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Abstract 

Engineering enzymes to catalyze non-native substrates is critical for chemical synthesis. A 

significant challenge is to create a tool specialized in shifting an enzyme’s activity toward a 

specified non-native substrate. We developed SubTuner, a physics-based computational tool that 

automates enzyme engineering for catalyzing desired non-native substrates. To test the 

performance of SubTuner, we designed three tasks – all aiming to identify beneficial anion 

methyltransferase mutants for synthesis of non-native S-adenosyl-L-methionine analogs: first in 

the conversion of ethyl iodide from a pool of 190 AtHOL1 single-point mutants for an initial test 

of accuracy and speed; second of ethyl and n-propyl iodide from a pool of 600 acl-MT multi-point 

mutants for a test of generalizability; and eventually of bulkier substrates (n-propyl, isopropyl, and 

allyl iodide) combined with experimental characterization for a test of a priori predictivity. We 

have also tested SubTuner against bioinformatics and machine learning-based enzyme engineering 

tools. All tests demonstrated SubTuner’s superior ability to accelerate the discovery of function-

enhancing mutants for non-native substrates. Moreover, utilizing molecular simulation data 
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derived from SubTuner, we elucidated how beneficial mutations promote catalysis. SubTuner, 

with its physical hypothesis, quantitative accuracy, and mechanism-informing ability, holds a 

significant potential to aid enzyme engineering for substrate scope expansion. 

1. Introduction 

Enzymes catalyze their native reactions with evolutionarily optimized proficiency but show 

diminished activities using non-native substrates. The ability to modify an enzyme from favoring 

its native substrate to favoring a desirable non-native substrate has great utility in a wide range of 

applications. Directed evolution techniques have been applied to engineer enzyme mutants, such 

as cytochrome P450,1-4 ketoreductases,5 imine reductases,6 and terpene synthases,7 to modify their 

substrate preference.8-15 Despite these successes in producing mutant enzymes optimized for non-

native reactions, the mutagenesis-based screening underlying directed evolution approaches have 

some significant drawbacks: high resource and labor costs deriving from low rates of identifying 

beneficial mutations, as well as uncertainty in designing a functional readout both complicate study 

design logistically. Even successful identification of beneficial mutations does not prohibit falling 

into an evolutionary dead end (e.g., screening >109 mutants does not yield any functional 

improvements16), nor are we informed of the sequence-structure-function relationships underlying 

the mutational screening.  

To address these challenges, bioinformatic tools such as FuncLib17 and HotSpotWizard18 

have been developed. FuncLib is arguably the most applied computational enzyme engineering 

tool in the community, assisting to engineer 20 enzymes in 19 research works by August 2024.17, 

19-36 FuncLib was shown to successfully discover mutants that shift a wild-type enzyme’s native 

activity toward unspecified substrates.17, 19-22 When the users intend to engineer enzymes for 

catalyzing a specified substrate, however, FuncLib demonstrated moderate to feeble performance: 
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4 works found FuncLib designs to be deleterious or neutral,23-26 10 to be moderate27-36. This is 

likely caused by the inability of FuncLib to predict the impact of a substrate on an enzyme’s 

mutational landscape. Like FuncLib, HotSpotWizard focuses on identifying initial sites 

(mutational hotspots) for site-saturation library construction, but similarly does not account for 

substrate effects in mutational selection.18 On the other hand, machine learning (ML) models have 

recently been developed to predict the fitness (MODIFY37) and turnover numbers (TurNup38 and 

DLKcat39) for given mutations of an enzyme sequence, thereby potentially assisting the 

prioritization of beneficial mutations for enzyme engineering. However, MODIFY does not take 

substrate information as input for mutation prediction; the accuracy of TurNup38 and DLKcat39 is 

limited by insufficient training data and the risk of overfitting. Moreover, neither bioinformatics 

nor ML tools can inform the sequence-structure-function relationships at the molecular level. 

Complementary to bioinformatic and ML tools, physics-based enzyme modeling—

specifically quantum mechanics and molecular mechanics simulations—has been used to 

understand the mechanism of enzymes and successfully guided the rational design of many 

beneficial enzyme mutants with modified substrate preferences.40-45 However, the rational design 

approach is limited in generalizability as it needs to determine the enzyme design principle based 

on the specific mechanism of an individual enzyme. Therefore, one pressing challenge is how to 

develop a computational tool that leverages molecular mechanics and quantum mechanics (i.e., 

physics-based modeling) to virtually identify beneficial enzyme mutants that accommodate a 

desired non-native substrate. Notably, this challenge for computational enzyme engineering is 

distinct from that for de novo enzyme design. The latter typically aims to create new sequences 

and protein scaffolds to catalyze a reaction, but the resulting designs, even when successfully 

expressed, exhibit low catalytic efficiency and require further optimization through laboratory-
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directed evolution. This further underscores the urgent need to develop computational enzyme 

engineering tools that can modify or enhance the function of existing enzymes by predicting 

beneficial mutations while keeping the overall protein scaffold largely intact. 

Here, we developed SubTuner, a physics-guided computational tool for modifying enzymatic 

substrate preferences towards a desired substrate. SubTuner is built on the hypothesis that when 

designing an enzyme for non-native reactions, beneficial mutants need to be: 1) thermostable, 2) 

effective at binding to a rate-limiting transition state (TS), and 3) good at stabilizing the developing 

dipole of the TS with interior enzyme electric field. Both the TS binding and electric field 

hypotheses about beneficial mutants have previously been utilized to design improved Kemp 

eliminases.46-48 We translated each of the hypotheses into a computational screening step in 

SubTuner (Section 2a) and automated the computational workflow using EnzyHTP,49-53 a Python 

library previously developed by our group. Note that although physics-based in silico enzyme 

engineering tools have been developed before, such as AsiteDesign54, and CASCO55, neither are 

specifically designed to enhance enzymatic activity toward a specific non-native substrate. 

AsiteDesign specializes in introducing catalytic residues into a binding pocket for hydrolase 

design. CASCO specializes in altering the enantio- or regioselectivity of the enzyme. These 

specializations fall out of the need of identifying beneficial mutants targeting a specific non-native 

substrate. 

Nonnatural S-adenosyl-L-methionine (SAM) analogs have been used for late-stage 

methyltransferase-catalyzed modification of small molecules and tagging of macromolecules such 

as proteins and DNA.56 However, the difficulty of synthesizing SAM analogs and their reduced 

stability in solution makes biocatalytic transformations using non-natural SAM analogs difficult.57 

Anion methyltransferases (or halide methyltransferase, HMT) can overcome these issues by 

https://doi.org/10.26434/chemrxiv-2024-zs8h9-v2 ORCID: https://orcid.org/0000-0002-7787-0966 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zs8h9-v2
https://orcid.org/0000-0002-7787-0966
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

5 

 

catalyzing the transfer of alkyl groups from iodoalkanes to S-adenosyl-L-homocysteine – forming 

alkyl-SAM analogs – concurrent with turnover of a promiscuous methyltransferase. We tested 

SubTuner using two HMTs, the Arabidopsis thaliana Harmless to Ozone Layer 1 (AtHOL1) 

enzyme58 and Aspergillus clavatus methyltransferase (acl-MT)59. We first evaluated SubTuner’s 

ability to identify beneficial mutants from 190 AtHOL1 mutants that were experimentally screened 

by saturation mutagenesis for modifying the wild-type AtHOL1 to catalyze ethyl iodide (EtI)60. To 

test SubTuner’s generalizability with multi-mutations, substrates, and enzymes, we then tasked it 

to identify beneficial acl-MT mutants from a Spread-Out Low Diversity (SOLD) library of 600 

mutants for ethyl iodide (EtI) and n-propyl iodide (nPrI) catalysis.61 Finally, to test SubTuner’s 

capability of guiding experimental engineering, we applied SubTuner to identify beneficial 

AtHOL1 mutants for catalyzing bulkier substrates including n-propyl iodide (nPrI), i-propyl iodide 

(iPrI), and allyl iodide (allyl-I), and experimentally characterized the top five mutants predicted 

for each nPrI, iPrI, and allyl-I, and discovered previously unidentified mutants with improved 

turnover. Overall, we tested SubTuner on three systems with different enzymes and substrates: 1) 

a posteriori test with AtHOL1 against EtI; 2) a posteriori test with acl-MT against EtI and nPrI; 

3) a priori prediction for AtHOL1 against nPrI, iPrI, and allyl-I. These results demonstrate 

SubTuner’s capability of accelerating enzyme engineering for targeted substrate scope expansion. 

2. Results 

2a. An overview of the SubTuner workflow 

SubTuner takes in the enzyme-substrate complex structure (i.e., considered as the “wild-type” 

structure) along with a target library of mutations, and predicts beneficial mutations that accelerate 

the enzymatic reaction of a specified non-native substrate. Empowered by the EnzyHTP49 library, 
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SubTuner serves as an automatically operated command line tool. The workflow involves four 

steps: Mutation, Thermostability Screening, TS-Analog Binding Screening, and Reactivity Ranking 

(Figure 1). Mutation assists the user in defining the “mutant library” to be screened, 

accommodating multiple library construction strategies: site-saturation mutagenesis, random 

mutagenesis, rational design, or any structure-based selection. Thermostability Screening filters 

out thermally unstable mutants from the “mutant library” by the change of folding free energy 

(𝛥𝛥𝐺𝑓𝑜𝑙𝑑), where the folding free energy is computed by cartesian_ddG62, 63 in Rosetta.64 TS-

Analog Binding Screening eliminates the mutants that involve unfavorable rate-determining 

transition state (TS) binding. As a well-established approximation, the pre-reaction complex is 

used as a TS analog (see details in Section 4. Implementation and Text S7) to calculate the impact 

of mutations on the binding enthalpy and binding entropy, which are assessed by the MMPBSA 

energy and active site RMSD, respectively – both are derived from MD trajectories. (see details in 

Section 4. Implementation and Text S5) From the remaining variants, Reactivity Ranking selects 

the top ranking beneficial mutant candidates for experimental characterization. In this step, the 

electrostatic stabilization energy of the transition state, Δ𝐺𝑒𝑙𝑒
‡

,65, 66 is used as the metric to assess 

and rank the reactivity of each mutant. The top ten ranked mutants by Δ𝐺𝑒𝑙𝑒
‡

 are selected as the 

final mutant suggestions of SubTuner and are recommended for the experimental test. (see details 

of the workflow in Section 4: Implementation). Note that the number of final mutant suggestions 

is flexible and should be based on a user preferred balance between the experimental effort and 

the chance of finding more and better mutants. (See more discussion about this in Section 3, “How 

many mutants should be in the final output of SubTuner?”) Also, note that the high efficiency of 

SubTuner that allows QM and MD based modeling of hundreds of enzyme mutants is inherited 

from the EnzyHTP library as a high-throughput enzyme modeling platform.49, 51  
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To assess the performance of SubTuner, we designed two metrics: hit rate and function-

enhancing speed (FES). The hit rate is calculated by dividing the number of mutant hits 

(characterized experimentally) by the total number of predicted mutants (i.e., ten mutants), 

representing the probability of observing function-enhancing mutants from the predicted 

candidates. The function-enhancing speed is calculated by first identifying the mutant with the 

greatest increase in turnover, and then dividing its improvement in activity fold by the time 

consumption, representing how fast the function enhancement can be achieved through 

experimental screening or computation-guided experimental discovery. Based on these metrics, 

we tested SubTuner for its ability to accelerate the discovery of anion methyltransferase mutants 

that form non-native SAM analogs in the following sections. 
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Figure 1. An overview of the SubTuner workflow. The workflow consists of four steps: 1. 

Mutation, which determines the initial mutant library; 2. Thermostability Screening, which screens 

the mutant library for stable folding; 3. TS-Analog Binding Screening, which screens the 

thermostable mutants for favorable binding of a TS-analog; and 4. Reactivity Ranking, which ranks 

remaining mutants based on predicted reactivity. The reactivity is assessed by the electrostatic 

stabilization energy of each mutant relative to the wild type (ΔΔ𝐺𝑒𝑙𝑒
‡

), which informs the enzymatic 
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activity change upon mutations. The top-ranking mutants by ΔΔ𝐺𝑒𝑙𝑒
‡

 are yielded as the final output 

of the SubTuner and are subject to the experimental test. 

2b. Test of SubTuner in identifying beneficial AtHOL1 mutants to catalyze Ethyl-SAM 

formation  

In this test, SubTuner was tasked to alter the substrate preference of AtHOL1 toward a non-

native substrate ethyl iodide (EtI). Arabidopsis thaliana Harmless to Ozone Layer 1 (AtHOL1), 

first discovered by Nagatoshi et al.58, catalyzes the conversion of S-adenosyl-L-homocysteine 

(SAH) and methyl iodide (MeI) to SAM. Previously reported, AtHOL1 mutants generating S-

adenosyl-L-ethionine (ethyl-SAM) from SAH and EtI (Figure 2A) were identified via a NNK 

single site-saturation mutagenesis performed by Tang et al. on ten residues in the active site (i.e., 

P20, V23, L27, W47, W36, V140, C143, Y139, Y172, R214, Figure 2B), leading to a 190-mutant 

library where 4 potentially beneficial mutants were identified (i.e., V140T, V140C, V23T, 

W36F).60 We tested to what extent SubTuner can identify beneficial mutants in its final output 

using the experimental results as the ground truth. The prediction outcomes allowed us to estimate 

to what magnitude the function enhancement could speed up if SubTuner were to assist the 

experimental screening.  
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Figure 2. Reaction schematic, active site structure, and screening conditions for AtHOL1, the 

model enzyme used in this study. (A) The target enzymatic reaction in AtHOL1. (B) The structure 

of the active site (PDB ID: 3LCC). The residue sites involved in mutations in the test are 

highlighted as orange sticks. EtI and SAM are shown in gray sticks. (C) The details of the 

experimental directed evolution and the setup of the SubTuner test. 

SubTuner takes the AtHOL1-EtI complex as input and predicts ten beneficial mutant 

candidates as output (Figure 2C). The 190 mutants in the initial mutant library were first screened 

by thermostability. Using the cutoff defined in Implementation (pass rate: 40%), SubTuner 

selected 76 mutants (labeled as green squares, Thermostability Screening, Figure 3 and see Table 

S3 for more details). These stable mutants then underwent the TS-analog binding test through 

classical MD simulations to filter for mutants with favorable TS-binding energy (i.e., low 𝛥𝐻𝑏𝑖𝑛𝑑 
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value) and activation entropy (i.e., low active site RMSD), where an SN2-type TS-analog is 

modeled by restraining the reaction coordinates between EtI and SAH.67 The top 40 mutants were 

ranked separately for 𝛥𝐻𝑏𝑖𝑛𝑑 and active site RMSD values. The intersection of the two rankings 

results in 27 mutants (TS-analog Binding Screening, Figure 3). SubTuner ranked the remaining 27 

mutants by calculating ΔΔ𝐺𝑒𝑙𝑒
‡

, the change of electrostatic stabilization energy caused by the 

mutation and selecting the top ten mutant candidates (green box, Reactivity Ranking, Figure 3) as 

the predicted beneficial mutants. Among the ten scored mutants, we observed three experimental 

hits, which are ranked in the 1st (V23T), 2nd (V140C), and 6th (V140T) place, improving the wild-

type AtHOL1 ethyl-SAM activity by 1.6, 3.6, and 5.3-fold, respectively. W36F, an experimental 

hit whose activity improvement is merely 1.1-fold, falls off from the top ten and ranks in the 19th 

place. 
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Figure 3. SubTuner screening results. Ten beneficial mutant candidates were predicted for 

AtHOL1 toward EtI. Thermostability Screening: the thermostability matrix shows the result of the 

screening for each mutant. The column of the matrix stands for the residue sites on different 

variants of mutation. The row of the matrix stands for different target residues of the mutation. 

The color of each matrix element indicates thermostable (green) or unstable (white). (See detailed 

of the screening methods in Implementation) TS-analog Binding Screening: 2 bar graphs are used 

to present the ranking of the MMPBSA binding enthalpy (𝛥𝐻𝑏𝑖𝑛𝑑) and the Active Site RMSD. 

(See detailed of the screening methods in Implementation) The x-axis of both graphs indicates the 

ranking of the mutants from high to low. For 𝛥𝐻𝑏𝑖𝑛𝑑, the y-axis is inverted to show a taller bar for 

a more negative number, which indicates a tighter binding. The name of the experimental hits is 

noted next to the corresponding value. The green box shows the top-40 mutants from each ranking. 

The Venn diagram represents mutants that are ranked as top-40 in both rankings. Reactivity 

Ranking: the bar graph represents the ΔΔ𝐺𝑒𝑙𝑒
‡

 ranking of the mutants from the previous screening 

rounds. The y-axis is inverted to show a taller bar for a more negative value, which suggests a 

higher activity relative to the wild type. The name of the experimental hits is noted next to the 

corresponding value. The green box shows the top ten mutants that compose the final mutant 

suggestion. 

To evaluate SubTuner’s performance, we calculated the hit rate and function-enhancing 

speed (detailed in Section 2a) on the AtHOL1–EtI reaction, comparing each of these metrics with 

experimental estimates. First, SubTuner identified three experimentally validated beneficial 

mutants from ten predicted mutants, exhibiting a hit rate of 30%. In contrast, the experimental hit 

rate is 2.1%. (four hits from 190 candidates) The hit rate of SubTuner thus outperforms random 

experimental screening by 14-fold. Second, it takes ~2 days for SubTuner to generate the ten 
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mutants (MD is most time-consuming51; see hardware specifications in Text S8), followed by ~3 

days for a protein engineer to complete site-directed mutagenesis and screen through ten mutants 

(i.e., 1 day for transferring 30 vectors, 1 day for expression, and 1 day for performing the crude 

enzyme activity assay). With a total effort of five days, SubTuner-facilitated experimental 

screening achieves a function-enhancing speed of 1.06-fold per day (i.e., V140T with an 

improvement of 5.3-fold). In contrast, the total effort of site-saturation mutagenesis is estimated 

to be ~34 days, including 1 day for the site-saturation PCR with the NNK codon, 2 days for cloning, 

3 weeks for expressing at least 224 variants from each plate to reach 99% coverage of the 

mutants,68 3 days for screening, 7 days for sequencing the hits. As such, site-saturation 

mutagenesis exhibits a function-enhancing speed of 0.2-fold per day. The SubTuner tool 

substantially speeds up the function-enhancing speed by about 5-fold. 

2c. Test of SubTuner in identifying beneficial multi-point acl-MT mutants to catalyze Ethyl- 

and Propyl-SAM formation 

To further test the generalizability of SubTuner across various substrates, enzyme 

sequences, and types of mutations (single and multi-mutations), we tasked SubTuner to expand 

the substrate scope of anion methyltransferase, acl-MT, towards ethyl iodide (EtI) and n-propyl 

iodide (nPrI) (Figure 4A). Experimentally screening a Spread-Out Low Diversity (SOLD) library 

of 600 multi-point acl-MT mutations has yielded ~10% active mutations (57 hits for ethyl iodide; 

65 hits for n-propyl iodide), in which the SOLD library was constructed by combining mutations 

from five residue sites through MD-guided rational engineering (i.e., V11, L30, W31, W41, L39, 

W41, Figure 4B).61 Similar to the AtHOL1 test described in Section 2b, we evaluated the 

performance of SubTuner based on its hit rate among the final list of ten predictions for each 

substrate and its functional enhancement speed.  

https://doi.org/10.26434/chemrxiv-2024-zs8h9-v2 ORCID: https://orcid.org/0000-0002-7787-0966 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zs8h9-v2
https://orcid.org/0000-0002-7787-0966
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

15 

 

 

Figure 4. Reaction schematic, active site structure, screening conditions, and SubTuner results for 

acl-MT, the model enzyme used in this study. (A) The target enzymatic reaction in acl-MT. (B) 

The structure of the active site (AlphaFold DB, access ID: A1CIS5). The residue sites involved in 

mutations in the test are highlighted as orange sticks. EtI is used here as an example of the 

substrate. EtI and SAM are shown in gray sticks. (C) The details of the experimental directed 

evolution and the setup of the SubTuner test. (D) SubTuner screening results. The mutant’s activity 

improvement relative to the wild-type is shown as the number in the green circle. 
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SubTuner takes the two enzyme-substrate complexes (acl-MT-EtI and acl-MT-nPrI) as 

input separately and creates two independent tasks, each predicting ten beneficial mutant 

candidates as output (Figure 2C). The 600 mutants in the initial mutant library were first screened 

by thermostability to yield 240 stable mutants. These stable mutants then underwent the TS-analog 

binding test, which gave 22 mutants for ethyl iodide and 14 mutants for n-propyl iodide (Table 

S3). SubTuner ranked these mutants by their activity (ΔΔ𝐺𝑒𝑙𝑒
‡

) for each substrate and yielded the 

top ten mutants as the final output. Among them, we found three beneficial mutants for ethyl 

iodide, which are: V11F-L39H, V11F-L30I-L39N-W41F, and V11F-L30I-L39H, improving the 

acl-MT activity by 10-, 5-, and 14-fold, respectively, toward catalyzing ethyl iodide. For n-propyl 

iodide, we found two beneficial mutants, V11F-L30I-L39N-W41F and V11L-L30C-L39H, in the 

top ten suggestions, both improving the acl-MT activity by 12 folds toward propyl iodide. 

To evaluate SubTuner’s performance, we calculated the hit rate and function-enhancing 

speed for both substrates. For ethyl iodide, SubTuner identified three hits with the greatest activity 

improvement of 14 fold (i.e., V11F-L30I-L39H). With the additional site-directed mutagenesis 

experiment, the total discovery time would be 8 days (5 days for running SubTuner + 3 days for 

site-directed mutagenesis and screening of 10 mutants). This gives the overall hit rate of 30% and 

a function-enhancing speed of 1.8-fold/day. For n-propyl iodide, SubTuner identified two hits with 

the greatest activity improvement of 12 folds (i.e., V11L L30C L39H) from ten mutant suggestions 

in 8 days, leading to an overall hit rate of 20% and function-enhancing speed of 1.5 fold/day. As a 

reference, experimentally screening the SOLD library of 600 mutants with UHPLC-ESI-MS found 

57 hits for ethyl iodide with the greatest activity improvement of 16 folds in an estimated 3 months, 

corresponding to an overall hit rate of 9.5% and a function-enhancing speed of 0.2-fold/day. In 

contrast, SubTuner can enrich the concentration of beneficial mutants in the smart library and 
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accelerate the speed of identifying function-enhancing mutants. These results demonstrate 

SubTuner's generalizability in accelerating the enzyme engineering processes for substrate scope 

modification.  

2d. Apply SubTuner in identifying beneficial AtHOL1 mutants to catalyze bulkier substrates  

Although the two tests described in section 2c and 2d validated the efficiency and 

generalizability of SubTuner, they are a posteriori in nature. As such, we designed a priori 

assessment, which employed experimental assays to characterize the predicted mutants identified 

by SubTuner in priori. This test serves as a proof-of-principle to demonstrate SubTuner’s 

capability of guiding experimental engineering. Specially, we applied SubTuner to engineer 

AtHOL1 toward three bulkier substrates (Scheme 1A), n-propyl iodide (nPrI), isopropyl iodide 

(iPrI), and allyl iodide (allyl-I). V140T was experimentally shown to be active toward these 

substrates even though it was discovered in the site-saturation mutagenesis screening for EtI.60 

Through separately testing each substrate against the library of 76 stable mutants, we also 

investigated whether SubTuner can consistently predict V140T among the ten recommended 

mutant candidates.  
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Scheme 1. Schematics of AtHOL1-catalyzed syntheses of non-native SAM analogs and the 

biochemical assays for mutagenesis screening. (A) AtHOL1-catalyzed reactions of SAH with three 

bulkier substrates: nPrI, iPrI, and allyl-I. The substituent differences of these substrates are 

highlighted in blue in the reaction scheme. (B) The tetramethylbenzidine (TMB) assay for 

characterization enzyme turnover. The iodide anion released from substrate haloalkane is oxidized 

by Curvularia inaequalis Vanadium-Dependent Chloroperoxidase (CiVCPO) to hypoiodous acid, 

spontaneously oxidizing TMB to TMBox. TMBox forms a complex with TMB with a 

characteristic absorbance peak at 570 nm. The colorimetric corresponding to the iodide ion 

concentration is shown on the right as a photo of our microplate. (See Methods for more details)  
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Three separate SubTuner tasks, corresponding to each of the bulkier iodoalkane substrates, 

were conducted to recommend the top ten mutant candidates for each substrate (Figure 5). Since 

folding free energy on apo-AtHOL1 is substrate-independent, SubTuner directly recycled the 76 

mutants involved in the thermostability screening stage of EtI (Figure 3). These mutants underwent 

TS-analog binding screening, resulting in 27 mutants for iPrI, 26 mutants for nPrI, and 23 mutants 

for allyl-I (TS-analog Binding Screening, Figure 5, Table S3). SubTuner ranked these mutants by 

their reactivity (ΔΔ𝐺𝑒𝑙𝑒
‡

) for each substrate and selected the top ten mutant candidates (green box, 

Reactivity Ranking, Figure 5). SubTuner succeeded in identifying V140T among the 

recommended mutants for two substrates, ranking it 1st place for nPrI and 8th place for allyl-I. For 

iPrI, however, V140T was ranked at the 15th place. Though falling off from the top ten list, the 

result does not necessarily suggest a failure of SubTuner in iPrI, because most mutants 

recommended by SubTuner had not been characterized experimentally in its original publication.60 

Therefore, we performed experimental tests on the top five recommended mutants for each 

substrate to validate whether beneficial mutants were correctly identified and discover new 

AtHOL1 mutants that catalyze these bulkier substrates.  
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Figure 5. Screening results of the SubTuner to predict ten beneficial AtHOL1 mutant candidates 

toward EtI, nPrI, iPrI, and allyl-I. The top ten candidate mutations are labeled in the Reactivity 

Ranking section. V140T, a beneficial mutant reported by Tang et al., is recommended for nPrI and 

allyl-I (colored in green), but not for iPrI (colored in red).  
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We synthesized, expressed, and purified the top five predicted AtHOL1 mutants for each 

substrate. The activity was determined using a chloride-insensitive, iodide-sensitive CiVCPO-

TMB assay based on the absorbance at 570 nm (Scheme 1B and the Method section). For nPrI, 

two out of the five SubTuner-suggested mutations show improved activity (V140T and P20M, 

Figure 6), with V140T demonstrating the greatest turnover improvement of 4.9-fold higher than 

the wild-type. For iPrI, even though V140T is not included in the final output, three out of the five 

SubTuner suggestions did show improved activity (P20C, R214W, Y139W, Figure 6), with P20C 

exhibiting the greatest turnover improvement of 3.1-fold higher than the wild-type (slightly greater 

than V140T, Table S2). Notably, for allyl-I, none of the five mutants demonstrated improved 

activity compared to the wild-type, which already exhibits high efficiency.  

SubTuner identified 5 hits with the greatest activity improvement of 4.9-fold (i.e., V140T 

for nPrI) from 15 mutant suggestions in 10 days (6 days for running SubTuner + 4 days for site-

directed mutagenesis and screening of 15 mutants). This gives the overall hit rate of 33.3% and a 

function-enhancing speed of 0.5-fold/day, outperforming experimental screening estimated from 

EtI screening (function-enhancing speed 0.2-folds/day). Notably, this proof-of-principle test only 

involves one round of SubTuner engineering with single-point mutations. In practice, multiple 

rounds of SubTuner engineering with multi-mutations are expected, which likely yields higher 

activity improvements.   
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Figure 6. Turnover of top five SubTuner predicted AtHOL1 mutants and wild-type against various 

iodoalkane substrates at 3.2 mM. The corresponding substrate of the test is noted in the top right 

 
 
 
 
  
  
  
 
  
 
  
 
 

  
 
 
  
 
  
  

 
 

 
 
 
 
  
  
  
 
  
 
  
 
 

  
 
 
  
 
  
  

 
 

 
 
 
 
  
  
  
 
  
 
  
 
 

  
 
 
  
 
  
  

 
 

     

    
        

        

   

    

    

    

     

     
     

    

    

    
   

    

    

    

     

     
     

     

    
    

   

    

    

    

    

    

    

       

https://doi.org/10.26434/chemrxiv-2024-zs8h9-v2 ORCID: https://orcid.org/0000-0002-7787-0966 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zs8h9-v2
https://orcid.org/0000-0002-7787-0966
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

23 

 

corner. The mutants that have improved or deteriorated activity relative to the wild type are shown 

in green or red, respectively. The wild type is shown in gray.  

2e. Mechanistic insights behind the beneficial AtHOL1 mutants 

The ability to derive mechanistic, atomic-level insight into the impact of beneficial 

mutations on biocatalysis is valuable beyond the ability to enable enzyme optimization. To this 

end, we utilized molecular simulation data derived from SubTuner to elucidate the impact of 

beneficial mutations on catalysis. Three mechanistic questions stand out. First, why does wild-

type (WT) fail to maintain high catalytic activity on bulkier substrates (i.e., EtI, nPrI, iPrI, and 

allyl-I)? Second, why does V140T exhibit promiscuous activities toward the tested bulkier 

substrates? Third, why does P20C, an uncommon mutation target, enhance AtHOL1’s activity 

toward iPrI?  

To investigate the failure of wild-type AtHOL1 to catalyze bulkier substrates, we started 

by performing density functional theory (DFT) calculations on the intrinsic reaction mechanisms 

between dimethyl sulfide (used as an analog of SAH) and various substrates (i.e., MeI, EtI, nPrI, 

iPrI, and allyl-I), elucidating the energetic reasons behind WT’s low activity toward non-native 

substrates (Text S12). The results show that the intrinsic reaction barrier in water increases from 

17.5 kcal/mol for MeI and allyl-I, to 20.4 kcal/mol for EtI and nPrI, and further to 21.2 kcal/mol 

for iPrI (Figure 7A). From MeI, EtI, nPrI, to iPrI, the trend of barrier height increasing, driven by 

the decreasing electrophilicity of the reacting carbon, is correlated with the experimentally 

observed rate reduction (i.e., MeI > EtI > nPrI ~ iPrI, Table S2). However, the intrinsic preference 

of the electronic structure does not explain the low activity of WT for allyl-I, which has a similar 

barrier to MeI but reacts 10-4 fold slower (specificity activity, Table S2). Through inspecting the 
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active site binding pocket in the crystal structure of AtHOL1 with docked MeI, we identified the 

small cavity size as another factor behind WT’s failure to accommodate a bulkier substrate. 

Specifically, enlarging the carbon chain on the substrate will cause steric hindrance with W36 and 

V140 (Figure 7B), hampering binding (worse MMPBSA binding energies, Table S2) and 

misaligning the substrate with the interior enzyme electric field (worse electrostatic stabilization 

energy, Table S2). The steric clash causes EtI, nPrI, and iPrI to react even slower than what is 

expected from their intrinsic barrier (lower specific activity, Table S2). Guided by these findings, 

we hypothesize that V140T and P20C rescue activities of HMT on bulkier substrates by reshaping 

the active site cavity to favor binding and electrostatic stabilization. 

 

Figure 7. Intrinsic reaction barriers between dimethyl sulfide and iodoalkyl compounds (i.e., MeI, 

EtI, nPrI, iPrI, and allyl-I) and the active-site structure of wild-type AtHOL1. (A) The free energy 

barrier of the intrinsic reaction is calculated by the DFT method (optimization: PBE0-D3/def2-

SVP; single-point energy: PBE0-D3/def2-TZVP; both treated with SMD implicit water model).  
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The letter “R” in blue indicates different substituents on I. The cartoon shows a representative TS, 

with the black balls showing sites of substituents of the “R” groups in the table. Details about the 

QM calculation are described in Text S3. (B) The active site binding pocket in the crystal structure 

of AtHOL1 (PDB ID: 3LCC) with MeI docked and solvent-exclusive surface (gray) is shown. 

V140 and W36 are highlighted as sticks with non-polar hydrogens hidden. 

To understand the promiscuity of the V140T variant, we looked into the MD trajectory and 

the EF calculation generated during the SubTuner screening against EtI, nPrI, iPrI, and allyl-I. 

Different from the WT, where residue Val140 involves a flexible conformation characterized by a 

wider distribution of dihedral angles (Figure S3B, dihedral distribution), mutation to Thr140 

results in H-bonding to the carboxylic acid group on SAH, forcing it to consistently adopt a 

conformation that reduces steric hindrance with each binding substrate (Figure S3). In addition, 

the Thr140-SAH interaction positions each substrate’s C–I bond along a favorable interior enzyme 

electric field for stabilization (Table S1 and Figure S4). Taking EtI as an example, due to the 

formation of Thr140-SAH hydrogen bond, V140T better aligns the substrate’s C–I bond with the 

direction of interior enzyme electric field (average angle with EF, V140T: 16.6° vs. WT: 41.2°), 

leading to a stronger projected EF with a narrower distribution (V140T: -43.4 ± 5.7 MV/cm vs 

WT: -35.2 ± 9.6 MV/cm, Figure 8A). These changes correspond to an enhancement of ΔΔ𝐺𝑒𝑙𝑒
‡

 by 

2.2 kcal/mol for EtI (V140T: -7.8 kcal/mol vs WT: -5.6 kcal/mol), 3.6 kcal/mol for nPrI, 1.8 

kcal/mol for iPrI and 3.8 kcal/mol for allyl-I (Table S2). These results suggest that the promiscuity 

of the V140T variant originates from its creation of a larger active site binding pocket and the 

subsequent positioning of the substrate’s C–I bond along the enzyme's electric field for 

stabilization, facilitated by the Thr140-SAH hydrogen bonding.  
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The final question we aim to answer is what causes P20C, an unusual mutation located in 

the second shell of the active site, to be stronger in activity toward iPrI than WT and V140T. Due 

to hindered peptide bond isomerization caused by the conformation of the cyclic side chain, proline 

residues usually adopt a cis conformation induced −turn and are therefore not a common mutation 

target as mutation to a less rigid amino acid can disturb the fold significantly. Based on the MD 

data collected from SubTuner, we observed that P20C, though not directly interacting with the 

substrate, causes a dynamic shift of the α-helix (residue 20-40, PDB: 3LCC) and makes a nearby 

loop more flexible (Figure S2). This dynamic shift repositions the α-helix containing V140 away 

from the substrate, thereby reducing steric repulsion in the active site (MMPBSA energy, Table 

S2; see the six components of the dynamic shift described in Text S10 and Figure S2). These 

dynamic shifts better align iPrI’s C–I bond with a favorable EF in the enzyme (P20C: -42.7 ± 11.0 

MV/cm vs WT: -28.8 ± 9.0 MV/cm, Figure 8B), allowing P20C to enhance ΔΔ𝐺𝑒𝑙𝑒
‡

 by 2.2 kcal/mol 

(P20C: -6.9 kcal/mol and WT: -3.7 kcal/mol) These results are consistent with P20C promoting 

catalysis of iPrI through a dynamic shift of loops and α-helixes, informing a new hypothesis to 

further improv the activity of AtHOL1 through optimizing substrate positioning. 
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Figure 8. (A) The projected electric field strength (EF) distribution of V140T and WT in complex 

with EtI. (B) The projected electric field strength (EF) distribution of P20C and WT in complex 

with iPrI. For both subfigures, the kernel density distribution is fitted using the gaussian_kde 

function from the scipy package. The fitting data is obtained from EF calculations of 100 snapshots 

sample from the MD trajectory.  Representative AtHOL1 structures (top) are shown with projected 

EF values (labeled) with the direction of EF (red arrow) and direction of C-I bond (red dashed) 

indicated. The probability density function of the electric field strength (bottom) for wild-type 

AtHOL1 (gray) and mutant AtHOL1 (orange) with indicated average value of the distribution 

(dotted line, labeled).  

3. Discussion 

In this work, we developed a physics-guided computational tool, SubTuner, to predict 

beneficial mutations for catalyzing non-native substrates. SubTuner begins with the enzyme-
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substrate complex as an input, screens a mutant library through three selection steps (i.e., assessing 

thermostability, transition state (TS) analog binding, and electrostatic stabilization), and provides 

ten beneficial mutant candidates as an output. We evaluated SubTuner for its ability to identify 

mutants that improve AtHOL1’s activity towards EtI and other bulkier substrates (nPrI, iPrI, and 

allyl-I), demonstrating its accuracy, generalizability, and mechanistic interpretability. Below, we 

discuss three questions regarding SubTuner's technical strengths and limitations, as well as its 

scientific implications. 

How does SubTuner guide enzyme engineering? Given a target library of mutants, 

SubTuner predicts top ranking beneficial mutant candidates for each enzyme-substrate complex, 

forming a “smart library” to accelerate enzyme engineering. Besides applying the predicted 

mutations for experimental testing, users can identify the mutation hotspots by ranking the 

frequency of each mutation site involved in the final list (e.g., V140 with a frequency of 22.2%, 

Table S3), and design combinatorial site-saturation mutagenesis accordingly. In addition, 

SubTuner, enabled by its generated molecular modeling data, informs atomic-level insight into the 

catalytic actions of beneficial mutants that enhance enzyme activity toward non-native substrates 

(see Section 4d). These insights serve as an engineering principle to guide iterative rounds of 

activity optimization.  

Though tested in AtHOL1, SubTuner is generalizable to other enzyme targets. The overall 

strategy is independent of specific applications. This complements experimental protocols, which 

can vary significantly across different enzymes, involving gene expression, protein purification, 

and activity readout designs. However, one potential limitation of SubTuner lies in the choice of 

the target transition state (TS). While this may not be a problem for enzymatic reactions with a 

well-defined rate-limiting transition state like methyltransferases, multi-step enzymatic reactions 
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may have altered rate-limiting steps upon mutation.69, 70 This serves as a key challenge for the next 

step development of SubTuner.  

How does SubTuner compare with data-driven tools? Bioinformatic and machine learning 

models have been developed to facilitate enzyme and metabolic engineering, including FuncLib,23-

36 MODIFY,37 TurNup,38, and DLKcat39. These tools predict the fitness scores or turnover numbers 

based on user-provided mutations of an enzyme sequence. In principle, mutations with the top-

ranked fitness scores or turnover numbers are likely to be beneficial mutations. Due to the high 

accessibility and popularity of these data-driven tools in the field, we compared their capability of 

finding beneficial mutations to that of SubTuner in the task of engineering acl-MT to catalyze the 

conversion of ethyl iodide and n-propyl iodide (Table 1). We applied each tool to predict the top 

10 beneficial mutations from a library of 600 acl-MT mutations, and then evaluated its accuracy 

by calculating the hit rate of experimentally validated beneficial mutations from the 10 predictions.  

Notably, MODIFY and FuncLib do not incorporate substrate information (e.g., SMILES 

strings) in their prediction. Therefore, their predicted set of top 10 mutations for both ethyl iodide 

and n-propyl iodide are expected to be identical. MODIFY predicts the wild-type to have the 

highest fitness score among all mutants in the acl-MT library, suggesting the rest to be deleterious. 

However, this contrasts with the experimental observation that 57 of these mutants are beneficial 

toward EtI and 65 toward nPrI. This is likely caused by the fact that MODIFY does not consider 

the impact of substrate on the fitness landscape. Nonetheless, from the top 10 predicted mutations, 

MODIFY identifies one beneficial mutant that has 8-fold activity improvement against EtI and 5-

fold against nPrI. In comparison, the mutations predicted from FuncLib (those with a high 

“mutability”) show no beneficial mutations toward both substrates.  
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Distinct from MODIFY and FuncLib, TurNup takes the substrate SMILES string as part 

of the input. However, the TurNup model fails to differentiate the distinct impact between EtI and 

nPrI on the mutational landscape, still giving an identical set of top 10 acl-MT mutations for both 

substrates based on the ranking of predicted turnover numbers. For both substrates, no beneficial 

mutation was found from this set of mutations. Similar to TurNup, DLKcat also takes the SMILES 

string of the substrate as part of the input and identifies beneficial mutations based on predicted 

turnover numbers. However, DLKcat ranks the top 85 (for EtI) and top 235 (for nPrI) mutants to 

have undifferentiable turnover numbers (1.77±0.01 s-1), making it impossible to pick a set of top 

ten mutants. Another issue is that DLKcat predicts all 600 mutations to have a better turnover 

number than that of the wild type for both substrates. This contrasts with the experimental 

observation that 90% of the mutations in the library are deleterious. This suggests that DLKcat is 

not only insensitive to the impact of mutations on the turnover number but also biased toward false 

positive predictions.  

Interestingly, both DLKcat and TurNup exhibit a consistent tendency to bias predictions in 

favor of mutations being beneficial. This is likely caused by the biased distribution of the training 

data, where most mutations used for training are from publications that only measure and report 

beneficial mutants. Different from the intrinsic bias of data-driven tools, SubTuner's prediction of 

mutation effects is based on fundamental physical principles, identifying three hits for ethyl iodide 

(best activity improvement: 14 folds) and two hits for n-propyl iodide (best activity improvement: 

12 folds). As such, SubTuner complements the data-driven tools in the field and fills in the gap of 

in silico enzyme engineering targeting the activity of a specific non-native substrate. 
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Table 1. The top ten mutant suggestions from computational tools for acl-MT against (top) ethyl 

iodide and (bottom) n-propyl iodide. The corresponding experimental activities are listed next to 

the mutant. The mutants are listed in the order of their experimental activity for clarity. The results 

from DLKcat are not listed in the table as the top 85 and 235 mutants are predicted to have similar 

activities for EtI and nPrI, respectively. The results of MODIFY, TurNup, and DLKcat are 

obtained by following the instructions on their GitHub page. (https://github.com/luo-

group/MODIFY, https://github.com/AlexanderKroll/kcat_prediction, 

https://github.com/SysBioChalmers/DLKcat, Text S11) The FuncLib result is obtained from the 

FuncLib webserver (funclib.weizmann.ac.il, Text S11). The experimental activity is obtained from 

the experimental screening by Schülke et al. for acl-MT61. All the raw output files are in SI.zip. 

Do we need three stages of screening? To answer this question, we tested the performance 

of SubTuner in the absence of each screening stage using AtHOL1-EtI system as an example. First, 

without thermostability screening, all 190 mutants go to the TS-analog binding screening, directly 

slowing down the workflow by 2.5 folds (increasing the number of MD simulations from 76 to 

190). Furthermore, some unstable mutants show TS-analog binding ability due to stability-activity 

compensation,71 excluding real hits from the final output. As a result, the top ten beneficial mutant 

candidates do not contain any real hits (Table S4). These results demonstrate that thermostability 

screening is vital to SubTuner’s success. 

Second, without the TS-analog binding screening and its associated MD simulations, the 

76 mutants from thermostability screening will directly undergo TS stabilization ranking (ΔΔ𝐺𝑒𝑙𝑒
‡

) 

using their static structures, rather than the conformational ensemble. As a result, mutants that 

hinder binding but facilitate stabilizing the reacting dipole of the TS in an arbitrary conformation 
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are included in the top-ranking list, resulting in no hits found in the final list (Table S5). These 

results show the importance of the TS-analog binding step in beneficial mutant screening.  

Finally, without the TS stabilization ranking, the final list of mutant candidates will 

comprise 27 unranked mutants (in the AtHOL1-EtI case) resulting from the TS-analog binding 

screening. The user has to randomly select if they still want ten final candidates. In this case, with 

the random selection, the expected value of the hit rate will be 14.8% (Text S9), dropping the 

original hit rate of SubTuner by half (i.e., 30%). Notably, compared to the MD simulations, the 

single-point QM cluster calculation is resource efficient and costs relatively omittable time.51 

Therefore the computational time will be similar. In the same time, the expected value of the 

greatest activity improvement from ten random selections in these 27 mutants is 3.1-fold (Text S9). 

This gives 59.3% of the original function-enhancing speed of SubTuner (5.3-fold). As such, 

reactivity ranking significantly improves the accuracy of SubTuner with minimal computational 

overhead. 

How do we balance computational accuracy and efficiency? Balancing computational 

accuracy and efficiency in SubTuner involves considering various computational setups and 

parameters, such as MD sampling methods, time length, force fields, QM theories, and 

optimization approaches. Unlike traditional computational chemistry missions (e.g., 

thermochemistry predictions) with a well-established benchmark set, computational enzyme 

engineering deals with a moving target that hinges on experimental screening effort. The decision 

to adopt more sophisticated computational methods depends on whether they would improve the 

hit rate and function-enhancing speed compared to pure experimental screening. For example, in 

the Ruegeria sp. TM1040 amine transaminase-phenylethylamine system, 12 beneficial mutants 

were identified from experimentally screening 57 mutants in 2 rounds of site-saturation 
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mutagenesis, leading to a screening hit rate of 21%.72 With such a high hit-rate from pure 

experimental screening, incorporating a higher level of QM theory, polarizable force field, and 

free energy perturbation for binding calculation into SubTuner will likely result in marginal to no 

improvement in hit rate, but undoubtedly cost more computational time. For intrinsically difficult 

enzyme engineering missions (i.e., have a low hit-rate even though all mutations are screened, or 

involve a complex mechanism), however, a combination of expensive molecular modeling 

methods can be critical to improve the number of hits from 0 to 1. The development of the critical 

assessment of computational enzyme engineering tools will be necessary, considering the 

complexity of balancing computational accuracy and efficiency, and will be foundational for 

comparing computational enzyme engineering approaches and achieving computational optimality. 

How many mutants should be in the final output of SubTuner? In Section 2a when we first 

introduced the workflow of SubTuner, we used the top ten mutants as the final output by default. 

In practice, the optimal number of the final output from SubTuner should be determined by 

maximizing the function-enhancement speed (FES) considering the balance between the 

experimental cost (time, resource) and the chance of finding more and better mutants. Finding the 

optimal number of outputs is a non-trivial question for any computational enzyme engineering tool. 

The complexity roots in the diverse cost of the kinetic experiments and the accuracy/efficiency of 

the computational enzyme engineering tools—both are dependent on the context of target enzymes. 

Increasing the number of candidate mutants for testing will cost much less time and effort for a 

simple assay like Kemp elimiase than a complex assay like amylase or photo-enzymes. On the 

other hand, the expected value of the function enhancement per additional mutant included in the 

final output is enzyme-dependent. In this case, addressing this question requires establishing the 

critical assessment of computational enzyme engineering tools as mentioned above to quantify the 
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generalized accuracy and efficiency of the tools across different enzymes, as well as software that 

takes in a user-defined curve of the experiment cost and optimize the number of final output. 

Implementation  

SubTuner takes the enzyme-substrate complex structure (i.e., considered as the “wild-type” 

structure) and the target mutant library of screening as input and predicts beneficial mutations as 

output. The SubTuner workflow consists of four steps, including Mutation, Thermostability 

Screening, TS-Analog Binding Screening, and Reactivity Ranking (Figure 1). These steps operate 

in an automated manner using our high-throughput enzyme modeling platform EnzyHTP.49 Below, 

we detail each step in the workflow.  

Step-1: Mutation. This step assists users in defining the “mutant library” that will be 

screened by the following workflow. The workflow starts with preparing the input structure (i.e., 

the enzyme-substrate complex) for molecular modeling (detailed in Text S1). Using the prepared 

structure as the “wild-type”, candidate mutations are generated by site-saturation mutagenesis, 

random mutagenesis, rational design, or any empirical selection desired by the users (by the 

assign_mutant API in EnzyHTP), thus forming a “mutant library” for the remaining steps. In this 

work, we employed site-saturation mutagenesis.  

Step-2: Thermostability Screening. This step serves to filter thermally unstable mutants 

from the “mutant library” constructed in Step-1. The change of the folding free energy (𝛥𝛥𝐺𝑓𝑜𝑙𝑑) 

relative to the wild type is used as the metric to assess the impact of mutations on thermostability. 

The 𝛥𝛥𝐺𝑓𝑜𝑙𝑑  values are calculated using the cartesian_ddg protocol62, 63 from Rosetta64 and is 

automated by the get_rosetta_ddg API in EnzyHTP. (Text S4) The mutants are ranked based on 

their 𝛥𝛥𝐺𝑓𝑜𝑙𝑑 values, and a fraction of unstable mutants are discarded. In this study, the workflow 
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filters out 60% of the mutants – they are predicted to be thermally unstable relative to the wild 

type (i.e., has a positive 𝛥𝛥𝐺𝑓𝑜𝑙𝑑).  

Step-3: TS-analog binding screening. This step further eliminates the mutants that involve 

weak transition state (TS) binding. From a short list of mutants out of Step-2, the workflow first 

creates the enzyme mutant-substrate complex structure of the wild-type by replacing the side chain 

of target residues in EnzyHTP (powered by PyMol73 and Amber74). These structures are then used 

as input for MD-based conformational sampling with constraints added on the reaction coordinates 

(i.e.: bond distance, angle, etc. of the forming bonds, Figure S1) to approximate the binding of a 

TS as the binding of the pre-reaction complex75-86 (or a TS-analog, see the use of pre-reaction 

complex as the TS-analog in Text S7). The MD simulations yield trajectories sampled from 100 

ns production runs after equilibrations and are used as the conformational ensemble to calculate 

the metrics in the following steps of the workflow. (see details of the MD in Text S2) For each 

mutant, the binding enthalpy of this TS-analog is calculated by the MM-PBSA method using the 

sampled conformational ensemble. In addition, the workflow also evaluates the flexibility of the 

active site by calculating the Root Mean Square Deviation (RMSD) of the active site (using 

residues within 5 Å from any atom in the substrate, Text S5). A more rigid active site benefits 

catalysis by reducing the activation entropy.87-89 The change of the RMSD of the active site is used 

as a descriptor of the change of the activation entropy upon mutations (i.e., TS binding entropy, 

see Text S5 for more details). The mutants are ranked separately based on the MMPBSA energy 

and the active site RMSD. The MMPBSA energies are ranked from negative to positive, i.e., strong 

to weak binding. The active site RMSD is ranked from low to high, i.e., rigid to flexible. The 

workflow selects mutants that are top in both ranks. In this study, mutants are selected that are 
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among the 52% MMPBSA energy and active site RMSD values. In this work, the number is 

selected based on the acceptable amount of experimental effort.  

Step-4: Reactivity ranking. This step ranks the remaining mutants from the previous 

screening steps by their chemical reactivities. The workflow uses the electrostatic stabilization 

energy of the transition state, Δ𝐺𝑒𝑙𝑒
‡

,65, 66 as the metric to assess the reactivity of each mutant. The 

difference in electrostatic stabilization energy between a mutant and the wild type (ΔΔ𝐺𝑒𝑙𝑒
‡

) reflects 

the stabilization of enzyme interior electric field on a reacting dipole, which has been shown to 

correlate with the change of activation energy or enthalpy of the corresponding chemical step.46, 

65, 66, 90-93 Distinct from former steps, this step considers the impact of mutation on the electronic 

structure of the enzyme active site. To calculate ΔΔ𝐺𝑒𝑙𝑒
‡

 from each MD-sampled snapshot, the 

workflow first constructs a QM cluster consisting of the reacting species and residues, and then 

performs single point energy calculations using a Gaussian1694 interface in EnzyHTP. (Text S3) 

This yields the electronic structure of the active site, from which the dipole moment of the breaking 

bond is estimated using the Multiwfn95 interface in EnzyHTP. The Δ𝐺𝑒𝑙𝑒
‡

 is computed as the 

negative dot product between the bond dipole and the electric field strength (see Text S6 for more 

details).  

The mutants’ ΔΔ𝐺𝑒𝑙𝑒
‡

 values are ranked from negative to positive, with negative meaning a 

more stabilized TS compared to the wild type. The top ten mutant candidates from this ranking are 

recommended for the experimental test. Notably, the number of mutants selected from the final 

ranking is case dependent and should be determined through balancing between the experimental 

cost and the potential gain of testing additional mutants. (See discussion in Section 3, How many 

mutants should be in the final output of SubTuner?) 
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4. Experimental Methods 

Chemicals, strains, and plasmids. Chemicals were purchased from the Sigma Chemical 

corporation (St. Louis, MO, USA) unless otherwise specified. The gene encoding CiVCPO from 

Curvularia inaequalis was generously provided to us in the pBADVCPO vector (acknowledgment 

to Uwe Bornscheuer) and transformed into E. coli TOP10 for protein expression. The gene 

encoding AtHOL1 and mutants were synthesized and subcloned into pET-28a (+) vectors 

(pET28a_AtHOL1_mut) via Genscript (Piscataway, NJ, USA), and transformed into E. coli 

TOP10 for storage and E. coli BL-21 (DE3) for protein expression. Antibiotic markers kanamycin 

(pET28a_AtHOL1, pET28a_AtHOL1_mut) and ampicillin (pBADVCPO) were used at a final 

concentration of 50 μg/mL (50mg/mL stocks) for transformation and culturing. 

AtHOL1 Protein Expression and Purification. Plasmid pET28a_AtHOL1_mut was 

transformed into chemically competent E. coli BL-21 (DE3) and plated (LB + kanamycin) for 

overnight incubation @ 37 °C. single colonies were picked and inoculated into 10 mL LB media 

with kanamycin in 50 mL Falcon Tubes to incubate (37 °C, rotating at 200 rpm for 16 h). An 

aliquot of 500 μL of culture was inoculated into 500 mL LB + kanamycin in a 2 L baffled flask 

and incubated (37 °C for 3 h) until OD600 reached 0.6. IPTG (500 mL of a 100 mM stock solution) 

was added to a final concentration of 0.1 mM, the temperature was lowered to 25 °C, and the flasks 

were further incubated for 20 h. The cells were then harvested via centrifugation (2500 x g for 30 

min), the supernatant was discarded, and the pellet was stored at -20 °C prior to lysis. The pellets 

were resuspended in 25 mL lysis buffer (20 mM imidazole, 500 mM NaCl, 20 mM Tris Base, pH 

7.5) and one vial of 25  mL Culture Vial of CelLyticTM Express, and incubated (37 °C for 30 min). 

The cells were further lysed via French Pressure cell (2 times at >19,000 psi) and the lysate was 

ultracentrifuged (10,000 x g for 20 min). FPLC Procedure: the supernatant solution was loaded 
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onto a Cytiva 5ml HisTrapTM FF column previously equilibrated with 5 column volumes (CV) 

lysis buffer. Elution was conducted via a linear gradient of imidazole (20 mM to 250 mM). The 

eluted fractions were monitored via A280, fractions combined, concentrated to ~1 mL using a 15mL 

Amicon Ultracentrifugal Filter 10 kDa MWCO, and desalted into 50 mM NaHPO4 (pH 7.5) The 

final protein concentration was determined via NanodropTM One (Thermo Fisher, Hennigsdorf, 

Germany). The purified protein was immediately used for activity assays.  

CiVCPO Protein Expression and Purification. Plasmid pBADVCPO was transformed into 

chemically competent E. coli BL-21 (DE3) and plated on LB + ampicillin plates for incubation 

(37 °C for 16 h). Single colonies were picked and inoculated into 10 mL LB media + ampicillin in 

50 mL Falcon Tubes at 37 °C, with shaking at 200 rpm for 16 h. A 500 μL of culture was inoculated 

into 500 mL LB media containing ampicillin in a 2 L baffled flask and incubated with shaking at 

37 °C for 3 h until OD600 reached ~0.6. IPTG was added to a final concentration of 0.1 mM, the 

temperature was lowered to 20 °C, and the flasks were further incubated for 20 h. The cells were 

then harvested via centrifugation (2500 x g for 30 min), the supernatant discarded, and the pellet 

stored at -20 °C. The pellets were resuspended in 25 mL 50 mM Tris H2SO4 (pH 8), one vial of 25 

mL Culture Vial of CellLyticTM Express, and one tablet of cOmpleteTM Protease Inhibitor (Roche, 

Basel, Switzerland). The cells were further lysed via French Pressure cell (2 times at > 16,000psi) 

and the lysate was ultracentrifuged (10,000 x g for 20 min). The supernatant was added to 25 mL 

isopropanol, incubated on ice for 30 m, and ultracentrifuged (10,000 x g for 20 m). FPLC 

Procedure: the supernatant solution was loaded onto a DEAE Column previously equilibrated with 

5 column volumes (CV) 50 mM Tris H2SO4 (pH 8) buffer. The column was washed with 5 CVs 

of 50 mM Tris H2SO4 100 mM NaCl (pH 8). The CiVCPO was eluted with 50 mM Tris H2SO4 

1M NaCl. Desalting via dialysis was conducted in 1L 50 mM NaHPO4 100 μM sodium 
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orthovanadate (pH 8) for 4 h, the dialysis buffer was refreshed and further dialyzed for 16 h. The 

dialyzed CiVCPO was stored at 4 °C in a 10 mL Falcon Tube.  

CiVCPO Activity Determination. CiVCPO stock activity was determined via the 

monochlorodimedone assay (Hager, “Chloroperoxidase II. Utilization of Halogen Anions”, 1966). 

The bromination of monochlorodimedone leads to near total loss of absorbance at A290 (Δε = 20000 

M-1, cm-1). The assay mixture (1 mL, pH 6) consisted of monochlorodimedone (42 μM), NaHPO4 

(20 mM), sodium orthovanadate (1 mM final), NaBr (100 μM final), 0.9 μL of 30% hydrogen 

peroxide, and was initiated by adding 10 μL purified CiVCPO. The loss of A290 was monitored in 

a quartz cuvette, and the change in absorbance converted to μM monochlorodimedone 

brominated/uL CiVCPO solution via Beer’s Law.  

Activity Assay. The assay used for following alkyl iodide addition was adapted from a 

previously reported iodide detection assay.96 Iodide is converted to hypoiodous acid via CiVCPO, 

consuming hydrogen peroxide. Hypoiodous acid chemically oxidizes the dye 3,3’5,5’-

tetramethylbenzidine to a two-electron oxidized diimine, via the one-electron oxidized radical 

cation TMB, leading to an absorbance peak at 570 nm not observed in TMB. Hydrogen peroxide 

and TMB were included in the TMB Liquid Substrate System for Membranes. AtHOL1 mutant 

protein preparations were diluted to 4.0 mg/mL. S-adenosylhomocysteine (stock: 40 mM in DMSO) 

was added to the AtHOL1 protein preparations (2 mM final). AtHOL1 protein variant preparations 

(50 L) were added to the wells of a 96-well polystyrene, flat-bottomed, clear plate. Stock 

solutions (500 L each, 400 mM) of alkyl iodides (1-iodopropane, 2-iodopropane, allyl iodide) 

were prepared in DMSO. The alkyl iodide solutions were serially diluted in DMSO (1:10-5) to 

produce a 126.5 mM stock solution and a 40 mM stock solution. An aqueous 6.32 mM alkyl iodide 

stock solution and an aqueous 2 mM alkyl iodide stock solution were produced by a 1:20 dilution 
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of the 126.5 mM alkyl iodide stock (in DMSO) and 40 mM alkyl iodide stock in phosphate buffer 

(50 mM NaHPO4, pH 8). To each well containing the AtHOL1 mutant protein preparations, 50 L 

of either the 6.32 mM aqueous alkyl iodide stock solution (3.16 mM final) or the 2 mM aqueous 

alkyl iodide stock solution (1 mM final) was added to initiate the reaction. To wells containing 

only phosphate buffer, 50 L of either the 6.32 mM aqueous alkyl iodide stock solution (3.16 mM 

final) or the 2 mM aqueous alkyl iodide stock solution (1 mM final) was added to monitor 

iodoalkyl autohydrolysis. Each reaction condition was performed in triplicate. The plate was 

incubated at 25 C with shaking, for 16 h. A standard curve from 3.13 μM to 400 μM of KI (eight 

dilutions) in 50 mM NaHPO4 (pH 8) was prepared for each plate. Following incubation, 2 μL of 

each reaction mixture and standard curve wells were added to 98 μL of TMB Liquid Substrate 

System + CiVCPO (final activity 1.37 U/ mL). The A570 was monitored every 30 s for 30 m. The 

initial velocity of 570 nm absorbance increase was measured. Autohydrolysis of the iodoalkyl 

compound varies by iodoalkyl compound and by concentration. Therefore, to eliminate the effect 

of autohydrolysis, the average initial velocity of 570 nm absorbance associated with the 

autohydrolysis at each concentration for each iodoalkyl compound was subtracted from the initial 

velocity of 570 nm absorbance of the corresponding AtHOL1-containing wells. The resulting 

adjusted initial velocity of 570 nm absorbance associated with the enzymatic activity was then 

compared to the KI standard curve to convert absorbance units to M iodide. Specific activity was 

calculated as Mols iodide produced/min/mg AtHOL1.  
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