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Abstract: 

This study highlights the novel application of Chloroalkene Dipeptide Isosteres (CADIs) in enhancing 

peptide membrane permeability. Replacing the peptide bond with CADIs in model dipeptides 

significantly improved passive permeability. This enhancement is attributed to the increased 

lipophilicity provided by the CADI substitution, as confirmed by AlogP calculations and HPLC 

retention times. Molecular dynamics simulations further indicated that CADI substitution reduces 

water interaction, potentially lowering hydration energy. Our findings demonstrate that CADI 

incorporation can effectively improve the permeability of peptides, offering a valuable approach for 

developing bioactive peptidomimetics with enhanced pharmacological properties including 

permeability and hydrolytic stability.   
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Introduction:  

Peptides are emerging as key molecules in drug discovery and development due to their high 

specificity and potency. However, beyond their susceptibility to rapid enzymatic hydrolysis, their low 

membrane permeability presents a significant challenge in peptide drug discovery.1 One of the primary 

reasons for this low permeability is the highly polar amide bonds forming the backbone of peptides.2 

These bonds, due to their H-bonding character, are prone to hydration, which creates a high desolvation 

energy barrier during membrane translocation, thereby hindering permeability.3 

To enhance peptide permeability, various chemical modifications have been explored. A 

well-studied modification is the N-methylation4 of the amide bond in cyclic peptides, which reduces 

the number of hydrogen bond donors (HBDs), lowering desolvation penalty and improving membrane 

permeability. Another approach involves using peptide bond isosteres, such as esters5 and thioamides.6 

Ester substitution also reduces the number of HBDs by removing the amide proton, which improves 

membrane permeability similar to the mechanism of N-methylation. On the other hand, thioamide 

substitution enhances membrane permeability by reducing the hydrogen bond acceptor (HBA) ability 

of the carbonyl oxygen, which lowers hydration energy and simultaneously enhances thermostability.7 

Therefore, chemical modifications that control the H-bonding ability of the peptide backbone are 

effective strategies for improving membrane permeability in peptides. 

As part of our research programs on peptidomimetics for peptide drug discovery, we have 

explored alkene dipeptide isosteres (ADIs) (Figure 1A),8 where the peptide bond is replaced by a 

structurally similar carbon-carbon double bond. These isosteres, including (E)-alkene,9 (E)-

methylalkene,10 (Z)-fluoroalkene,11 and (Z)-chloroalkene,12 have been applied to various bioactive 

peptides to improve resistance to enzymatic degradation13 and chemical stability.14 Since ADIs lack 

H-bond donors and possess only weak H-bond acceptors derived from halogen atoms (Figure 1B),15 

 
Figure 1. (A) Structure and characteristics of ADI. (B) Potential of ADI as permeability enhancer 

to improve the permeability of peptides. (C) Membrane permeability of L-Leu-L-Phe-type CADI 

mimic measured by PAMPA. 
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their introduction into peptides can significantly alter the H-bonding properties of the peptide 

backbone. While these modifications have potential for enhancing membrane permeability, its impact 

remains underexplored.  

In this study, we sought to substitute a peptide bond with an ADI to probe the effect of alkene 

substitution on membrane permeability. we directly compare the membrane permeabilities of 

dipeptides and their corresponding peptidomimetics containing chloroalkene dipeptide isosteres 

(CADIs) (Figure 1C). Our study demonstrates that CADI incorporation into the backbone of 

dipeptides significantly improves the passive permeability. 

 

Result and Discussion:  

Comparison of AlogP value. To investigate the effect of ADI incorporation on membrane 

permeability, we employed the Leu-Phe and Phe-Phe models, which were selected due to their 

hydrophobic side chains, offering sufficient lipophilicity and enabling the detection of the peptides in 

permeability experiments.16 At the onset of our studies, we calculated the AlogP values17 of Ac-Leu-

Phe-NHMe, Ac-Phe-Phe-NHMe, and their corresponding isosteres, including N-methyl amide, ester, 

thioamide, and representative alkenes, to assess their lipophilicities (Table 1). AlogP was derived from 

a regression model based on atomic lipophilicity and is used here to predict how structural 

modifications may affect the overall hydrophobic character of the peptides. The results indicate that 

the ADI mimics exhibit higher AlogP values compared to their respective amides and other isosteres. 

These findings show a clear trend towards higher lipophilicity with ADI incorporation. Notably, the 

Table 1. AlogP values of diepeptides and their peptide bond isosteres. (A) Leu-Phe model. (B) Phe-

Phe model. 
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chloroalkene isostere, where chlorine substitutes for the carbonyl oxygen, displayed the highest 

lipophilicity among the ADI mimics.  

MD simulations. To further investigate the influence of ADI incorporation on peptide 

hydration properties, molecular dynamics (MD) simulations were carried out to assess the interactions 

between water molecules and N-methylacetamide (NMA, a) and the corresponding isosteres, including 

N,N-dimethyl acetamide (b), ester (c), thioamide (d), and CADI (e) (Figure 2). Radial distribution 

function (RDF) analysis was used to measure the probability distribution of water molecules around 

the amide moiety or its equivalent in each isostere. The results demonstrated that NMA (a) and N,N-

dimethyl acetamide (b) showed a significant peak at 1.8–1.9 Å, suggesting strong and structured H-

bonding interactions with water molecules. The peak for ester (c) shifted slightly to longer distances 

compared to a and b. This shift can be attributed to the replacement of the amide carbonyl oxygen with 

an ester carbonyl, which results in a different H-bonding environment and a reduction in the strength 

of the interactions with water molecules. For thioamide (d), the RDF peak was broader and shifted to 

longer distances, indicating weaker and more dispersed H-bonding. The RDF peak for CADI (e) 

exhibited a more pronounced shift to longer distances compared to the other compounds, with the 

distinct peak disappearing. This suggests that water molecules around CADI are less structured and 

engage in weaker hydrogen bonding interactions, indicating a significant reduction in the ability of 

CADI to form hydrogen bonds, which may contribute to a lower hydration energy. These results 

suggest that CADI substitution can reduce the interactions between the peptide backbone and water, 

thereby facilitating membrane permeability.  

Figure 2. Molecular dynamics simulation results. (A) Structures of N-methylacetamide (NMA, a) 

and the corresponding isosteres, including N,N-dimethyl acetamide (b), ester (c), thioamide (d), and 

CADI (e). (B) Radial distribution function (RDF) between water molecules and a-e.  
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CADI Synthesis. Based on both the highest lipophilicity observed in AlogP calculations and 

the reduced water interaction indicated by MD simulations, we selected the CADI for further 

investigation. The synthetic schemes of CADI mimics are depicted in Scheme 1. For the synthesis of 

Leu-Phe-type CADI mimic (7), the N-tert-butylsulfonyl (Bus)-protected 2-chloroaziridine (18), 

prepared from aldimine (17), was treated with DIBAL-H followed by a Z-selective Horner-

Wadsworth-Emmons olefination with [bis(o-tolylphosphono)phosphono]acetates (20),19 affording the 

corresponding (Z)-enoate (21). Anti-SN2’-type allylic alkylation of 21 with organocuprate 

(BnCu(CN)ZnCl) provided the a-benzylated ester (22),20 which was converted to the desired amide 

(7) by acidic hydrolysis of the ester followed by coupling with methylamine and conversion of the N-

Bus group to the N-Ac group. The Phe-Phe-type CADI mimic (15) was synthesized by a procedure 

similar to that used for 7 as shown in Scheme 1B. The corresponding dipeptides were synthesized 

according to standard procedures (see Supporting Information Section Ⅳ and Ⅴ for the details). 

Lipophilicity Comparison. With these compounds in hand, we investigated the 

lipophilicities of CADI mimics by comparing their retention times on a hydrophobic C18 column using 

 

 
Scheme 1. Synthetic scheme of CADI mimics of dipeptides. 
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HPLC (Figure 3). As expected, the CADI mimics showed a significant increase in retention time, 

consistent with the values of AlogP, confirming that CADI substitution enhances lipophilicity. 

 

Membrane Permeability Evaluation. Next, we investigated the membrane permeabilities 

of CADI mimics using the parallel artificial membrane permeability assay (PAMPA) (Figure 4).19 

PAMPA was conducted with 200 mM compounds in 10% methanol solution containing 0.5% DMSO 

and 5 h incubation at room temperature. Each bar represents the mean value, and the error bars the 

standard deviation from experiments carried out in quintuplicate. In both sequences, the CADI-

containing mimics demonstrated a significant enhancement in permeability compared to their 

respective dipeptides. Specifically, the Leu-Phe-type CADI mimic (7) exhibited a 17-fold increase in 

permeability (Pe value: 6.5 × 10⁻⁶ cm/s vs. 0.38 × 10⁻⁶ cm/s), while the Phe-Phe-type mimic (15) 

 
Figure 3. HPLC retention time in C18 column of peptides (1 and 9) and their CADI mimics (7 and 

15). (Solvent A: 0.1% TFA in water, solvent B: 0.1% TFA in acetonitrile, gradient 30-75% solvent 

B over 15 minutes).  

 
Figure 4. Membrane permeability of the peptides determined by the PAMPA. 
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showed a 7-fold increase (Pe value: 7.2 × 10⁻⁶ cm/s vs. 0.99 × 10⁻⁶ cm/s). These results confirm that 

CADI substitution enhances passive permeability through the membrane, likely due to the increased 

lipophilicity conferred by the CADI moiety. 

 

Conclusions:  

In summary, we have demonstrated that CADI incorporation into dipeptides significantly 

enhances membrane permeability, with Leu-Phe and Phe-Phe models showing 17-fold and 7-fold 

increases in passive permeability, respectively. This significant improvement is attributed to the 

increased lipophilicity provided by the CADI substitution. The ADI offers a straightforward 

modification to the peptide backbone, significantly improving both hydrolytic stability and membrane 

permeability, which are crucial factors in peptide drug discovery. Further studies will explore the 

application of ADI approach to cyclic peptides and longer linear peptides, as well as comparing the 

effects of ADI substitution with ester and thioamide modifications to further optimize peptide 

pharmacological properties. 
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