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ABSTRACT: The development of machine learning models to predict the regioselectivity of C(sp3)–H functionalization 
reactions is reported. A dataset for dioxirane oxidations was curated from the literature and used to generate a model 
to predict the regioselectivity of C–H oxidation. To assess whether smaller, intentionally designed datasets could 
provide accuracy on complex targets, a series of acquisition functions were developed to select the most informative 
molecules for the specific target. Active learning-based acquisition functions that leverage predicted reactivity and 
model uncertainty were found to outperform those based on molecular and site similarity alone. The use of acquisition 
functions for dataset elaboration significantly reduced the number of datapoints needed to perform accurate 
prediction, and it was found that smaller, machine-designed datasets can give accurate predictions when larger, 
randomly selected datasets fail. Finally, the workflow was experimentally validated on five complex substrates and 
shown to be applicable to predicting the regioselectivity of arene C–H radical borylation. These studies provide a 
quantitative alternative to the intuitive extrapolation from “model substrates” that is frequently used to estimate 
reactivity on complex molecules. 

Introduction 

Data science and machine learning (ML) tools 
have recently been used to provide quantitative 
guidance for aspects of synthetic organic chemistry 
that historically have been largely driven by expert 
chemical intuition. ML models have been developed to 
predict reaction conditions,1,2 reaction yields,3–7 and 
reaction selectivity.8,9 There is great interest in the 
development of ML models that predict the 
regioselectivity of direct C–H functionalization 
reactions, that are controlled by the innate reactivity of 
the substrate and/or reagent – rather than by a 
directing group. Predictive models can derisk direct C–
H activation in the late-stage of a multistep synthesis 
campaign, aid synthetic planning,10 and provide 
rationale for late-stage diversification efforts. Recent 
reports have primarily focused on predicting the site of 
arene C–H functionalization, including arene radical 
borylation,11 electrophilic aromatic substitution,12,13 Ir-
catalyzed borylations,14 and others.15–17 Despite 
developments in models for product prediction that 
can identify the right reaction when provided with 
reagents and substrates, they remain approximative in 
challenging regioselectivity situations.18 More 

generally, models that predict the regioselectivity of 
C(sp3)–H functionalization remain underdeveloped. 

The key challenge toward predicting the 
regioselectivity of innate C(sp3)–H functionalization in 
complex molecules is that there are typically multiple 
sites within the molecule with apparently similar 
reactivity (Fig. 1a). For certain reactions, expert rules 
can allow the chemist to intuit the most likely site of 
reaction. For example, White and coworkers have used 
an informer library to develop rules that aid prediction 
of the most likely site of Fe-catalyzed C–H oxidation.19 
Nonetheless, a quantitative model for predicting the 
site of C(sp3)–H functionalization could improve 
deployment of such methods in complex systems that 
possess multiple similar sites. As an example, Sigman 
and Davies reported a logistic regression analysis to 
predict the site of carbene C(sp3)–H functionalization 
of silyl ethers based on calculations of ground-state 
chemical properties of the possible reaction sites.20 

Along with the opportunities presented by 
predicting the regioselectivity of innate C(sp3)–H 
functionalization, a major obstacle is the development 
of a dataset to support this task, especially on complex 
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substrates. In principle, the most straightforward 
solution to improve model performance would be to 
increase dataset size and leverage high-throughput 
experimentation (HTE). HTE has been effectively 
leveraged to sample reaction condition space for a few 
substrates for which calibration curves can be 
prepared to enable quantification of the products.21 
However, sampling substrate space can be more 
challenging, often requiring large up front investments 
of time to generate calibration curves of possible 
reaction outcomes.2,22 This challenge is exacerbated 
when considering innate C(sp3)–H functionalization 
since it is not clear a priori what the site of reaction will 
be. Despite progress in automated structure 
prediction from NMR spectra, the deconvolution of 
NMR mixtures is currently limited to aromatic 
compounds.23 Thus, the purification, characterization, 
and assignment of the site of C(sp3)-functionalization 
on a complex molecule often becomes the rate-
limiting step in dataset generation (Fig. 1b).  

Additionally, a recent report on C(sp2)–H 
borylation shows that, even with an HTE dataset, 
regioselectivity predictive models may fail when 
molecules of interest are far from the training set 
distribution.11 Despite significant progress in designing 
substrate scopes to assess the domain of applicability 
of new methods,24,25 the extrapolation to complex 
substrates often remains challenging. The difficulty 
associated with quantifying the applicability domain 
and extrapolation capabilities of ML models renders 
their use on complex targets risky (Fig. 1b). 

Here we report a method to efficiently train ML 
models to predict the regioselectivity of innate C(sp3)–

H functionalization reactions on complex targets. To 
overcome the experimental constraints that limit 
dataset size and avoid inaccurate extrapolation from 
the training set, this approach focuses on target-
specific dataset generation. A strategy was developed 
to select the most informative dataset to accurately 
predict regioselectivity on the target molecule using 
acquisition functions (Fig. 1c). Acquisition functions 
(AFs) are policies on how to choose the next substrate 
to evaluate. This approach seeks to minimize the 
distribution shift between training data and the 
molecule of interest to provide high-performance 
models in a low-data regime. As a proof-of-concept, 
we use a small literature dataset to develop a model to 
predict the regioselectivity of dioxirane C(sp3)–H 
oxidation. We then show that the use of AFs enables 
the design of substrate-specific subsets of the dataset 
that improve model accuracy on a given substrate 
compared to models trained on the whole dataset. This 
task was formulated with the goal of predicting the 
regioselectivity of C(sp3)–H oxidation in a complex 
molecule by performing reactions on commercially 
available small substrates. We demonstrate that the 
use of AFs to recommend the substrates improves 
model performance relative to random selection, and 
the strategy was experimentally validated on a set of 
five complex molecules. Finally, we show this general 
workflow can be applied to a literature dataset for 
radical arene C–H borylation, demonstrating the 
generality of the approach. Taken together, the findings 
illustrate a strategy that both leverages literature data 
and significantly reduces the number of experiments 
required to develop high-performing models of 
regioselectivity.

 

Figure 1. a. Example of late-stage functionalization regioselectivity issues on cedrol. b. Challenges towards building general 
models. c. This work strategy for complex target regioselectivity prediction. 
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C(sp3)–H Oxidation Dataset 

As a proof-of-concept, we focused on 
dioxirane-mediated C–H oxidation reactions (Fig. 2a), 
which are controlled by the substrate’s innate reactivity. 
We mined reaction regioselectivity data for dimethyl-
dioxirane (DMDO) and trifluoromethyl-dioxirane 
(TFDO),26–41 curating reports providing detailed 
information about yields and selectivity. After 
preprocessing the dataset (details in SI section II.2), 185 
unique reactions remained and were used for further 
modeling. We noticed that (a) reaction conditions vary 
little across the dataset (details in SI section II.3) and (b) 
reports showed that TFDO and DMDO maintained the 
same regioselectivity.42 Consequently, we decided to 
leverage data from both dioxirane reagents and rely 
solely on the description of the C–H bonds, not the 
reagents, for the design of relevant reaction descriptors.  

We began by benchmarking regioselectivity 
models using different physicochemical descriptors 
(including steric, electronic and local environment 
encoding, details in Fig. 2b-c and in SI section III.2) and 
ML models. Random forest (RF) proved to be best 
performing model (see SI section IV.3). The performance 
of regioselectivity models is often evaluated using n-fold 
cross-validation or validation on an expert-designed out-
of-sample set. In this context, Nippa et al., elegantly 
used high-throughput experimentation to validate and 
enhance a model trained on literature-reported radical 
borylation reactions.11 Unsurprisingly, they report that 
regioselectivity predictions are optimal for substrates 
similar to those in the training set and a drop in accuracy 
for more distinct molecules. This common type of 
distribution shift between the training and test sets is 
particularly problematic in the context of complex 
molecule synthesis; structurally complex intermediates 
proposed for the final steps of a multistep synthesis are 
inherently “out-of-sample” because they often have 
never previously been synthesized.43 The performance of 
our C–H oxidation model was evaluated by both a leave-
one-out (LOO) task and a validation task on complex 
molecules. The latter was designed specifically to 
understand how our models performed on the targets of 
interest while trained on simpler, readily available 
substrates. The training set contains all molecules with 
less than 15 carbons (135 molecules) and the test set 
contains the complex molecules (50 molecules with 
more than 15 carbons). The complex molecule dataset 
consists of 7 di- and tri-peptides, 3 taxol derivatives, 3 
macrocycles, 22 steroids, and 15 miscellaneous 
(structures are in SI section II.5). 

 

Figure 2. a. Dioxirane C(sp3)–H oxidation dataset. b. C–H 
descriptor selection (for further details see SI section III.2). The 
Chemist-Selection has 5 descriptors: BDE, charges of H and C, 
and %Vbur of H and C of the site. The ML-selection has 23 
descriptors including charges, BDE, steric, and local 
environment information. c. Top-1 performances of RF model 
trained with different sets of descriptors for the C–H bond and 
validated on leave-one-out and the complex molecules 
(molecules with more than 15 carbons). d. Regioselectivity 
predictions of RF trained on the small molecules with the two 
best sets of features on four selected targets. The 
experimental observation and the top-1,2,3 of the models are 
displayed for each target. 

To put our results in context, a baseline was 
designed according to empirical rules-of-thumb on the 
reactivity of C(sp3)–H sites which decreases in the 
following order: benzylic, tertiary, secondary, and 
primary (see SI section IV.2 for details). Our models 
significantly outperform this rule-based baseline on the 
LOO task (~80% top-1 accuracy for the best performing 
models versus 38% for the baseline detailed in Fig. 2c) 
and when predicting on large molecules (~50% top-1 
accuracy versus 12% top-1 for the baseline). As 
expected, we observe that predictive performances on 
the more complex targets are significantly lower than 
when the models are evaluated as leave-one-out 
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(performances drop from 80% top-1 to 50% Fig. 2c). 
Analysis of the different molecules in the complex target 
dataset reveals that the models achieve good 
performance on the so-called miscellaneous molecules 
(13/15 correct top-1) including a large proportion of 
benzylic positions. Peptides are also well predicted, 
most likely due to the small number of tertiary C–H sites 
compared to primary and secondary present in these 
molecules, though the differentiation between 
equivalent isopropyl groups is challenging (4/7 correct 
top-1 and the rest top-2). The models also perform well 
on the complex macrocycles and most of the steroids. A 
closer look at the steroids shows that the configuration 
at C5 plays an important role in the reactivity that the 
model struggles to grasp (Fig. 2d). Seven out of the 11 
steroids having a C5–H configuration are predicted 
correctly, while the reactive site of the 5-steroids is 
never ranked better than top-4. Challenges in 
distinguishing the reactivity of different ring fusion C–H 
sites might stem from the model’s failure to capture 
strain release during oxidation, which has been shown to 
play a crucial role in determining the selectivity of 
dioxirane-mediated oxidations.44 We also found that the 
C1 position in the taxol derivatives was difficult to 
identify for the model (Fig. 2d).  This is likely because our 
model does not differentiate between hydrogen 
isotopes. It was shown that the deuteration of the C2 
position was crucial to mitigate its oxidation and obtain 
C1 oxidation as a major product.45 Even though silyl-
ethers and alkenes are both absent from our training set, 
the reactivity predicted at the C13 position seems 
reasonable as it has been observed by Baran and co-
workers in similar substrates.45 

We hypothesized that difficulty in predicting the 
correct site selectivity for some of the complex targets 
comes from an under-representation of the C–H bonds 
of the complex molecules in our training set. Whereas 
the usual solution to this issue would be to augment the 
size of the dataset, conducting an extensive number of 
reactions to cover the whole complex molecule space is 
cost-prohibitive and has little guarantee of being 
efficient. Thus, the development of an algorithmic 
approach for selecting the most informative dataset for 
each individual target is highly desirable. 

Acquisition Functions for Target-Specific Dataset 
Design 

Based on these considerations, we set out to 
increase the accuracy of the predictions of specific 
targets with a minimal number of experiments. Central 
to this process is the use of an AF to leverage the model 
information to select the most insightful examples to 
generate a tailored dataset for each target. In this 
workflow, the model-suggested experiments are 
executed, or selected from a pool of literature data, and 

each additional datapoint is used to refine the model’s 
predictions. If needed, another round of experiments is 
suggested, and the cycle can be iterated. Applying this 
workflow to the C(sp3)–H oxidation regioselectivity task, 
AFs are used to score new candidate molecules for their 
ability to improve the model performance for a specific 
complex target of interest. Then, the data for the best-
scored molecules are added to the training set. Similarly 
to the full model, the candidate molecules to be added 
to the dataset contain less than 15 carbons and are 
commercially available or available in a few steps from 
commercial materials, whereas the target molecules 
contain more than 15 carbons.  

In a total synthesis context, an expert-designed 
molecular model substrate is typically chosen by 
balancing synthetic accessibility and estimated 
proximity to the target molecule. In a sense, the 
candidate molecules are analogous to the use of “model 
substrates” to test the feasibility of a late-stage reaction 
in complex molecule synthesis. In analogy to expert-
designed model substrates, the first AFs were designed 
using scaffold similarity (AFSC in green, Fig. 3a). The 
scaffold similarity was quantified as the number of 
shared atoms in the largest common substructure of the 
target molecule and the candidates (see SI section V.1 
for details). Beyond the ability to select a training set 
based on trends that may not be intuitive, an added 
value of this approach is that an AF aggregates 
information from several “model substrates”. This rich 
information reduces the risk associated with 
transferring an observation from a single reaction to a 
more complex target.  

Recognizing that the model uses C–H site 
features as input, AFs were also designed based on site 
similarity (AFCH, in purple, Fig. 3a). Similarity was 
computed for all target-candidate C–H pairs as the 
Euclidean distance between their feature vectors. Then, 
to aggregate these C–H scores into a molecular score, 
each candidate site was labeled with its best similarity 
to a target site, and the maximum of these labels was 
used as a score for the candidate molecule.  

Lastly, we recognized the potential advantage of 
leveraging the knowledge gained by the model to 
improve the selection of new training molecules, a 
process known as active learning. The value of this 
strategy for chemistry tasks has been demonstrated for 
modeling computational data46 and predicting reaction 
conditions.1,47 Given that we want to design the smallest, 
most informative datasets, we anticipated that including 
model insights would reduce redundancy in molecule 
selection. Thus, a third AF was designed that integrates 
the predictions of the model and its uncertainty 
(evaluated through an ensemble of models). This AF is 
referred to as the active learning strategy (AFAL, in blue, 
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Fig. 3a). Because the reactivity and uncertainty were 
computed per C–H site, this AF is based on site 
similarity, with scores weighted by the product of 
predicted reactivity and model uncertainty for each site. 
Consequently, the selection is biased toward molecules 
that reduce model uncertainty, while focusing on 
improving the model's accuracy at the reactive centers 

of the target. This approach also avoids sampling 
molecules that would primarily provide information on 
unreactive sites (a detailed description of the AFs 
investigated can be found in the sections V.3 of the SI). 

 

Figure 3. a. Learning curves for 5-cholestane-3-ol acetate (1) regioselectivity predictions for random selection, AFAL, AFSC, and 
AFCH. Learning curves are averaged over 30 runs, bold lines represent mean values, and filled areas are two standard deviations. 
The horizontal dashed line is the accuracy threshold set to determine sampling success. The highlighted vertical colored zone 
corresponds to the stability zones (colored by AF). b. First 10 molecules selected for 1 by AFAL, AFSC, and AFCH; for the latter we report 
the result for one run but noticed some variability (19 different molecules were selected for the first 10 over 10 runs). 

 

To evaluate AFs, the sampling library was defined as the 135 molecules that contain less than 15 carbons. To 
initiate 

sampling for each target, the closest molecule 
with respect to scaffold similarity was selected and each 
additional training molecule was added one-by-one 
using an AF. The performance of each AF was measured 
by the number of experiments required to have a 
consistent top-1 accuracy during at least 10 iterations 
(see Fig. 3a).  

To better illustrate how the AFs sample the 
chemical space, the first 10 molecules selected by AFAL, 
AFSC, and AFCH are shown for the example of 
cholestanoid 1 (Fig. 3b). Accurate site selectivity 
prediction is reached in less than 10 data points using 
the AFAL and AFCH. In contrast, the AFSC and random 
selection need close to 30 and 80 data points, 
respectively, to achieve a consistent top-1 accuracy. In 
the case of the AFCH, for the first 10 selected molecules, 

all but one contain either a cyclohexane or an isopropyl 
moiety. Since oxidation occurs at the C25 isopropyl 
position, the regioselectivity is predicted accurately and 
requires a very small dataset. In contrast, the AFSC 
focuses on polycyclic molecules; in this case, only one 
of the suggested compounds contains an isopropyl 
group, and the model takes longer to reach the top-1 
accuracy. Interestingly, the AFAL strikes a middle ground, 
selecting compounds that are in the AFSC (e.g. the two 
decalin compounds) and the AFCH selections. This 
example showcases how target-specific dataset design 
can reduce the number of experiments needed to 
achieve regioselectivity.  

To evaluate the generality of the AFs, we 
averaged the difference in performances of the AF 
relative to the random selection over the subset of 
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complex molecules that were predicted accurately by 
either the random selection or the AF considered (Fig. 
4a). The AFAL, AFSC, and AFCH spare 50, 51, and 40 data 
points, respectively, on average compared to random 
selection. In the case where the AF does not provide 
improvement above the random selection, it was 
typically because random selection afforded an 
accurate prediction with less than 20 data points (see 
Fig. 4b, active learning vs random). In other words, the 
largest gains using the AF strategy were realized on 
targets that were most difficult to predict. Moreover, we 
see that 27 to 31 targets are predicted accurately using 
the different AFs, whereas random selection only 
predicts 19 correctly (representing up to 24% increase in 
top-1 accuracy on the complex targets). This further 
suggests that a small but intentionally designed dataset 
can give better performances than larger ones for this 
type of task.48 

 

Figure 4. A. Box plots of the performances of four AFs against 
the random selection. Each point corresponds to a target that 
was predicted accurately by at least one of the AFs or the 
random selection. Box plots are displayed for the C–H 
oxidation and C–H borylation datasets. B. Histograms of the 
number of datapoints needed per target to reach accuracy 
using the random, active-learning and active-learning biased 
toward small-molecule selections on the C–H oxidation 
dataset. The number of targets accurately predicted for each 
of these AFs is highlighted, the total number of targets is 50. 
Exhaustive box plots and histograms for all AFs and both 
datasets are detailed in SI section V.4. 

Experimental validation 

Encouraged by the results of this target-specific 
approach on molecules mined from literature, we 
sought to test whether we could see similar gains on 

complex molecules outside of the dataset. To do this, 
molecules were sourced from our in-house stockroom 
and an archival library of compounds generated in past 
projects from the Reisman group. Compounds were 
then subjected to oxidation by TFDO without significant 
reaction optimization and resulting isolated yields were 
used to evaluate prediction accuracy and AF 
performance. 

 

Figure 5. a. Bar plots of the performances of four AFs against 
random selection on the correctly predicted experimental 
targets. b. Learning curve depicting how the model’s ranking of 
the most reactive site for (+)-sclareolide evolves with dataset 
size.   

Target molecules were selected that reflected 
the synthetic interests of the Reisman group and were 
anticipated to challenge the model to choose between 
similarly reactive sites (see details SI section VII). These 
targets included terpenes cedrol (2) and (+)-sclareolide 
(6), steroid 3 – which provides interesting competition 
between carbinol protons – and sterically hindered 
alcohol 4, which forces the model to choose between a 
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tertiary site and a hindered carbinol proton. Although we 
were interested in validating the model on archival total 
synthesis substrates, our efforts were restricted to a 
small set of published molecules without olefins or 
nitrogen atoms and several candidate compounds gave 
difficult-to-characterize reaction mixtures (full details in 
SI section VII). Nonetheless, we were able to 
characterize the C–H oxidation product of adamantane 
5, a product of a synthetic methods project from 2018,49 
which also required the model to prioritize between 
tertiary and benzylic positions. 

Gratifyingly, we observe that on four of the five 
targets, the model scores the reactive sites correctly, 
and the AFs provide stable, accurate predictions at 
smaller dataset sizes than random selection. For 
molecules 2, 3, 4, and 5 respectively, the active learning-
based AF beats random selection by 76, 78, 115, and 46 
datapoints (see Fig. 5a). Molecules 2, 4, and 5 can 
achieve stable accuracy within a dozen datapoints 
depending on choice of AF. The improvement is 
especially pronounced for targets 3 and 4, where stable 
accuracy cannot be achieved under random selection in 
135 datapoints. The model struggles with (+)-
sclareolide, perhaps weighting tertiary positions over 
electronic features (see Fig. 5b). It also appears that 
longer range interactions, such as the deactivation of 
the top-ranked tertiary site by the lactone, are not picked 
up by the selected descriptors. However, even on this 
difficult-to-predict substrate, the AFs still provide 
improvement over random – the rank of the most 
experimentally reactive C–H site is consistently better 
with the active learning-based AFs than with random 
selection. 

In conclusion, on this validation set, target-
specific dataset selection reduces by more than 50% 
the size of the dataset needed to reach accuracy and 
increases the accuracy from 2 out of 5 with the random 
selection to 4 out of 5 using AFAL or AFCH. 

External workflow validation 

To probe the generality of the target-specific 
dataset design strategy for regioselectivity predictions, 
the workflow was repeated on another reaction of 
interest for late-stage functionalization, the C(sp2)–H 
radical borylation. The workflow was applied to a subset 
of a recently reported borylation reaction dataset11 (82 
reactions including 22 large targets), filtered to include 
only reactions conducted under the same conditions 
(detailed in SI section VI). When the learning curves of 
the models trained on AF-selected molecules were 
compared to using random selection, significant 
improvements were observed over random exploration. 
Interestingly, the AFAL, AFSC, and AFCH were all 
competitive, which is consistent with what was 
observed for C(sp3)–H oxidation (see Fig. 4A). 

Specifically, in a search space of 60 reactions, AFAL, 
AFSC, and AFCH spare 18, 16, and 21 data points on 
average, respectively, compared to random. 
Additionally, molecules that could not be predicted with 
top-1 accuracy using the random selection were 
predicted accurately with the AF strategies (12 were 
predicted accurately with random selection versus 15, 
16, and 16 with AFAL, AFSC, and AFCH respectively – an 
increase of 14 to 18% in top-1 accuracy). 

Choosing the best Acquisition Function: 

To evaluate whether there was a single AF that 
performed best across all target molecules, the 
improvement over baseline was compared for the AFAL, 
AFSC, and AFCH on all large targets in the C–H oxidation 
(Fig. 4a) and borylation datasets. The performance in 
terms of dataset size improvement and number of 
targets accurately predicted were comparable for all 
three AFs, so there is likely flexibility in which AF will 
perform best in a given context. However, as illustrated 
Fig. 3B, both the AFSC and AFCH samplings introduce 
molecular redundancies. The lack of diversity in the 
initial suggestions could affect model performances and 
increase the size of the dataset required to make 
accurate predictions. We note that using clustering to 
introduce diversity in the sampling for the AFCH and AFSC 
did not improve the performances (see SI section V.4). 
Instead, the AFALs are intrinsically designed to search for 
a diversity of compounds in reasonable proximity to the 
reactive sites. With respect to using an AFAL to sample 
from a large chemical vendor catalog, we anticipated 
that biasing sampling towards smaller molecules to 
limit the difficulties in the characterization of the site of 
oxidation would be advantageous. This strategy not only 
led to the selection of smaller molecules but also led to 
the accurate prediction of more complex molecules 31 
against 27 for AFAL on C–H oxidation and 17 against 15 
for AFAL on C–H borylation (see AL small mol in Fig. 4a 
and table S1 and S2 for exhaustive AFs comparison). 
Therefore, when little to no literature data is available for 
an initial dataset, we suggest that the AFAL biased toward 
small molecules is likely to yield the best results for 
experimental application. 

Conclusion 

A reaction-agnostic acquisition-function based 
strategy for target-specific dataset design is reported. 
The workflow and dataset are publicly available 
(https://github.com/ReismanLab/regio_dataset_design
), enabling further development on the design of 
descriptors and AFs. The approach presented is efficient 
in reducing the size of the datasets needed to predict the 
regioselectivity of complex molecules. Two datasets of 
reactions: C(sp3)–H dioxirane oxidation and C(sp2)–H 
borylation were used for validation and showed that 
models trained on datasets designed by the best AFs 
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needed, respectively, only 30% and 55%, of the data 
required when trained on randomly selected datapoints. 
Furthermore, this work demonstrates that acquisition-
function designed datasets can provide better accuracy 
than larger, randomly acquired datasets; an 
improvement of 24% and 23% is reported for the two 
datasets respectively.48 Finally, an experimental 
validation on a set of five complex targets was 
performed and confirmed the trends observed on the 
literature data. 
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