicate than
Deitterich’s 5x2, and this will produce more accurate performance measures overall.

C Statistical Testing Details

C.1 Examining the Parametric Assumptions

We recommend always checking the parametric assumptions of the tests, but following
Guidelines 1, assumptions should be reasonably met in most applications in small
molecule property modeling. In such cases, we recommend the repeated measures
ANOVA followed by Tukey HSD test for pairwise comparison of methods.

These tests make three assumptions on the distribution of performance metrics across
CV splits, not the distribution of individual errors. In order of importance, the
assumptions of ANOVA and post hoc Tukey HSD are:

1. Independence: The samples (i.e., performance metrics across CV splits) should
be independent. Information about one sample should not allow one to estimate the
value for another sample. There is no straightforward way to test for this, which is
why the usage of appropriate sampling mechanisms (such as 5x5 repeated CV) is
critical to ensure the samples are sufficiently independent.
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2. Homogeneity of Variances: The variance of the performance sampling distribu-
tions for each of the models is approximately equal. A typical rule of thumb is that
the ratio of the largest and smallest variance should not be larger than 3. How-
ever, in the case of equally sized groups, much larger variance ratios are tolerated
and these can be as high as 9 [37]. Since the same number of CV iterations are
performed for each model in 5x5 repeated CV, the groups are equally sized. This
assumption will rarely be violated.

3. Normality: The performance metric distributions are assumed to be approxi-
mately normal for each model. ANOVA and Tukey HSD will be robust to moderate
normality violations for the 25 samples collected by 5x5 repeated CV. Note
that only approximate normality of the data generating population distribution is
assumed. It can be difficult to examine this when sample sizes are small. In these
cases, an argument is often made on the conceptual level for approximate normal-
ity. This argument may be made for performance metrics since they are typically
the sum of many variables (e.g., the sum of individual errors) and will be approx-
imately normal due to the Central Limit Theorem (CLT) [38]. Moreover, even if
normality may not be directly justifiable for the population distribution of per-
formance metrics, the CLT will typically rescue the normality assumption; this is
because of the averaging that is performed at the heart of ANOVA and Tukey
HSD testing. A question may be raised as to whether a sample size of 25 is large
enough for the benefits of the CLT to be realized; we argue this will be sufficient
in most cases. Since 25 samples are collected from each distribution, one is able to
check for strong violations of normality. The best way of doing this is by visualizing
the distribution (e.g., quantile-quantile or QQ plots of ANOVA residuals). See the
supplementary notebooks for an example. We recommend against using tests for
normality as they may have low statistical power, or may be even more sensitive to
their associated assumptions than the low level of sensitivity of the ANOVA and
Tukey HSD procedures to the assumption of normality.

C.2 Parametric vs. Non-Parametric Tests

Despite the increased flexibility of non-parametric tests, we recommend the parametric
workflow for method comparison whenever the assumptions are met. Parametric tests
are easier to understand and interpret as well as more statistically powerful (i.e.,
require fewer samples).

Tukey HSD is more interpretable because it tests for differences in distributions using
the mean, an easily described summary measure of the data. On the contrary, non-
parametric tests, such as the Wilcoxon signed-rank test, are typically based on rank
and do not necessarily test for a difference in distribution in an easily described sum-
mary measure of the data [39]. Non-parametric tests are often considered a test for a
difference in the median, but this interpretation is only valid if the shapes of the two
distributions being compared are the same. This makes it more difficult to tell whether
a statistically significant difference is meaningful. For example, two methods may show
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the same median in their performance distribution but differ in skewness. This skew-
ness difference could be statistically significant according to a non-parametric test,
but it is unlikely meaningful in practice if the medians are equivalent.

It is common for researchers to assume a non-parametric test is necessary because
their data are not normally distributed. For the comparison of performance metrics,
the normality assumption will often be reasonably satisfied (see Appendix C.1).

Generally, non-parametric methods are focused on hypothesis testing rather than the
estimation of an interpretable effect size. Since effect size estimation is a goal in our
method comparison guidelines, Tukey HSD is recommended.

D Performance Metrics

When evaluating ML models, it is imperative to understand and report relevant
performance metrics. Over the past century, statisticians and other computational sci-
entists have developed many valuable metrics for regression and classification models.
This section reviews several of these metrics and provides recommendations to ensure
accurate and meaningful model evaluations.

D.1 Evaluating Models as Regressors

Ideally, regression models will accurately estimate a property in its original units. This
will enable chemists to understand the magnitude of differences between compounds,
which is ideal for many use cases such as drug design. Accurate regressor performance
also provides confidence that models can be used as components of in-vivo models or
multi-parameter optimization scores.

Two main categories of metrics are commonly used when evaluating regression models:
correlation metrics and error metrics. Correlation metrics such as Pearson’s r and the
coefficient of determination (R2) quantify the strength and direction of the relationship
between estimated and true values.

Error metrics such as the mean absolute error (MAE) or root mean squared error
(RMSE) are calculated as the mean difference between the estimated and true values.

MAE =
1

n

n∑
i=1

|Ti − Pi|

RMSE =

√√√√ 1

n

n∑
i=1

(Ti − Pi)2
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For the MAE, the median may be used instead of the mean for a comparable measure
that is less sensitive to large outliers. But note that the median only provides cer-
tainty that half of errors are below a threshold. For stronger control, a metric like the
percentile absolute error (PAE) will guarantee most model errors are within a certain
bound. For example if the 90PAE is equal to 3-fold, then 90% of the data has less
than 3-fold error.

While MAE, RMSE, and PAE can often provide an intuitive perception of model
performance, they pose some potential difficulties. Like the correlation metrics, error
metrics can be impacted by the dynamic range of the data. Datasets with a smaller
dynamic range can produce unrealistically small values for error metrics, even in the
case of poorly performing models.

When evaluating regression models, we recommend reporting the following.

• At least one correlation metric (Pearson r, R2)
• At least one error metric (MAE, RMSE, PAE)

All metrics above can be easily calculated using the sckit-learn or scipy Python
libraries.

D.2 Evaluating Models as Binary Classifiers

This section is relevant to both classification models and regression models evaluated
as binary classifiers. Often if a regression model has suboptimal performance as a
regressor, it can still provide value as a classifier.

Classification models often estimate the probability of positive class membership. Clas-
sification is performed by applying a threshold to the estimated probability. Regression
models can be converted to a classifier by applying a threshold to their property
estimations. See Section 3.3.1 for a description of how thresholding can be useful
when assessing the decisional impact of the performance differences between regression
models.

Once classification is performed, most methods for evaluating models are derived from
the confusion matrix shown below. The confusion matrix quantifies the number of
negative and positive classifications that agree and disagree with the true values.

Subsequently, the number of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) classifications can be used to calculate several metrics.

In small molecule property modeling, classification datasets are often highly imbal-
anced and contain a small number of positive examples and a large number of negative
examples. Some metrics can be misleading in these cases. Consider accuracy (ACC),
one of the most commonly used classification metrics. In the equation below, TP and
TN are as above, and P and N are the number of positive and negative examples.
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Fig. S1: The confusion matrix is used to calculate a range of classification metrics.

ACC =
TP + TN

P +N

If we have a dataset with 95 positive examples and 5 negative examples where all the
examples are classified as negative, our accuracy is (0+95)/(5+95)=0.95. While the
model is accurate, it has no practical value. When imbalanced datasets are used, a
more appropriate metric like Cohen’s κ should be used.

κ =
2 ∗ (TP ∗ TN − FN ∗ FP )

(TP + FP ) ∗ (FP + TN) ∗ (TP + FN) ∗ (FN + TN)

The previous example, which had an accuracy of 0.95, had a Cohen’s κ of 0.0.

Another classification metric, Matthew’s Correlation Coefficient (MCC),
reframes classification in a form that may be more accessible to those familiar with
regression metrics. This method, also known as the phi coefficient, is often considered
the classification analog of Pearson’s r. One of the strengths of MCC is its ability to
balance positive and negative classifications and handle imbalanced datasets.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

It is important to note that Cohen’s κ and MCC place equal importance on estimating
the positive and negative class. While this provides a useful summary of performance
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across both classes, for many applications in property modeling we only care about
estimation of the positive class. Two performance metrics typically used in this context
are precision and recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Precision indicates the fraction of true examples retrieved. If we apply a threshold to
a solubility classification model’s estimated probabilities and classify 100 compounds
as good solubility, precision quantifies the fraction of compounds selected that are
true positives. If 80 compounds selected are TP and 20 are FP, we have a precision
of 80/(80+20) = 0.8. Recall is the fraction of TP compounds selected. If in the same
example, there were actually 500 positives in the entire set, then we have 80 TP and
420 positive molecules misclassified as negative (FN). We can calculate the recall as
80/(80 + 420) = 0.16.

For imbalanced data, it is often informative to report precision relative to the preva-
lence of the positive class, which is the fraction of true positives in the data. Even
if precision appears to be suboptimal it may provide substantial enrichment over the
baseline prevalence if positives are rare. Common approaches to this are to take the
ratio (precision / prevalence) which is called the enrichment factor [40], or to take
the difference (precision - prevalence) for a more interpretable measure of lift. Con-
sider the case where precision is 50% and the positive prevalence is 10%. While this
precision may seem suboptimal, the enrichment factor is 5 fold, which is a substantial
improvement over baseline.

In assessing the performance of classification models, we frequently aim to evaluate
the balance between accurately identifying true positives and avoiding false positives.
One effective approach is to plot the true positive rate against the false positive rate at
various thresholds, thereby creating a Receiver Operating Characteristic (ROC) curve.
The area under this curve, known as the Area Under the ROC (AUROC), serves as a
valuable metric for evaluating classifier performance.

Because the ROC assesses performance over a range of thresholds, it is possible that
much of the curve will evaluate thresholds that would not be used in practice. This is
particularly the case for highly imbalanced datasets where estimation of the positive
class is most important. In these cases only the extreme left of the curve is of interest
and the AUROC has limited utility. [41]

PRAUC is more appropriate for this type of imbalanced data. [17] PRAUC plots
precision vs. recall and calculates the Area Under the Precision-Recall Curve. This
curve plots precision vs. recall at various thresholds. Figure S2 shows examples of
ROC and PR curves calculated using the scikit-learn Python library.
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Fig. S2: A ROC curve (left) and PR curve (right).

AUC metrics evaluate performance over a range of thresholds. While these metrics
are useful summary measures, it can be difficult to determine when a difference in
area is practically significant. To assess the decisional impact in a more interpretable
way, it is useful to pick a representative threshold for the use case and report metrics
specific to that threshold. This is equivalent to picking one point along the ROC and
PR curve. We provide an example of how the decisional impact might be assessed in
the context of the example in Section 3.3.1.

When comparing classification models, we recommend reporting the following metrics:

• Matthews Correlation Coefficient
• ROCAUC and PRAUC
• Decisional impact metrics relevant to the application

All the metrics above can be easily calculated using the scikit-learn or scipy Python
libraries.

D.3 Evaluating Models as Ranking Algorithms

In drug design, accurate ranking ordering is often desired to provide additional gran-
ularity beyond classification. Ranking can be used to prioritize compounds with
the most optimal properties, providing chemists with additional guidance on what
compounds to make first, and a better understanding of the relationship between
compounds.

Both regression and classification models can be used to rank compounds. For classifi-
cation models, compounds can be ranked by the estimated probability of the positive
class, which orders compounds by confidence.
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Spearman’s ρ and Kendall’s τ , evaluate the accuracy of the rank ordering generated
by a predictive model. While these metrics are often reported for the entire ranked list,
in drug discovery settings it is often most important to accurately rank compounds
at the top of the list. Computing the ranking metric at a top fraction according to
prediction model score (e.g., top 10%) may be more relevant than a global ranking
measure.

When comparing ranking algorithms, we recommend reporting the following metrics.
Spearman’s ρ or Kendall’s τ .

All the metrics above can be easily calculated using the scikit-learn or scipy Python
libraries.

D.4 Choosing the Modes for Model Evaluation

For regression models we recommend evaluating models as regressors and as ranking
algorithms. If regression performance is suboptimal and a typical target threshold used
in practice is known, then we recommend reporting classification metrics as well.

Classification models should be evaluated as classifiers and if additional decisional
granularity is desired (e.g., models will be used for drug design) we recommend
reporting ranking metrics as well.

E Fold Diagnostic Plots

When using advanced splitting methods, visualizations like Figure S3 can help ensure
minimal overlap between folds and reasonable target distribution per fold. Roughly
equal fold sizes improve statistical power by reducing performance variability due to
fold size.
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Fig. S3: Target distributions per fold should be approximately equal. For regression
(left), the dynamic ranges should be similar. For classification (right), the class distri-
bution should be approximately equal.
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