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Predicting Emission Wavelengths and Quantum
Yields of Diverse Bis-cyclometalated Iridium(III)
Complexes Using Machine Learning

Sergei V. Tatarin,+,[a] Lev V. Krasnov,+,[a] Ekaterina V. Nykhrikova,[a] Maxim M.
Minin,[a,b] Daniil E. Smirnov,[a] Andrei V. Churakov,[a] Stanislav I. Bezzubov*[a]

Cyclometalated iridium(III) complexes are excellent emit-
ters for phosphorescent organic light-emitting diodes, but
the design of such complexes require substantial cost and
experimental efforts. In turn, the predictive power of den-
sity functional theory calculations is seldom enough for reli-
able prediction of the excited state properties of iridium(III)
complexes. In this work, we aimed at data-driven prediction
of the emission energies and photoluminescence quantum
yields of such complexes. To this end, we created a database
(IrLumDB) that contains experimentally measured lumines-
cence properties for over 1200 literature bis-cyclometalated
iridium(III) complexes. Based on this database, we devel-
oped machine learning models that are capable of predict-
ing the energy of emission maxima and photoluminescence
quantum yields for the iridium phosphors with mean ab-
solute errors of 18.26 nm and 0.129, respectively, requir-
ing only SMILES of ligands. Furthermore, we validated
the model for emission wavelength prediction on the set of
33 experimentally obtained luminescence spectra for newly
synthesized and characterized iridium(III) complexes. Our
data-driven methodology will complement quantum chemi-
cal calculations as an efficient alternative approach for the
prediction of the excited-state properties of large sets of bis-
cyclometalated iridium(III) complexes, facilitating compu-
tational discovery of efficient emitters. The emission prop-
erties prediction and the dataset exploration are available
at (https://irlumdb.streamlit.app/).

Introduction
Over the past decades, octahedral cyclometalated iridium(III)
complexes have become commonly utilized emitters in phos-
phorescent organic light-emitting diodes (PhOLEDs) [1,2],
photosensitizers in dye-sensitized solar cells [3,4], photocata-
lysts [5–7], in cellular imaging [8] and photodynamic therapy
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agents [9,10]. The key advantage of these complexes is their
bright luminescence enabled by effective intersystem cross-
ing (ISC) of the photo- or electroexcited singlet state to
the triplet excited state without population of nonemissive
metal-centered (MC) excited states [11].

Many iridium-based PhOLEDs with high external quan-
tum efficiency (EQE) in green and yellow spectral regions
have been reported [12–14], although shifting the emission
color toward both spectral ends (blue and red) is accom-
panied by substantial drop of the emission efficiency. In
the blue region, the thermal population of nonemissive MC
states becomes significant, causing a weakening of the metal-
ligand bonds in the excited state and, hence, a decrease in
the long-term stability of emitters [15]. Nevertheless, a long-
lasting PhOLED was manufactured exploiting pyrimidine
modification of the FIrPic emitter with sky-blue λmax=475
nm [16], whereas effective and relatively stable blue PhOLEDs
were created using tris-cyclometalated iridium(III) complexes
with N-heterocyclic carbene ligands [17,18]. On the other
hand, red and NIR iridium-based emitters suffer from low
quantum yields owing to nonradiative relaxation of the ex-
cited state due to the energy gap law [19]. Increasing the
rigidity of ligands [20], appropriate choice of substituents and
their positions [21] and incorporation of peripheral fragments
with large steric hindrance to eliminate unfavorable stack-
ing interactions [22] may be effective to enhance the intensity
of low-energy emission but all these design strategies have
limitations.

Overall, the development of efficient iridium phosphors
requires significant cost and experimental efforts, while the
predictive power of state-of-the-art density functional the-
ory (DFT) calculations for heavy metal complexes still needs
to be substantially improved to enable rational design of
iridium emitters with targeted emission characteristics. In
turn, there is a very large body of experimental photophys-
ical data that can be used for training machine learning
(ML) algorithms to develop a fast yet relatively accurate
tool for predicting the photophysical properties of iridium
complexes based solely on their molecular formula.

Application of the ML methods in predicting various molec-
ular properties has become extremely popular in recent years [23,24].
However, the space of individual molecules is usually lim-
ited strictly to organic compounds, as their representation
in machine-readable format is quiet straightforward, with
SMILES [25] being the most common. In a number of works
is was shown that ML can be utilized to predict UV-Vis ab-
sorption spectra of organic and BODIPY dyes [26–28]. More-
over, a machine learning model based on a database of
solvated organic fluorescent dyes was capable of predicting
both emission wavelengths and photoluminescence quantum
yields (PLQY) for such molecules with mean absolute errors
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(MAE) of 0.080 eV for emission energy and 0.13 for PLQY,
respectively, becoming thus comparable to time-dependent
DFT (TD DFT) calculations [29]. Given that PLQY is one
of the most important measured quantities defining applica-
bility of emitters in OLEDs [30], its prediction could be espe-
cially useful. In turn, coordination compounds are scarcely
involved in such approaches because of difficulties in the in-
terpretation of coordination bonds [31]. Nevertheless, a num-
ber of works has emerged in this field considering the optical
properties of iridium(III) complexes. In one of the pioneer-
ing studies, Kulik et.al. utilized the experimental proper-
ties of high-throughput-synthesized 1440 distinct heterolep-
tic [Ir(CN)2(NN)]+ complexes obtained in [32] to train an
artificial neural network [33]. Although outperforming TD-
DFT in terms of predicting the emission energies on the
test set, the class of molecules in the model is limited by
cationic bis-cyclometalated complexes, predominantly with
conventional ligand scaffolds. Most other works aiming at
application of machine learning to predict photophysical
properties of transition metal complexes tend to rely on pa-
rameters predicted by means of quantum chemistry, being
limited with the abovementioned high-throughput-dataset
obtained by Bernhard et.al. [34], by other relatively small
datasets [35,36] or working with the entirely computational
data [37]. Thus, a systematic exploration of experimental
luminescence properties of the cyclometalated iridium(III)
phosphors and construction of a big diverse dataset is needed
to enable the creation of ML models directly from molecular
formula of the corresponding complexes.

In this work we have created a dataset uniting 1454 en-
tries of experimental data on luminescent properties of 1287
iridium(III) complexes from 340 peer-reviewed articles. We
developed a data-driven algorithm that requires only SMILES
of the ligands as an input and enables predicting the lumi-
nescence wavelength of bis-cyclometalated iridium(III) com-
plexes with MAE = 18.3 nm on 10-fold cross-validation (Fig-
ure 1). Furthermore, we performed synthesis of 12 new com-
plexes and measured 33 experimental luminescence spectra
to implement validation of the model on our data (MAE
= 16.9 nm). Moreover, we developed regressor ML models
to predict photoluminescence quantum yields of the com-
plexes, as well as classifier ML models to identify highly-
emissive iridium phosphors. This study will help to evalu-
ate photophysics of cyclometalated iridium(III) complexes
from scratch thus enabling fast computational screening of
thousands of new potential iridium phosphors in order to
accelerate the development of new effective emitters.

Results and Discussion

Database collection
The algorithm for the database collection was adapted from [38]

(Figure 2). The peer-reviewed articles containing words
"iridium" and "complex(es)" in the title were found us-
ing Cobalt search engine [39]. For each complex the lumi-
nescence data (maximal peak wavelength (λmax), quantum
yield and excited state lifetime) and structural information
were manually extracted along with the digital object iden-
tifier (DOI) of the source publication, creating an entity
of record. Speaking about the complexes representation, a
couple of notes should be pointed out. We have narrowed
the dataset to the space of octahedral bis-cyclometalated
iridium (III) complexes with three bidentate ligands sur-

rounding the Ir(III) ion, which represent the most popular
(but not the only) type of such compounds. Taking into
account that vast majority of these complexes possess sim-
ilar geometry with trans-N,N’ alignment of both cyclomet-
alated ligands and with coordinated atoms of ancillary lig-
and arranged against the metalated carbon atoms [40], we
assumed that a complex molecule can be unambiguously
defined by listing the ligands in a certain fashion. Such rep-
resentation can accurately describe both cationic and neu-
tral bis-cyclometalated complexes, which is taken into con-
sideration by formal deprotonation of corresponding atoms
in the ancillary ligand. The cyclometalation site itself is
specified in a similar way formally deprotonating the car-
bon atom in the corresponding SMILES string. In con-
trary, describing tris-cyclometalated complexes is not that
straightforward, due to possibility of fac/mer isomers for-
mation and strong dependence of photophysical properties
on the isomer geometry [41,42]. Moreover, it is important to
note that luminescence of such complexes might arise from
solvatochromic charge-transfer excited states [43], thus their
luminescence energy is strongly dependent on the solvent
polarity, so the solvent was included in the dataset for ev-
ery entity. In addition, conditions for PLQY measurements
were also extracted. For the majority of the complexes inert
atmosphere was stated in the source articles, and all the de-
viations from such (as well as other specific considerations)
were stated in an additional column. The total database
consists of 1454 individual luminescence measurements for
1287 iridium complexes from 340 papers, which provides a
valuable resource for ML application in discovery of effective
phosphors. Still, the reported dataset is by no means com-
prehensive, and we will continue to expand this database in
order to support its ML applications. The database itself
can be directly accessed at Zenodo [44].

During the data analysis we have depicted several trends.
Firstly, it should be noted that the complexes with all the
possible quantum yield values (from near zero to near unity)
are observed with emission wavelengths from 450 to c.a.
650 nm, indicating a complete coverage of the luminescence
properties space in this region (Figure 3). However, in the
low-energetic region a considerable bias towards low val-
ues of PLQY is observed. This fact can be attributed to
acceleration of non-radiative processes as governed by the
energy gap law [19]. It is explicitly shown that maximum
number of compounds emit light in the middle of visible
spectra (500-650 nm, 1023 out of 1454 values), whereas in
the both spectral ends number of phosphors significantly
decreases (Figure 4a). This is explained by the fact that
the archetypal compounds display emission in the greenish-
yellow range and significant structural deviations are needed
to increase/decrease the energy of triplet excited state con-
siderably. The quantum yield distribution is significantly bi-
ased towards low values (Figure 4b) with maximum number
of compounds being extremely low emissive (PLQY<0.025)
what indicates that non-radiative relaxation is still a consid-
erable issue while designing new complexes. The most com-
mon solvent employed is by a wide margin CH2Cl2 (815 from
1455 rows of data, 59%), which is easy to operate with and
ensures good solubility for most organoiridium compounds
(Figure 4c). The most popular ligands are easily defined in
both cyclometalated and ancillary role (Figure 4d,e). In the
former group ligands based on a 2-phenylpyridine core are
the most popular with parent ppy− being by a wide mar-
gin the leader, followed by dfppy−, and π-extended pq−
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Figure 1. The general strategy of luminescence wavelength prediction for bis-cyclometalated iridium(III) complexes.

Figure 2. The algorithm of database collection
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Figure 3. Luminescence properties distribution of bis-
cyclometalated iridium(III) complexes across the IrLumDB database.
Emission parameters for top-5 most frequently observed solvents are
shown.

and piq−, whereas in the ancillary role acac− is by far the
most popular, followed by anionic picolinate and neutral
2,2’-bipyridine. This in well in line with the general strategy
of fundamental research, when one type of ligands is kept
standard and simple while the second type is subjected to
substantial variation. There are 638 rows of data for cationic
[Ir(CN)2(XX)]+ complexes and 801 rows of data for neutral
[Ir(CN)2(LX)] complexes, respectively, which shows pro-
found interest in development of both kinds of compounds
(Figure 4f).

Construction of experimental test set
In order to further verify the ML model predictions, we
aimed to collect a set of our experimental luminescence
measurements and to test the trained model on this data.
The latter included: a) previously measured luminescence
spectra in CH2Cl2 solvent [4,45]; b) luminescence spectra for
previously investigated compounds, for which luminescence
studies in CH2Cl2 have not been performed yet [46,47]; c)
luminescence spectra for newly synthesized series of com-
plexes. A new series was constructed exploiting 1-benzyl-2-
aryl-benzimidazole ligand framework for the cyclometalated
part and a commonly used acac− ligand as well as a number
of 2,2’-bipyridine derivatives as an ancillary part.

The aryl-benzimidazole scaffold is well-known for ease of
incorporation of various substituents in different parts of the
molecule. Such substitution was shown to have profound
impact on the luminescence spectra of the corresponding
complexes, which is dependent on both the type and po-
sition of substitution [4,48,49]. To enrich variation of the
ancillary ligand, three complexes containing 1,2-diphenyl-
phenanthroimidazole cyclometalated part and various bpy-
derived ligands were also synthesized. The structure and
composition of the new complexes were reliably determined
by SCXRD (9 out of 12 complexes) [50], PXRD, NMR and
HRMS (see SI for complete characterization details). Data
for the abovementioned complexes was complemented by
spectra for the complexes published in [46,47] measured in
CH2Cl2 and by data from [4,45]. In these works extensive
modifications of cyclometalated 1-phenyl-2-arylbenzimidazole
or 1,2-diphenyl-phenanthroimidazole and ancillary aromatic

1,3-diketonates were performed. Summing up, we have ended
with total of 33 complexes (12 new) with luminescence max-
ima varying from 509 nm to 629 nm covering a significant
part of the visible spectral range (several representatives
with their luminescence spectra are presented in Figure 5).
The obtained complexes demonstrated expected absorption
profile with high extinction in the ultraviolet region and
moderate extinction in the visible region (400 - 450/500
nm) (Figures S43 - S46). All the complexes expectedly pos-
sessed mainly reversible oxidation with Eox= 0.13 - 0.92
V vs Fc+/Fc, with additional irreversible processes aris-
ing when extra methoxy/chlorine substituents are presented
(Figures S53 - S64). The luminescence of the complexes
falls into the classification of excited states presented by
Bernhard et.al. [32], thus the complexes being within the
framework of typical iridium(III) complexes and possessing
3MLLCT/3LC mixed excited states (Figures S47 - S52).

Machine learning models development
Since SMILES representation is not generally applicable to
the coordination compounds, it is an obstacle in developing
the ML models with transition metals complexes. Given
that the general geometrical arrangement of the ligands
around the Ir(III) ion is very similar for all the molecules in
our dataset [40], we supposed that the complexes representa-
tion can be adapted from [31] and generalized to describe far
more diverse space of bis-cyclometalated iridium(III) com-
plexes. Namely, for each ligand its SMILES representation
was canonized using RDKit [51] and converted to the widely
applied extended-connectivity fingerprints (ECFP4 [52]) with
2048-bits length via molfeat [53]. The fingerprint describing
desired complex is then created as a linear combination of
the fingerprints of its ligands (Figure 6).

Given that the solvent affects photophysical properties of
the complexes [43], only data in CH2Cl2 (as the most pop-
ular solvent) was used for training ML models. Ligands
containing boron, bromine and silicon atoms were also re-
moved from the training dataset due to rare occurrence of
these atoms in the database (8, 13 and 26 molecules, re-
spectively) and molecules with small L3 ligand (1 molecule).
The final training dataset contained 818 rows. For predic-
tion of PLQY only the rows, for which deaerated conditions
of measurements are clearly stated in the source articles,
were picked, as the phosphorescence quantum yields are
highly dependent on the presence of oxygen in the atmo-
sphere [54], which results in the training dataset of 748 rows.

Five ML algorithms: kNN [55], SVR [56], LightGBM [57],
CatBoost [58], XGBoost [59], which commonly show good re-
sults, were chosen to training. The hyperparameter opti-
mization was performed for all models using the Optuna [60]

package. Hyperparameter values are presented in the Ta-
ble S5. To evaluate the model precision on the train set,
we used the 10-fold cross-validation (10CV) using Scikit-
learn [61]. MAE, root-mean-square error (RMSE) and R2

metrics were used to evaluate the quality of the ML models.
Metrics for 10CV and for test set are presented in Tables
1,2.

Considering the emission wavelength prediction, it is ex-
plicitly shown that modern boosting algorithms (LightGBM,
CatBoost and XGBoost) demonstrate superior to kNN and
SVR performance with MAE not exceeding 18.78 nm on
the 10CV for the former group of algorithms (Table 1).
The performance on the test set maintains the same correla-
tions, with modern boosting algorithms performing the best,
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Figure 4. Statistics in the IrLumDB. A) Distribution of the emission wavelength values. B) Distribution of the photoluminescence quantum
yield values. C) Distribution of the solvent media. D) Most common cyclometalated ligands. E) Most common ancillary ligands. F)
Distribution of the complex total charge values.

Figure 5. Examples of luminescence spectra experimentally measured in the test dataset with corresponding structural formulas and
maximum emission wavelengths.
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Figure 6. Schematic illustration of fingerprints generation. [31]

Table 1. Performance of the ML models on emission wavelength prediction.

Algorithm 10-fold cross-validation Test
MAE RMSE R2 MAE RMSE R2

kNN 25.31 ± 2.05 39.17 ± 4.83 0.69 ± 0.06 29.3 36.64 0.18
SVR 21.45 ± 1.45 31.54 ± 2.27 0.8 ± 0.04 21.01 25.81 0.59

LightGBM 18.26 ± 1.95 27.32 ± 3.34 0.84 ± 0.06 18.53 21.55 0.72
CatBoost 18.78 ± 1.47 27.37 ± 2.41 0.84 ± 0.05 16.85 20.26 0.75
XGBoost 18.36 ± 1.38 26.79 ± 1.76 0.85 ± 0.04 19.56 22.54 0.69

followed by a wide margin by SVR and kNN algorithms.
The MAEs on the test set is of the similar magnitude com-
paring to MAEs on the 10CV, indicating that models are
capable of prediction of properties for the molecules they
have not seen before, and thus possibility of exploration
of new compounds. We have analyzed the molecules, for
which maximal error is observed (Figure 8). Two of these
molecules contain electron-donating alcoxy-fragments, but
in different position. Although it is known that position of
such mesomeric donors impact the resulting luminescence
energies significantly [4,48,62], it is hard for the algorithm
to recognize such dependence, as the ligands seem to be
very similar. Thus, both hypsochromic effect of the meta-
positioned -OMe fragment and bathochromic effect of the
para-positioned -OMe fragment become underestimated, re-
sulting in overestimating the former emission energy and un-
derestimating the latter. Another pattern to highlight is the
overestimation of luminescence energies for complexes with
cyclometalated phenanthro[9,10-d]-imidazole, especially with
the plain 2,2’-bipyridine ligand. This fact can be attributed
to existence of compounds with cyclometalated phenanthroim-
idazole fragments in the literature dataset [63,64], which pos-
sess blueshifted luminescence spectra compared to the com-
plexes investigated in our work. The resulting RMSE met-
ric for the best algorithm (26.8) is comparable to such for
prediction of emission wavelengths of organic compounds
(24.8) [29]. Thus, the developed system is reliable and pre-
cise in terms of energetic predictions.

Prediction of photoluminescence quantum yield still re-
mains a challenging task, predominantly due lo large ex-

perimental errors (reaching 10 % or even more for rela-
tive measurements) and variation of experimental condi-
tions [65]. Development of quantum chemical approaches is
also limited due to complexity of photophysical processes
upon molecule excitation. The situation becomes ever more
complicated for iridium(III) emitters as they involve triplet
excited states, and several calculations are needed to pre-
dict PLQY of one molecule [66]. In our hands, however, use
of LightGBM, CatBoost and XGBoost algorithms provided
reasonable accuracy with MAE’s approx. 0.13 on the 10CV,
what we can consider a satisfactory result at least for semi-
quantitative screening. The kNN algorithm, as expected,
performed worse, but the SVR algorithm, to our surprise,
provided us with comparable to modern boosting algorithms
metrics (Table 2). Moreover, such MAE and RMSE values
(0.13 and 0.18) are comparable to those reported for pre-
diction of PLQY of organic fluorophores (0.11 and 0.16, re-
spectively) [29], indicating good performance of our models
even on considerably more complicated bis-cyclometalated
iridium complexes.

Still, for technological application of cyclometalated irid-
ium complexes the exact value of PLQY itself is not so im-
portant. Namely, for purposes where emitting light is the
key feature (emitters in OLEDs, bioimaging and sensing)
the highest efficiency possible is desired. In contrary, for
other tasks which require realization of non-luminescent re-
laxation pathways (generation of singlet oxygen or heat)
low PLQY values may be needed. Thus, in the hope of
achieving higher reliability, we turned to solving the prob-
lem of classification rather than regression. We grouped the
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Table 2. Performance of the ML regressor models on photoluminescence quantum yield prediction.

Algorithm 10-fold cross-validation
MAE RMSE R2

kNN 0.142 ± 0.009 0.207 ± 0.014 0.441 ± 0.099
SVR 0.128 ± 0.010 0.181 ± 0.015 0.577 ± 0.074

LightGBM 0.133 ± 0.009 0.183 ± 0.013 0.571 ± 0.049
CatBoost 0.129 ± 0.009 0.180 ± 0.015 0.583 ± 0.043
XGBoost 0.129 ± 0.010 0.185 ± 0.013 0.561 ± 0.035

Figure 7. A) Distribution of the complexes among the PLQY classes in the IrLumDB dataset (numbers only for measurements in CH2Cl2
are shown) and structural formulas of examples from the each class. B) Confusion matrix showing performance of the CatBoost ternary
classifier on the 10-fold cross-validation. C) Several representatives of highly emitting complexes from the literature [67–71](not included in
the original IrLumDB) and the predicted PLQY values by XGBoost regressor model.
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Table 3. Performance of the ML classifier models on photolumines-
cence quantum yield prediction.

Algorithm 10-fold cross-validation
Accuracy, %

kNN 68.1 ± 4.1
SVC 70.3 ± 3.2

LightGBM 71.4 ± 2.3
CatBoost 72.4 ± 4.1
XGBoost 70.2 ± 3.3

complexes in three classes - low (0 - 0.1), moderate (0.1 -
0.5) and high (0.5 - 1) PLQY, respectively. Such demar-
cation seems reasonable for both distribution of data from
IrLumDB across these three classes (201, 323 and 200 val-
ues in CH2Cl2, respectively, Figure 7A) as well as for po-
tential suitability in realistic applications. The performance
of the classifier is described by the confusion matrix in Fig-
ure 7B. The accuracies of the resulting CatBoost classifier
for identification of low-emitting, moderately emitting and
high-emitting iridium(III) complexes are 71.6, 74.9 and 69
%, respectively, giving rise to a satisfactory overall accu-
racy of 72.4 %. Moreover, it should be noted that most
mistakes are prediction of the class which is adjacent to
the correct one. It means that percentage of completely
incorrect predictions (when highly emissive complex is pre-
dicted to be low-emissive and vice versa) is negligible (5.0
and 3.0 %, respectively), what further coincides the usability
of our models for semi-quantitative screening of large spaces
of molecules. In addition, we tested our PLQY regressor on
several highly-emitting complexes from the literature, which
were not included in the original IrLumDB dataset (Figure
7C). Successful prediction of effective emission for them sup-
ports the applicability of the classifier for identification of
molecules possessing high PLQY from space of previously
unknown iridium phosphors.

Quantum chemical calculations
Furthermore, we have performed quantum chemical explo-
ration of the experimentally investigated compounds. The
theoretical emission wavelength was computed as the ∆SCF
value corresponding to the difference between the triplet
and singlet single point energy calculations at the optimized
triplet minima. This approach was recently found to be su-
perior to TDDFT upon examination of Pt(II) and Ir(III)
complexes [72,73]. It can be noticed that there is a system-
atical overestimation of emission wavelength predicted by
quantum chemical calculations, though the general corre-
lation is maintained (Figure 8). Such systematic errors
are commonly observed upon computational examination
of transition metal complexes [33,36,72,74], even with spin-
orbit coupled TDDFT predictions [75]. The origin of this fact
might be explained while examining the structure of emis-
sion bands. In particular, some of the spectra possess sev-
eral emission bands, which originate from numerous triplet
sublevels. The ∆SCF calculation refers to the lowest triplet
excited state, which does not always contribute to the most
intensive emission maxima. In contrary, ML approach uses
only the peak emission wavelengths as an input, what ex-
plains far better correlation with the experimental values.
Thus, the developed predictive model can effectively com-

plement and in some cases even replace DFT approaches,
when fast and precise prediction of emission wavelength of
the Ir(III) chromophores is needed without any additional
insights in their electronic properties.

Figure 8. Comparison of ML and ∆SCF λmax predictions to ex-
perimental (in nm) across 33 test set iridium complexes from the
experimental dataset. The black line is included as a reference and
corresponds to perfect agreement between prediction and experi-
ment. The complexes with maximum prediction error (averaged for
three modern boosting algorithms) are highlighted with their molec-
ular formulas depicted.

Conclusion
We have collected a standardized database containing ex-
perimental luminescence characteristics for 1287 bis-cyclometalated
iridium complexes. We demonstrated that a simple repre-
sentation of heteroleptic complex as a linear combination of
its ligands is a prominent way to describe such diverse co-
ordination compounds for data-driven analysis. Thus, suc-
cessful training of ML models was performed in order to pre-
dict luminescence energies and photoluminescence quantum
yields of the complexes. The use of modern boosting algo-
rithms allowed us to achieve accuracy comparable to state-
of-the-art ML models for organic fluorophores and surpass-
ing that of density functional theory calculations, reaching
MAE 18.3 nm for λmax and 0.13 for PLQY, respectively. A
ternary PLQY classifier, which allows for identifying highly
efficient and low efficient phosphors with 72.4 % accuracy,
was also developed. In addition, the model developed re-
quires only SMILES representation of the desired ligands as
an input, making computational screening of the potential
emitters extremely easy and enabling potential automatiza-
tion of the workflow. We believe that both the database and
the developed algorithms will provide a promising pathway
for high-throughput screening and the acceleration of chem-
ical discovery, as they can be used for quick evaluation of
optical properties of thousands of hypothetical iridium com-
plexes, highlighting the promising candidates for subsequent
synthesis.
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A database of optical properties
of 1287 Iridium(III) complexes
was created to provide the data
basis for the computational ex-
ploration of iridium-based emit-
ters. Machine learning mod-
els capable of predicting lumi-
nescence energy and quantum
yield of bis-cyclometalated irid-
ium(III) complexes were created
and validated on the experimen-
tal data.
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