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Abstract 

The performance of electrochemical cells for energy storage and conversion, such as batteries and fuel cells, can be 

improved by optimizing their manufacturing processes. This can be very time consuming and costly through the 

conventional trial-and-error approaches. Machine Learning (ML) models can help to accelerate finding solutions to 

these types of problems. In academic research laboratories, manufacturing dataset sizes can be small, while ML models 

typically require large amounts of data. In this work, we propose a simple Transfer Learning (TL) approach where a 

Neural Network (NN) is trained in a vast dataset. Then, this NN is transferred to smaller datasets by freezing its 

weights and adding an extra trainable layer to improve the performance of this new TL-based NN. This novel approach 

is tested with pre-existing manufacturing experimental and stochastically generated datasets that were not acquired 

with the purpose of training ML models.  
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Introduction 

Electrochemical energy cells (EECs) are devices that work through a redox (reduction-oxidation) 

reaction. Between them we have energy storage devices, like Lithium-Ion Batteries (LIBs) cells, and energy 

conversion devices, like Proton Exchange Membrane Fuel Cells (PEMFCs). Both applications play a 

crucial role towards the green transition needed to mitigate climate change. Given the intermittent 

production of renewable energy sources and an on-demand consumption requirement, EECs can help to 

better integrate these energy sources into the energy matrix. On one side, LIBs present a high energy 

density, extended lifespan, and low self-discharge that has significantly impacted various industries, 

including electronics and telecommunications, and served as key components in portable devices.1 2 LIBs 

are also contributing to the electrification of the transportation industry by being used in electric vehicles 

(EVs). 3 On the other side, PEMFCs presents high efficiency, low operating temperature and zero carbon 

emissions4 and can act as an alternative application where EVs face limitations, such as heavy-duty trucks. 

However, despite the mentioned advantages, both LIBs and PEMFCs face challenges requiring further 

research and development efforts to optimize their manufacturing processes to attain better performance 

and efficiency.5,6 

The redox reaction in a commercial LIB cell occurs at its main components, the positive and the 

negative electrode, and the final electrochemical performance of an electrode depends on their 

microstructure, which is highly influenced by the manufacturing process.7 The manufacturing process 

includes different stages, the first of them is the slurry preparation, which consists of mixing active material 

(AM), electron conductive additive, binder, and solvent. This is followed by the slurry coating over the 

current collector. Then, since this is a wet process, it is followed by the drying step, where the solvent is 

evaporated to get the dried electrode. Then, the electrode is calendered to improve the contact between the 

electrode and the current collector and to reduce the overall thickness, which improves the cell energy 
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density. By controlling these manufacturing parameters, like the AM chemistry selected for the slurry 

preparation or the gap and the speed in the rolls during calendering, we are able to also control the electrode 

microstructure. Therefore, the effect of these manufacturing parameters on the final electrode properties 

(density, porosity, mass loading, tortuosity factor) must be well understood to choose the best set of 

parameters that allow the optimization of the LIB cell performance.8–10 

For PEMFCs, the Gas Diffusion Layer (GDL) is one of the most important components controlling 

the electrical and thermal conduction, reactant gases’ dispersion and diffusion, and water management, 

which ultimately affects the PEMFC’s performance. The three main stages of the GDL manufacturing 

involve carbon fiber production, followed by carbon paper substrate preparation and lastly, the finishing 

treatment. Starting with a wet-spinning step, polyacrylonitrile (PAN)-derived carbon fibers are processed 

into precursor fibers. These carbon fibers are sized and chopped after stabilization and carbonization. To 

improve the mechanical stability, conductivity, and reach desired porosity, a step involving the previous 

carbon fibers, mixed with water and binder, are then subjected to papermaking, bonding, impregnation, 

curing, and carbonization steps. Finally, the GDL substrate is dipped in polytetrafluoroethylene (PTFE). 

By varying the manufacturing parameters involved in the mentioned steps, such as the weight percentage 

of carbon and PTFE loading, this can ultimately affect the properties of the GDL such as electronic and 

thermal conductivities, porosity and tortuosity.11,12 Which makes also this manufacturing process relevant 

for the optimization of the GDL performance.  

For many years, numerous studies based on experimental approaches have been conducted to gain 

insight into the electrochemical, physical and mechanical phenomena in LIB electrodes and PEMFC 

GDLs.13–23 The goal is to help understand the relationship between input factors and responses.23  However, 

designing experiments is a complex process due to the large number of input parameters and the intrinsic 

properties of materials involved, which hinders the quick optimization of the LIB electrodes and PEMFC 

GDLs manufacturing processes.24,25 Additionally, experimental outputs have limited resolution, and often 

it is difficult to characterize and track the microstructure formation process over time, thus limiting the way 
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researchers can control and optimize experiments. To compensate the intrinsic experimental limitations, 

computer simulations arose as efficient complementary tools to assess LIB cell processes and GDL 

performance.26–29 Computational modeling allows to understand LIB cells process from a different 

perspective by resolving numerically the mathematical equation that describes the physical process taken 

under consideration.  

In the case of LIB cells manufacturing, the ARTISTIC project30 has been a pioneer in optimizing 

these processes with different computational modeling techniques at the mesoscale. The ARTISTIC project 

simulates the entire manufacturing chain of electrode and cell, from the slurry preparation, passing by its 

drying, its calendering, its electrolyte filling, to reach the resulting cell performance. These physics-based 

computational models simulate and predict the influence of materials properties and manufacturing 

parameters on the electrode and cell properties.16 They have been calibrated and validated against 

experimental data. To face the computational cost that these models can have, data-driven Machine 

Learning (ML) surrogate models have also been trained with the physics-based models obtained datasets 

to accelerate the optimization of different manufacturing aspects.24,25,31,32 Recently, in the LIB cell field, a 

Deep Learning (DL) model has been trained to track microstructure evolution over time during the electrode 

calendering by using Discrete Element Method (DEM) time series data. 33 Also, for PEMFCs, Random 

Forest (RF) models have been trained to predict different properties of the GDLs as a function of their most 

relevant manufacturing parameters.34 

Since the numerous variables impacting the final electrode quality and performance, optimizing 

these processes with, for example, a trial-and-error method is not straightforward. In this scenario, ML 

techniques are excellent tools to unveil patterns and relationships hidden in this data and to optimize these 

processes.35 ML algorithms have a huge potential in other critical domains, including applications such as 

material discovery, real-time monitoring, state estimation, battery usage, fault detection or life cycle 

management.36 As we have previously demonstrated in our ARTISTIC project initiative, ML can be used 
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to accelerate both the understanding of new materials (chemistry and formulation), and the optimization of 

LIB electrode and cell manufacturing process.37  

Within ML, supervised ML techniques require labeled data, where each input data point has an 

associated output value, to enable data-driven predictions and optimizations. On the other hand, 

unsupervised ML uses unlabeled data to find patterns in it. For LIB cells, both mentioned types of ML 

algorithm have been applied to experimental datasets. Particularly for NMC electrodes, we have studies 

involving different stages of the manufacturing chain with different algorithms. For example, Pinto-Cunha 

et al. analyzed Decision Trees (DTs), Support Vector Machine (SVM), and Deep Neural Networks (DNNs) 

algorithms to uncover the interdependencies between slurry parameters and NMC final properties.38 

Duquesnoy et al., in addition to considering slurry parameters, included coating ones to develop an 

automatic methodology that used a Gaussian Naives Bayes classifier to determine if the resulting electrode 

is homogeneous or heterogeneous.31 Furthermore, K-Means clustering was used in the calendering step of 

NMC-based electrodes by Primo et al..39 For graphite anodes, Faraji-Niri et al. collected a lab-scale dataset 

containing control variables in the slurry and coating stages to predict final properties of the electrode 

through the use of RF models.40 For the State of Health (SoH) estimation of commercial LGM50 cells, a 

Gaussian Process Regressor was trained by Faraji-Niri et al. by selecting features of electrochemical 

impedance spectroscopy (EIS) data.41 Moreover, Neural Networks (NNs) have been developed to detect 

cracks in LIB electrodes by using 3D image data42 and to map the 3D architecture of NMC particles with 

focused ion beam slicing in sequence with electron backscatter diffraction data.43 Meanwhile for GDLs, 

various literature works show the use of ML models for different applications. For instance, Hou et al. 

formulated an Extreme Learning Machine (ELM) model that allowed to obtain the optimal GDL structure 

parameters with the minimum temperature, maximum current density, and good oxygen concentration 

uniformity.44 Shum et al. used DT and convolutional NN (CNN) algorithms to segment GDL’s X-ray 

computed tomography (CT) image stacks, comparing their performance with basic image processing 

techniques.45 In addition, Cawte et al. developed a 3D CNN to predict the GDL materials’ permeability 
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directly from 3D binary image data.46 While Froning et al. also used a CNN model to predict the GDL 

materials’ permeability, but with stochastically generated microstructures.47 Saco et al. tested and observed 

SVM regression, Linear Regression (LR) and k-Nearest Neighbors algorithms on different humidification 

processes during experimental studies of PEMFCs. They concluded that, in their case of study, LR provided 

better accuracy that other models.48 Furthermore, for deformed GDL, Wang et al. Built an M5  model, which 

includes multi-physics and multi-phase flow simulation, ML-based surrogate modelling, multi-variable and 

multi-objects optimization. They also compared response surface methodology (RSM) and artificial NN 

(ANN) methodologies. This M5 model proved to be effective and efficient for optimizing the GDL current 

density and oxygen distribution.49 It is worth mentioning that all these previous works have emphasized the 

development of ML tools to analyze vast datasets. Surprisingly, none of the previous works addressed the 

problem of how to derive reliable ML models with smaller datasets, arising either from the lack of enough 

experiments or from the computational cost of running large simulations. 

Transfer Learning (TL) is a very interesting paradigm within ML that takes advantage of the 

knowledge learnt from solving one task to accelerate learning and improve performance on a related but 

distinct task.  This approach uses some existing ML model trained on a vast dataset in the source domain 

and adapts or extends it to extrapolate its predictive power to a different domain with a smaller target 

dataset. This significantly reduces training time and data requirements compared to building a model from 

scratch.  TL practices are usually linked to NNs that allow data-driven strategies to benefit from existing 

knowledge in related domains, improving their overall performance. TL has proven excellent results in 

different fields, such as medicine, mechanics, arts, physics, security or biology.50  Specially in tasks which 

involve computer vision51,52 and natural language processing techniques.53,54 TL has also been used in LIBs 

electrode and PEMFCs research, particularly for battery state estimations and ageing prognostics, 

extrapolating predictions to different domains and usage conditions.55–59 As far as we know, TL has not 

been used in LIBs cell or PEMFC GDLs manufacturing at the time of this writing. 
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 There are four main approaches for transferring knowledge: feature-based, instance-based, 

parameter/model-based and relational/adversarial-based.50,60  By adjusting the weights of individual 

instances (data points), instance-based transfer bridges the gap between the source and target domains, even 

when the overall data distributions differ. Feature-based transfer focuses on transferring the feature 

representation learned from the source domain to the target domain, while parameter-based transfer directly 

transfers the weights and biases learned by the pre-trained model as a starting point for the target domain 

model. In NN models, this approach freezes some layers and/or finetunes layers and/or adds some fresh 

layers to the original model. Finally, relational-based TL approaches transfer logical relationships or rules 

learned from the source domain to the target domain and are usually connected to generative adversarial 

networks (GANs).51–56,60  

In this present work, we propose a simple TL approach to understand how relationships between 

manufacturing parameters and electrodes properties can be transferred to different chemistries with 

experimental data and to different volume sizes with stochastically generated data (Figure 1). This proposed 

TL approach allows dealing with small datasets, which is commonly the case in academic research 

laboratories. In the experimental demonstration, we use a larger Graphite dataset to train a NN and transfer 

it to Si-Gra and NMC smaller datasets. In the case GDLs, we use a small volume dataset with lots of 

calculation to train a NN and transfer it to a larger volume dataset with less calculations that are 

computationally more expensive. It can be highlighted that none of these datasets were specifically 

generated with the purpose of training a ML model. Therefore, its distributions are not homogeneous, but 

our approaches herein allow us to obtain good results even with this aspect, which shows the robustness of 

the method.  In the following Section, we explain our findings in applying these approaches to our 

manufacturing process experimental dataset on LIBs cells and stochastically generated dataset on PEMFCs. 

We also use Explainable Artificial Intelligence (XAI) to interpret the behavior of our NN’s predictions, 

before and after TL approach being applied. Finally, we conclude with a discussion of the results obtained 

and indicate the future perspectives for our work.  
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Figure 1. Our workflow for the application of the simple Transfer Learning (TL) approach. In the upper 

part of the diagram, we have the case of applying it to an experimental dataset to predict electrode density 

and mass loading using Graphite data as the vast data source and transfer it through the TL approach to 

Si-Graphite (Si-Gra) and NMC smaller datasets. In the lower part of the diagram, we have the case of 

applying to modelling dataset (GDL200 as a source dataset and GDL1000 as target dataset, explained in the 

Methods section) to predict geometrical tortuosity. 

 

Results 

Experimental LIB cell manufacturing dataset 
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Overall, our pre-existing experimental dataset consists of 235 graphite-based, 53 Si-Gra-based and 

63 NMC-based electrodes that were fabricated with the conditions specified in the Methods section. Figure 

2 shows the distribution of the experimental manufacturing parameters for each chemistry. As global 

aspects of this distributions we can highlight that Graphite is the most extensive one, in what respects to 

the range of values considered and amount of data that can be appreciated in the counts y-axis. Then, Si-

Gra and NMC have parameters in the same range except for some cases like the AM weight percentage in 

Si-Gra or solid content also in NMC. This makes the decision to use TL a good choice since it is expected 

that the extra layer will adapt the model to each of these particularities. The goal of this work is to learn the 

impact of these six input features on final electrode properties from Graphite-based electrodes and then 

transfer this learning to Si-Gra- and NMC-based electrodes. The size of these datasets reflects a typical 

experimental case where the acquisition of them demands a lot of resources. So, the simple TL approach 

proposed here is aimed at this kind of case recurrent in academic laboratories. 

The AM weight percentage varies from 85 % to 97.5 % percent for NMC and from 91 % to 95.5 % 

for graphite, this reflects the electrode density of commercial cells. While for Si-Gra the AM weight 

percentage corresponds to the weight percentage of Si in Graphite and goes from 8 % to 15 %. A coating 

speed value of 0.3 m/min is considered for Graphite and Si-Gra, while for NMC there are more cases 

considered between 0.2 m/min and 1 m/min. Regarding comma gaps, the range of values goes from 100 to 

300 µm for graphite and Si-Gra electrodes and from 50 to 400 µm for NMC electrodes. The values of the 

roll gap have been previously calibrated to produce different pressures for different values of the 

calendering gap.39, 61 For example, Primo et al. from our group calibrated the dependence of the pressure 

with the roll gap for a given electrode.49 While for Graphite the minimum and maximum values are 1 µm 

and 135 µm, for Si-Gra and NMC these values are 15 µm and 102 µm, and 20 µm and 206 µm, respectively. 

And their respctive mean values are 70 µm, 58 µm and 62 µm. For the roll speed we have two possible 

values of 0.27 m/min and 0.54 m/min. Finally, the solid content varies from 42 % to 66 % for NMC and 

from 22 % to 42 % for Graphite slurries, since the graphite slurry is more viscous at the same shear rate 
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and formulation62,63 due to the choice of the binder, and the solid content for Si slurries are close to the 

lower values of graphite (from 24 % to 32 %). 

 

Figure 2. Distributions of the pre-existing experimental dataset manufacturing parameters used as input 

features in the feed-forward NNs for each electrode chemistry: Graphite (green), Si-Gra (blue) and NMC 

(red). 

The final electrode properties considered in this work to predict are density and mass loading, which 

their distributions are presented in Figure 3. Electrode density together with the electrode mass loading are 

important properties that control the final performance of the LIB cells. Higher electrode mass loading and 

electrode density leads to a higher energy density with a trade-off of a lower power density. The 

optimization of these properties is always a balancing act and is also highly dependent on the type of 

electrode. As we can see in Figure 3a, Graphite- and Si-Gra based electrodes are generally less dense than 

NMC-based electrodes due to the lower density of graphite, which determines the maximum density of the 

final electrode density. On Figure 3b, the mass loading of NMC-based electrodes is wider and considers 

larger values than the other two AMs. The higher mass loading is due to two factors. NMC has a higher 
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density than graphite, resulting in a higher mass of AM in the same volume of the electrode. Also, as the 

solid content of NMC slurry phase is higher, a higher volume fraction of NMC is on the same area of the 

current collector for the same comma gap compared to Graphite or Si-Gra, resulting in a higher mass 

loading of NMC electrodes compared to those other electrode chemistries. 

 

Figure 3. Distributions of the targets electrode properties for the feed-forward NNs: (a) Density and (b) 

Mass loading. In each plot the electrode chemistries are represented with the following colors: Graphite 

(green), Si-Gra (blue) and NMC (red). 

In this experimental demonstration of our simple TL approach, we studied the dependence of electrode 

density and mass loading on the fraction in mass of AM and percentage of solid content in the formulation; 

coating speed and comma gap during coating; and roll speed and roll gap during calendering. To simplify 

the posterior application of TL techniques and training, we separated the two prediction problems, i.e. 

prediction of electrode density and prediction of mass loading. In both cases, a train-test split of 70 %-30 % 

was performed on the dataset per electrode. Then, 10 % of the training set is separated as validation set 

during the training. The optimization loss function was the Mean Absolute Percentage Error (MAPE) and 

the Adam optimizer was used per 250 epochs. Figure 4 shows the MAPE loss of the NN with the Graphite 
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dataset for both cases of density and mass loading. For both models, it can be seen that the loss decreases 

with an asymptotic shape until it reaches a plateau for both train and validation sets. This indicates that 

optimal weights of the NNs are found and there is neither over- nor under-fitting. The following results in 

plots and tables correspond to evaluations in the test set. 

 

Figure 4. Mean Absolute Percentage Error (MAPE) loss plot for (a) Density and (b) Mass loading for 

both training (blue curve) and validation (red curve) Graphite datasets when training with the NN model. 

Having obtained the good performance of the NNs for graphite, that could capture the relationships 

between the experimental features and targets, now we extend it to Si-Gra and NMC smaller datasets. 

Training this kind of model for both of these electrodes with the lack of data leads to overfitting in the 

respective training set, as shown in Figures S1 and S2 of the Supporting Information and the discussion 

there. Thus, the aim of this section is to adapt these NNs with the proposed TL approach to the new 

chemistries. To overcome this problem, we freeze the weight in the architecture connections of the NN for 

graphite and add an extra hidden layer to each one of the other chemistries with the same number of nodes 

in the corresponding architecture. So, being only the weights of this layer trained the problem adapts better 

to the amount of data of Si-Gra and NMC. The need for these additional layers can be justified with the 
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results shown in Table 1. The pre-trained NN for predicting electrode density gives an error of 4.53 % when 

evaluated with graphite-based test data. The error of this model increases up to 78.81 % and 56.13 % when 

tested on Si-Gra and NMC test data. This is because the pre-trained model is extrapolating outside the 

feature range for which it was fitted, as seen in Figures 2 and 3. In the next row of Table 1 it can be 

appreciated a diminution in both Si-Gra and NMC errors, where these errors decrease to 14.53 % and 

8.09 %, demonstrating the improvement of the TL approach NN when an extra layer is added. For the NNs 

to predict electrode mass loading we have a similar behavior being 13.9 % the error when evaluated in 

graphite test data and increasing to 44.98 % and 70.82 % for Si-Gra and NMC data, respectively. These 

errors decrease to 3.71 % and 10.61 % after the simple TL approach is applied. 

Table 1. Mean Absolute Percentage Error (MAPE) of density and mass loading predictions in the test sets 

for both, pre-trained and TL approach NNs. 

 Error (MAPE) [%] 

 Density Mass loading 

 Graphite Si-Gra NMC Graphite Si-Gra NMC 

Pre-trained 

NN 
4.53 78.81 56.13 13.90 44.98 70.82 

TL approach 

NN 
-- 14.53 8.09 -- 3.71 10.61 

Figure 5 shows this in a more graphical way, where individual predictions are plotted against its 

actual value. In general aspects, in the left column of plots we have the pre-trained NNs, so with the results 

of the MAPE presented in Table 1, a good performance is not expected Si-Gra and NMC test data. In the 

right column we have the transferred NNs, so an improvement is expected with respect to the left column. 

Figures 5 show the linear tendency of an ideal model as a dashed gray line. For both pre-trained NN (Figures 

5a and 5c), the predictions of Graphite are displayed, where in the case of density we obtain a good behavior 

while for the case of mass loading an artifice of overestimating low mass loading values is generated. Both 

Si-Gra and NMC are underestimating the actual values for the density and overestimating the Si-Gra mass 

loading. In Figure 5b and d it is shown how this is fixed with the TL approach NNs, where Si-Gra and NMC 

predictions are improved in the range of expected values, despite the relative differences between them are 

https://doi.org/10.26434/chemrxiv-2024-69t12 ORCID: https://orcid.org/0000-0001-7362-7849 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-69t12
https://orcid.org/0000-0001-7362-7849
https://creativecommons.org/licenses/by/4.0/


 
 

14 
 

not modified in the density prediction but they are improved for the mass loading predictions, where even 

the tendency slope is improved for both chemistries. Thus, the simple TL approach allowed us to generate 

new models with great accuracy despite the limitation in the size of the data. 

 

Figure 5. Prediction versus experimental values of: (a) Density (Pre-trained NN), (b) Density (TL 

approach NN), (c) Mass loading (Pre-trained NN) and (d) Mass loading (TL approach NN) in the test 

sets. In each plot the electrode chemistries are represented with the following colors: Graphite (green), Si-

Gra (blue) and NMC (red). 
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To add explanation to the predictions of the NNs, we use XAI, which is a technique used in AI to 

add interpretability and transparency to the usual black-box ML models. In Figure 6 we show the Shapley 

values for the pre-trained and the TL approach NNs for a randomly selected test experiment for each 

chemistry. These Shapley values compute the importance of each feature close to a fixed data point when 

all the other feature values are constant.64 This allows us to compare the impact of each manufacturing 

parameter on the final electrode property for the different chemistries when evaluating a given experiment. 

The base value indicates the average of all predictions in the dataset of the given chemistry. The red or blue 

color of the arrows in these plots indicates whether the associated feature, with the specified value and unit, 

pushes the prediction to a higher or lower value relative to this base value. The magnitude of each feature's 

contribution is indicated by the size of the corresponding arrow. When all these arrow lengths are added to 

the base value, with the respective sign given by the color, the final prediction is obtained. For the selected 

experiment with Graphite, we have a major impact of the AM wt.%, roll gap and the comma gap by pushing 

the prediction to the negative side of the base value, while the solid content pushes it to the positive side. 

While for the selected experiments of Si-Gra and NMC, the influence in their prediction is dominated in 

both cases by the roll gap, comma gap and the AM wt.%, with same direction on each one but with different 

intensities. This XAI allows the further improvements of these specific experiments by indicating which 

manufacturing parameters have more influence in the electrode property. 
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Figure 6. Representation of Shapley values for the prediction of the NN for electrode density for: (a) 

Graphite, (b) Si-Gra, and (c) NMC active materials. These plots show how the input features of a specific 

data point contribute to the NN’s prediction, by showing the magnitude and direction of the contribution 

as arrows with different colors for increase (red) or decrease (blue). 

To have a global overview of the importance of each manufacturing parameter in the prediction of 

density, we summarize in Figure 7 the evaluation of Shapley values for each experiment in the test sets. 

Here each dot is a particular experiment of the experimental dataset. For Graphite experiments, pre-trained 

NN was used, while for Si-Gra and NMC, the respective TL approach NNs were used. The color of each 

dot indicates the value of the feature (relative to its distribution) while the x-axis positions indicate the 

individual impact in the NN prediction (SHAP value). The y-axis of each subfigure is sorted in descending 

order of importance of each manufacturing parameter. We can highlight that the impact of the 

manufacturing parameters on the NNs prediction depends on the chemistry. This particularity indicates that 

the TL approach can modify the relevance of the manufacturing parameters in the pre-trained NN when 
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transferred to a new dataset. While for Graphite and Si-Gra pre-trained and TL approach NNs, respectively, 

the manufacturing parameters that have a larger influence in the outputs are roll gap, comma gap, AM wt.% 

and solid content. For the NMC TL approach NN, the three most relevant manufacturing parameters change 

their order with respect to the previous ones: comma gap, roll gap, and AM wt.%. It can be highlighted that 

in all cases roll speed and coating speed do not have an impact in the NN’s predictions. This can be 

attributed to their distributions (see Figure 2), which are composed of specific values. This should not be 

misunderstood as meaning that these manufacturing parameters have no impact in the final electrode 

properties, but as a characteristic of the trained NNs with the particularities of the pre-existing experimental 

dataset. Moreover, this global representation could be used for selecting features and considering a less 

complex model without taking into account these manufacturing parameters for this case or to improve 

their experimental sampling. 

 

Figure 7. Global representation of Shapley values for the predictions of the NNs for electrode density for: 

(a) Graphite, (b) Si-Gra, and (c) NMC AMs. The SHAP value of each manufacturing parameter for each 

test experiment is given in the x-axis, while the color of each dot indicates if the feature value is higher 
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(red) or lower (blue), relative to its distribution. The y-axis is sorted in descending order per 

manufacturing parameter relevance for the NN. 

 

Stochastically generated GDL manufacturing dataset  

The overall performance of the proposed TL approach might not be perfect, considering the 

percentage errors for some cases presented in Table 1. Nevertheless, this could be attributed to the particular 

distribution of the pre-existing experimental dataset. That is where our stochastically generated GDL 

manufacturing dataset comes into the picture. The source GDL200 dataset has 240 entries, while the target 

GDL1000 has 78 entries. These sizes maintain a similar relationship between source and target datasets sizes 

of the experimental demonstration. But, since these are stochastically generated, they have a more 

homogeneous distribution. Despite the improvement in this aspect, these data were not specifically 

generated for the purpose of demonstrating this TL approach, which makes the results obtained even more 

robust. The distribution of the input features for the NN to predict the geometric tortuosity are shown in 

Figure S3. In the GDL200 dataset, a uniform distribution is presented. While the GDL1000 presents some 

particularities due to the smaller amount of data. For both datasets we have similar ranges for every input 

parameter. Fiber diameter ranges from 6.0 to 12.0 µm. Fiber and binder concentrations vary from 10% to 

25% and from 5% to 10%, respectively. The thickness goes from 280 to 320 µm, and, finally, the factor 

compression from 0.0 to 0.5. 

The distributions in each dataset of the geometrical tortuosity are shown in Figure 8, which is the 

target predicted by the NN in this section. The geometric tortuosity of the GDL is an important property as 

it plays a crucial role in gases, liquids and heat transport within the system. It also affects the permeability, 

which ultimately impacts the efficiency and performance of the PEMFC. Higher tortuosity means longer 

diffusive paths, which will affect the GDL’s transport properties. It can be highlighted that both GDL200 

and GDL1000 geometrical tortuosity are right-skewed distributions, and GDL1000 is shifted to the right of the 
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GDL200 one. While the mean value of the GDL200 is 1.07, the GDL1000 is 1.09. Also, the minimum value in 

GDL200 is 1.03, while in GDL1000 is 1.08. Both of the distributions extend till 1.17. 

 

Figure 8. Distributions of the target geometrical tortuosity for the feed-forward NNs for each dataset: 

GDL200 (red) and GDL1000 (blue). 

For the training of the NN, a train-test split of 70 %-30 % was performed on each dataset, being the 

first one only used in the training and the second one for the test evaluations performed in the following 

tables and plots. As in the previous case, the optimization loss function was the MAPE, and the Adam 

optimizer was used per 250 epochs. Figure S4 shows the MAPE loss of the NN with the GDL200 dataset, 

where the loss decreases with an asymptotic behavior and reaches a plateau close to 2%. When this NN is 

evaluated in the test sets, we have a MAPE value of 2.13% for GDL200 and of 2.61% for GDL1000. This 

higher error for GDL1000 can be improved by applying the TL approach that already showed improvement 

in with the experimental dataset. By adding and training the extra layer to the pre-trained NN, then the 

evaluation in the GDL1000 test set decreases to 1.96%. This information is summarized in Table 2, 

demonstrating that there is also an improvement with the TL approach when applied to this stochastically 

generated dataset. 
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Table 2. Mean Absolute Percentage Error (MAPE) of geometrical tortuosity predictions in the test sets for 

both, pre-trained model and TL approach.  

Geometrical Tortuosity MAPE [%]  

 GDL200 GDL1000  

Pre-trained NN 2.13                       2.61  

TL approach NN --              1.96  

Individual predictions are plotted versus the target values for the GDL1000 test set and both pre-trained 

(red squares) and TL approach (blue circles) NNs in Figure 9. As expected with the values of Table 2, the 

predictions of the pre-trained NN have a higher scatter in the predicted y-axis. This scatter is improved with 

the TL approach NN by having each prediction closer to the ideal prediction line. This improvement is 

clearer in the range that goes from 1.08 to 1.12, the three cases with higher geometrical tortuosity are 

worsened. However, these values are in the tail of the distribution, being less sampled than the ones in the 

range that is improved. 

 

Figure 9. Predicted versus target values of Geometrical Tortuosity in test set of the GDL1000 dataset with 

the pre-trained NN (red squared) and with the TL approach NN (blue circles).  
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Finally, we also use XAI in these datasets where entries of the GDL200 and GDL1000 test sets are 

randomly selected and evaluated with the pre-trained and the TL approach NNs, respectively. The obtained 

Shapley values are displayed in Figure S5. In the first case we have a major influence in the negative 

direction, relative to the base value, that it is mandated by thickness, fiber concentration and fiber diameter. 

While compression and binder concentration have similar contributions but in the opposite direction. For 

the second case compression is the only parameter that pushes the prediction to the negative direction. 

While all the other parameters push it to a higher value, thickness and fiber concentration being the most 

relevant ones for this test example. Going further, we can replicate this analysis for all the samples in the 

respective test sets and evaluated with the respective NNs. If this information is plotted together (Figure 

S6), we get an overview of the influence of each feature in the NNs predictions. In these stochastically 

generated GDL datasets we get that the influence of the features both in pre-trained and TL approach NN 

are in the same order of importance, i.e. there is not a significant change in the relative importance of each 

feature to the others when the predictions are made. As can be seen in Figure S6, the order of the importance 

of the features is the following one: thickness, fiber concentration, binder concentration, fiber diameter and 

compression. Thickness is the most relevant one and compression is the least relevant one in determining 

the geometrical tortuosity of the GDL microstructure datasets with our pre-trained and TL approach NNs. 

Discussion 

The novel and simple TL approach proposed in this work has proven to be suitable for EEC 

manufacturing problems. It was demonstrated with pre-existing experimental and stochastically acquired 

datasets. The well performance obtained for both cases reflects the robustness of the method by not 

considering datasets specifically designed with the purpose of training ML models. In every case, the 

interpretation of the models' predictions and the importance of each feature was explained by XAI. 

In the first application, the experimental dataset consisted of manufacturing process data of LIB cells 

with different AM chemistries. The approach consisted of using a vast Graphite dataset to train NNs to 
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predict electrode density and mass loading. These NNs were trained using as feature the following 

manufacturing parameters: weight percentage of AM and solid content in the formulation, coating speed 

and comma gap during coating, and roll speed and roll gap during calendering. The architecture of the NNs 

was designed differently for each target property. These NNs performed well in the Graphite dataset, but 

their performance metrics diminished when used to extrapolate in the smaller datasets of Si-Gra and NMC. 

The distribution of these Si-Gra and NMC datasets had both similarities and differences with the Graphite 

dataset, but they were not large enough to train NNs from scratch. This justified the use of TL by adding 

an extra layer to each one of the Graphite pre-trained NNs and training this extra layer to adapt these models 

to each one of these new chemistries. In both cases, the performance of the evaluation metrics improved 

considerably when evaluated with the TL approach NNs predictions. The interpretation of the influence of 

each parameter in the NNs predictions was also discussed for some test experiments for each chemistry 

using XAI. The global analysis of Shapley values allowed us to determine the influence of each feature on 

the final predicted properties and sorted them by relevance, showing that this depended on the type of 

chemistry.  

The second application of the simple TL approach was in the context of PEMFCs with 

stochastically generated GDL datasets with different volume sizes. In this case, small volume 

microstructures with lots of calculations were used to train a NN to predict the geometric tortuosity 

considering as input parameters the fiber diameter, the fiber concentration, the binder concentration, the 

thickness, and the compression. Then, the NN was transferred to a smaller dataset with microstructures of 

larger volume that were computationally more expensive to characterize. Since these datasets were 

stochastically generated, they have a more homogeneous distribution than the experimental ones. This 

property in the data resulted in even better results, which proved that the simple TL approach can perform 

better when applied to better distributed datasets. 

This work provides a proof-of-concept for developing efficient data-driven models with the simple TL 

approach to predict final electrode properties for new chemistries or high simulation volume sizes, by taking 
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advantage of pre-trained NNs when available data is not enough (as it can happen in academic laboratories). 

Our work perspectives include the application of our approach to LIB electrode formulations with other 

chemistries and to Sodium Ion and Solid-State Battery electrode manufacturing processes. We believe that 

the proof-of-concept presented in this article illustrates that simple AI approaches can still deliver a lot in 

the complex field of EEC manufacturing.  

Methods 

Sample preparation and properties measurement in LIBs 

Our pre-existing experimental dataset consisted of three different chemistries for the LIB electrode 

AM: Graphite, Si-Graphite composite (referred to as Si-Gra) and NMC. It is worth mentioning that it was 

not acquired with the purpose of demonstrating the TL approach proposed in this work. For the positive 

electrode, LiNi1/3Mn1/3Co1/3O2 (NMC) AM, supplied by Umicore, was used. C-NERGY™ super C45 

carbon black (CB) from IMERYS and Solef™ Polyvinylidene fluoride (PVDF) from Solvay were used as 

the electronic conductive additive and the binder, respectively. Before mixing with the solvent, the powder 

components were first premixed overnight in a Turbula® mixer. The mixture was then transferred to a 

Dispermat CV3-PLUS high-shear mixer and the required amount of NMP (BASF) was added. The resulting 

mixture was mixed for 2 hours at 25 oC and 3000 RPM. For the graphite electrode, Na-CMC (molecular 

weight ∼250 K and degree of substitution ∼0.7, Sigma Aldrich), C-NERGY™ super C45 carbon black 

(CB)(IMERYS), and water were used as the binder, conductive additive, and solvent, respectively. The 

slurry mixing step was similar to the NMC slurry. For some of these graphite electrodes, Si nanoparticles 

were also used as AM blended with graphite and denoted as Si-Gra. 

The resulting slurries were coated over a copper current collector (16 μm) for Graphite and Si-Gra 

electrodes and an aluminum current collector (22 μm) for NMC electrodes with a prototype-grade comma-

coater machine (PDL250, People & Technology, Korea) at various comma gaps and coating speeds as 
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discussed in the experimental case of the Results. The electrodes were dried in a built-in two-part oven at 

80 and 95 °C for NMC electrodes and at 60 and 65 oC for Graphite and Si-Gra electrodes due to the different 

solvents used. The calendering of the electrodes was done with a prototype-grade lap press calender 

(BPN250, People & Technology, Korea) at various roll gaps and roll speeds. The temperature of the 

calendering process was maintained at 60 oC for all the electrodes.  

The resulting electrodes were characterized in terms of density and mass loading, providing a 

measurement of electrode energy density. A sample of electrode sections, 13 mm in diameter, was punched 

out of the electrode. Resulting electrode section’s thickness and mass were measured, subtracting the 

thickness and mass of the current collector to yield the final mass and thickness of the electrode. Mass 

loading (𝑚𝑙 ) of the electrode was calculated as: 

𝑚𝑙 (
𝑚𝑔

𝑐𝑚2) =  
𝑓𝐴𝑀 × (𝑚𝑒𝑙+𝑐𝑐−𝑚𝑐𝑐)× 4

𝜋 × 1.32   (1) 

where, 𝑚𝑒𝑙+𝑐𝑐 is the mass of the electrode along with the current collector, 𝑚𝑐𝑐 is the mass of the current 

collector, and 𝑓𝐴𝑀  is the total fraction of the active materials. The density (𝜌) of the final electrode was 

calculated as: 

 𝜌 (
𝑔

𝑐𝑚3) =  
𝑚𝑙 × 0.001

𝑓𝐴𝑀 × (𝑡𝑒𝑙+𝑐𝑐−𝑡𝑐𝑐)
 (2) 

where 𝑡𝑒𝑙+𝑐𝑐 is the thickness of the electrode along with the current collector, in cm, and 𝑡𝑐𝑐  is the thickness 

of the current collector, in cm. 

The formulation of the slurry, the coating and drying process parameters, and the calendering 

process parameters are taken as the input features of the model. The slurry is mixed at the same mixing 

speed and for a long enough duration for each type of electrode to ensure a homogenous mixture. For the 

formulation, the solid content of the slurry and the weight percentage of AM is varied. Equal weight 
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percentage of carbon additive and binder is taken for all the formulations. The solid content of the slurry is 

defined as, 

 Solid content (%) =
dry mass (i.e.  mass of AM + carbon additve + binder)

dry mass + mass of solvent
 (3) 

 

The coating and drying process are performed roll-to-roll. The parameters which control the coating 

and drying processes are coating gap, coating speed, and drying temperature. Among these parameters, 

drying temperature is fixed for each type of electrode according to the solvent and the other parameters are 

varied. Finally, the dried electrodes undergo the calendering process which is controlled by the roll speed, 

the roll gap and the roll temperature. In our experiments, the roll temperature is fixed, and the roll gap and 

roll speed are varied.  The fixed parameters for the mixing process were chosen given previous 

optimizations already performed in previous publications of our research group.39,65 The experimental 

dataset used in the current work was obtained and collected under the context of the ARTISTIC project.30 

Stochastic Generation of GDL microstructure and calculation of geometric 

tortuosity 

The GDL microstructures were generated using the FiberGeo module within the Geodict66 

software. The microstructures were stochastically generated and digitally characterized along with other 

properties in the context of our previous work34. In this work, geometric tortuosity was not used to train any 

ML model. The microstructures there consisted of infinite/ circular carbon fibers with the specified solid 

volume percentage (%). We used it here with domain sizes 2000 μm × 200 μm × thickness μm and 1000 

μm × 1000 μm × thickness μm with a voxel length of 1 μm. These domain sizes datasets are denoted as 

GDL200 and GDL1000, respectively. Our target property in this case is the geometric tortuosity, which digital 

characterization in the GDL200 dataset takes 65% less computational time than in the GDL1000 one. The 
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input parameters to compute this target are the fiber diameter, the fiber concentration, the binder 

concentration, the thickness, and the compression. 

The mentioned carbon fibers have specified diameter and an isotropic orientation using an orientation tensor 

that can be explained as follows. Mathematically, 𝐝𝐤 = (
xk

yk

zk

) is the unit vector describing the Kth fiber and 

n is the number of fibers. The orientation tensor can be expressed as the sum of the dyadic products of dk 

from all n fibers, divided by n: 

𝐓 =
1

n
(∑  n

k=1 𝐝𝐤𝐝𝐤
T) =

1

n
∑  n

k=1 (

xkxk    xkyk    xkzk

ykxk    ykyk    ykzk

zkxk    zkyk    zkzk

) = (
t11    t12    t13

t21    t22    t23

t31    t32    t33

) =

(
0.4966    0  0
− 0.4966    0
−     −   0.0068

)                       (4) 

Where the diagonal elements define the orientation strength for the corresponding directions. After the 

generation of carbon fibers, the binder (PTFE) was then incorporated into the GDL domain with the desired 

solid volume percentage. The Geometric Tortuosity (𝜏) was then computed to characterize the GDL 

microstructure. The calculation of geometric tortuosity was conducted in the direction perpendicular to the 

direction of the carbon fibers using the following equation: 

τ =
shortest path to inflow plane

distance to inflow plane
             (5) 

 

Transfer Learning Approach 

In our approaches herein, we use supervised ML by training feed-forward NNs to the pre-existing 

data collected from the LIBs cell experiments and the data stochastically generated for GDL, detailed in 

previous respectively subsections. NNs are selected due to their equation complexity that can learn the 

underlying non-linear relationships between the manufacturing features and targets. Considering that they 
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also present some limitations, their complex structure can make them prone to overfitting if not carefully 

regularized and training them often requires large datasets and significant computational resources. To learn 

the weights of the NNs during training, the Backpropagation algorithm is used.67 

As shown in the schema in Figure 10, we train a feed-forward NN on the source dataset (Graphite 

chemistry in LIBs cell experimental dataset and GDL200 in stochastically generated dataset) for predicting 

a final electrode property (density and mass loading in one case and geometrical tortuosity in the other). 

This NN captures the variations in manufacturing conditions and the changes produced in the target 

property. For the target dataset (Si-Gra and NMC on one side and GDL1000 on the other), we freeze this pre-

trained NN (Figure 10a) and add an extra layer to train and perform the same task (Figure 10b). The new 

layer added for each transferred NN is an adapter, processing the output data and extracting additional 

features specific to the different manufacturing conditions in the target domain. Thus, adding this extra 

layer to handle different manufacturing conditions most closely aligns with parameter-based TL. It does 

not directly modify the input features like the standard feature-based TL where an extra layer is added 

before the pre-trained NNs, but it also does not directly transfer the pre-trained NN weights (parameters) 

like parameter-based TL. Instead, it leverages the learned relationships encoded in the pre-trained NN's 

weights but adapts the final output. 
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 (a) (b) 

Figure 10. Training scheme of a feed-forward Neural Network (NN) on (a) source dataset (graphite-based 

electrodes for LIBs cell experimental dataset, and GDL200 for stochastically generated GDL dataset), and 

then used for a (b) TL approach adding an extra layer for the target dataset (Si-Gra and NMC dataset for 

LIBs cell experimental dataset, and GDL1000 for stochastically generated GDL dataset). 

Initially, for the experimental dataset, two feed-forward NNs are trained using the graphite source 

dataset (pre-trained NNs). One model predicts electrode density, and the other one predicts electrode mass 

loading. Then, one additional layer is added to each of the pre-trained NNs, creating two TL approach NNs 

for each output target (electrode density & electrode mass loading). The NN architecture of all the 4 models 

are depicted in Table 3, where the number of trainable parameters is also specified. For both pre-trained 

and TL approach NNs we use 6 input parameters: AM weight percentage and fraction of solid (solid 

content) in the formulation; coating speed and comma gap during coating; and roll speed and roll gap during 

calendering. In a similar way, a feed-forward NN is trained using the GDL200 dataset to predict the 

geometrical tortuosity by using as input parameters: fiber diameter, fiber concentration, binder 

concentration, thickness and compression. Then, one additional layer is added to this pre-trained NN to 

train the TL approach NN in the GDL1000 dataset. These other architectures are presented in Table 4. Each 

hidden layer in all six models is activated with the ReLU function. The codes to train these models were 

written in Python by using TensorFlow,68 along with other common scientific computing libraries.69 They 

were trained in a 13th Gen Intel(R) Core(TM) i7-13700H with 32 GB of RAM. 

 

Table 3. Feed-forward NN architecture of the pre-trained graphite model, and the TL approach. 

Neural 

Network 

Target 

output 

Number of hidden 

layers 

Number of 

nodes per layer 

Total number of 

trainable parameters 

Pre-trained 

Density 4 4 93 

Mass 

loading 
3 3 49 

TL approach Density 
1 (plus the freezed 

previous architecture) 
4 13 
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Mass 

loading 

1 (plus the freezed 

previous architecture) 
3 10 

 

Table 4. Pre-trained and TL approach feed-forward NN architectures for predicting geometrical tortuosity 

with the GDL manufacturing dataset. 

Neural Network Number of hidden 

layers 

Number of nodes per 

layer 

Total number of 

trainable parameters 

Pre-trained 3 3 46 

TL approach 1 (plus the freezed 

previous architecture) 

3 10 
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