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Abstract

Electronic structure calculations in enzymes converge very slowly with respect to the size of the
model region that is described using quantum mechanics (QM), requiring hundreds of atoms to
obtain converged results and exhibiting substantial sensitivity (at least in smaller models) to which
amino acids are included in the QM region. As such, there is considerable interest in developing
automated procedures to construct a QM model region based on well-defined criteria. However, test-
ing such procedures is burdensome due to the cost of large-scale electronic structure calculations.
Here, we show that semi-empirical methods can be used as alternatives to density functional theory
(DFT) to assess convergence in sequences of models generated by various automated protocols. The
cost of these convergence tests is reduced even further by means of a many-body expansion. We use
this approach to examine convergence (with respect to model size) of protein-ligand binding ener-
gies. Fragment-based semi-empirical calculations afford well-converged interaction energies in a tiny
fraction of the cost required for DFT calculations. T'wo-body interactions between the ligand and
single-residue amino acid fragments provide affords a low-cost way to construct a “QM-informed”
enzyme model of reduced size, furnishing an automatable active-site model-building procedure.
This provides a streamlined, user-friendly approach for constructing ligand binding-site models that
requires neither a priori information nor manual adjustments. Extension to model-building for
thermochemical calculations should be straightforward.

els of theory.'* That might be density functional theory
(DFT), although the fragments are small enough that the
use of correlated wave function models is also feasible.
The fragment-based approach leverages the power of
distributed computing to reduce a single, monolithic
(and potentially intractable) calculation into a large but
manageable number of subsystem calculations.’ This
enables large-scale quantum chemistry calculations us-
ing only workstation-level resources (i.e., single-node
parallelism),'420722 as the storage footprint of a given
calculation is reduced to that of the largest subsystem.
This is an important consideration for investigators at
under-resourced institutions. The present calculations
bring ligand—protein binding calculations into the realm
of what can be accomplished readily on workstation re-

1 Introduction

Convergence of electronic structure calculations on sys-
tematically larger enzyme models is slow,' '* requir-
ing 300-600 atoms or more before the result no longer
changes with respect to the inclusion of additional amino
acids in the quantum mechanical (QM) model region.
This is true whether the quantity of interest is a bar-
rier height or a reaction energy,’ '® or whether it is the
interaction energy for non-covalent binding of a ligand
to a protein.!* In view of this, the current state-of-the-
art for modeling enzymatic active sites or ligand binding
sites using quantum chemistry relies on bespoke or “ar-
tisanal” QM models, constructed to purpose by hand,
without well-defined criteria to guide the process. Slowly

this is beginning to change, as tools for automated QM Sourees.
model selection are developed.' 17
In the present work, we evaluate the use of such pro- 2  Methods

cedures for obtaining energetically converged molecular
models of ligand binding sites in enzymes. Our strategies

combines a semi-empirical quantum chemistry model' ~ 2.1. Fragmentation. ~We use the many-body expan-

with a fragment-based procedure for computing the in-
teraction energy (AFEi,;) between a ligand and an en-
zyme model.' The latter is constructed in an automated
way, and this facilitates high-throughput investigation of
a large number of enzyme models at low cost. Given
an appropriate model, one can then apply convergent,
fragment-based protocols to evaluate AFEj,¢ at higher lev-
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sion (MBE) for calculations on proteins. This is a tele-
scoping expansion for the total ground-state energy E,
starting from energies {E;} for a collection of indepen-
dent fragments (I =1,..., Niag):

Nrirag Nerag
E = ZE1+ Z ZAEIJ
I=1 I=1 J<I
Nirag (1)

+3 N N AR+

I=1 J<I K<J
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Here, the gross energy »_; E is corrected via two-body
terms

AEr;=FE;r;—-Er—Ej, (2)
three-body terms

AErjk = Ergx — AEp — AEx — AE i

3
—-Er—E;—-FEg ®)

and so forth.'?:23 If eq. 1 is truncated at n-body terms,
then we refer to the resulting method as MBE(n).

As in previous work on proteins,'*?* we use single-
residue fragments obtained by cutting the C—C bond at
C,—C(=0). This avoids severing the more polar pep-
tide (C-N) bond. The severed valencies thus created are

capped with hydrogen atoms positioned at?®
R1 + Ru
= _ — . 4
Feap r1+<R1+R2>(r2 r1) @

Here, Ry = Ry = 1.70 A and Ry = 1.1 A are atomic
van der Waals radii for carbon and for hydrogen, respec-
tively. More sophisticated capping strategies have been
suggested,?62? but these are also more complicated and
we have not found them to be necessary.

In some of the calculations presented below, distance-
based screening is used to reduce the number of subsys-
tem calculations required for MBE(n). In that case, sub-
systems are omitted if the minimum interatomic distance
between any two fragments exceeds a specified threshold,
Reyi. In previous work on protein fragmentation,*24 we
showed that R,y = 8 A affords results that are con-
verged (with sub-kcal/mol fidelity) with respect to the
equivalent MBE(n) calculation performed using all pos-
sible subsystems. As an example of the cost savings that
is engendered, consider the T4-lysozyme with the protein
data bank (PDB) code 181L, which is one of the systems
considered below. In that case, Ngae = 164 for the en-
tire protein system but the use of Ryt = 8 A reduces
the number of subsystems for a MBE(3) calculation from
708,561 to 16,016, a 98% reduction.

Both the capping in eq. 4 and the distance-based
screening are performed automatically using our open-
source FRAGMENT code.?"3% which drives all of the cal-
culations reported here. FRAGMENT implements both
distance- and energy-based screening protocols?® 2?2 and
is interfaced with a variety of quantum chemistry pack-
ages. All calculations reported in this work use Q-CHEM
v. 6.0 as the quantum chemistry engine.?! Calculations
were performed on 28-core nodes (Dell Intel Xeon E5-
2680 v4) by packing four subsystem calculations onto
each node with seven threads assigned to each Q-CHEM
process.

Single-pose protein-ligand interaction energies AFiy
are computed according to

AEi = Epy, — Ep — By, , (5)

with consistent application of MBE(n) to compute both
the energy of the isolated protein (Ep) and that of the

protein—ligand complex (Ep.r,). The ligand energy (Fr)
is computed without fragmentation. Many of the n-body
terms will cancel in eq. 5 and need not be computed. The
present version of FRAGMENT identifies these terms a
priori and removes them, using the algorithm described
in Ref. 22, which leads to considerable cost savings for
AFE;,; calculations. However, the present calculations
were performed contemporaneously with that develop-
ment and this savings was not exploited. As such, timing
data reported here reflect the cost of all n-body terms in
eq. b, subject only to the distance cutoff R.y;.

Use of eq. 5 is subject to basis-set superposition er-
ror (BSSE) because we use atom-centered Gaussian ba-
sis sets. This effect can be quite significant in protein—
ligand models containing hundreds of atoms, especially
when the ligand is large. In protein—ligand models
with ~ 300 atoms, for example, BSSE effects up to
~ 50 kcal /mol have been documented when double-¢ ba-
sis sets are used,? as quantified by the difference between
counterpoise-corrected and uncorrected values of AFEj,.
Versions of counterpoise correction designed for use with
MBE(n) have been reported®33° but are not yet imple-
mented in FRAGMENT, although that work is underway.
In lieu of counterpoise correction, we will consider the use
of larger basis sets in order to evaluate the importance
of BSSE.

2.2. Systems and Structure Preparation We se-
lected two structures from the LI9A and L99A/M102Q)
data sets of T4-lysozyme complexes:>¢~38 181L and 1LI2,
where the ligands are benzene and phenol, respec-
tively. Both complexes were also considered in our re-
cent study of fragmentation protocols for protein—ligand
interactions.'* Each involves two C1~ ions that were com-
bined into a single monomer along with any residues
within 2.5 A of the ion. We also selected two complexes
(1048 and 1BOZ) from the large-inhibitor data set,'* as
examples where the ligands are much larger.

In the creation of QM models, we insist on automated
methods that provide a reproducible, black-box approach
to constructing structural models for QM calculations,
without the use of any system-specific information be-
yond what is contained in a crystal structure. Structural
models of the aforementioned protein-ligand complexes,
containing anywhere from 120 to 1,726 atoms, were gen-
erated by one of several different approaches that are
described in Section 2.3.

Crystal structures were obtained from the PDB and
protonated using the H4++ web server,3? specifying pH =
7.0, salinity of 0.15 M, €;, = 10, and e,y = 80. The large
ligands were protonated separately using the PyMoL
program.*? As in previous work,'* the geometry was then
relaxed using the GFN2-xTB semi-empirical method,*!
in conjunction with a generalized Born/solvent-accessible
surface area (GBSA/SASA) implicit solvation model for
water.*2 Most crystallographic water molecules were re-
moved after relaxation, although those coordinated with
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Various methods for selecting amino acid residues around a benzene ligand that is shown atomistically, in green: (a)

distance-based selection, using a cutoff distance d; (b) Probe selection, rolling a probe sphere over the van der Waals surface;

and (c) Arpeggio selection, based on atomic information.

the Cl~ ions were retained, as were any crystallographic
water molecules within 2.5 A of the ligand.

2.3. Model Construction. The simplest approach
to model construction uses a distance to select amino
acid residues proximate to the ligand. Here, residue se-
lection was performed using PYMOL with various cutoffs,
ranging from d = 2.5 to d = 10.0 A. Any residue hav-
ing at least one atom that is within the cutoff distance
of any ligand atom is included in the QM model. This
method is simple and systematic but its weakness lies in
the fact that many biologically important active sites are
highly aspherical. A good example is human catechol
O-methyltransferase (COMT),** 46 which has become
something of a computational benchmark system”!1,2447
because it has a well-resolved crystal structure,*® kinetics
data,?® and numerous known inhibitors.” It also has a
catalytically important Mg?* ion,*® which engenders sig-
nificant charge transfer and many-body polarization ef-
fects that cause especially slow convergence with respect
to model size.”!1147

For examples such as COMT, one might expect a
“chemically informed” model-construction algorithm to
converge more quickly than a brute-force distance-based
approach. Therefore, as alternatives we examine models
generated using the Residue Interaction Network Residue
Selector (RINRUS) toolkit,* developed by DeYonker and
co-workers.'1713:15:16 We operate RINRUS in one of two
modes: “Probe” or “Arpeggio”.”? %3 These are illus-
trated in Fig. 1 alongside the distance-based method.

The Probe method rolls a sphere over the van der
Waals surface of a seed moiety (for which we use the lig-
and) in order to generate close-contacts.’?®! These are
classified into different categories depending on the con-
tact distance, with hydrogen bonds as a separate cate-
gory that also depends on atomic identity. RINRUS uses
the Probe classifications to assemble a list of residues that
come into contact with the seed, at which point users can
select the number of residues to include in the model. In
the present work, the maximum number of residues sug-
gested was used to construct the Probe models.

The Arpeggio method operates similarly but uses uses

atom types, interatomic distances, and angles to classify
inter-residue interactions into 15 different categories,®
which are used by RINRUS to construct a model. In some
cases, the Probe and Arpeggio methods produce the same
enzyme model and in either case, the result is a PDB-
formatted file that can be read by FRAGMENT.

A final method for model construction uses two-body
interaction energies AEj; to select residues, considering
only those terms where either I or J represents the lig-
and. For definiteness, let J indicate the ligand. A model
is then created by retaining all residues I for which

|AE] tigand| > Top (6)

where 7,5 is a user-specified threshold. MBE(3) calcula-
tions are built upon this two-body screening by including
AET jligand, for all residues J such that AEy jigana satis-
fies eq. 6.

2.4. Quantum Chemistry Calculations. The pri-
mary electronic structure method used in this work is
HF-3c,'® which starts from a minimal-basis Hartree-Fock
(HF) calculation then add three empirical corrections.
The latter are parameterized for use with a specific ba-
sis set (“MINIX”),!® so in what follows we will not in-
dicate the basis set for HF-3c calculations, as it is al-
ways MINIX. Some conventional DFT calculations are
performed as well, using the wB97X-V functional®® as
a representative example that performs well for small-
molecule van der Waals complexes.’>%% (For molecules
with > 100 atoms, DFT performs less well;* fragmenta-
tion may be a useful approach to exploit its better per-
formance in small non-covalent complexes.)

Basis sets used for the wB97X-V calculations are min-
imally augmented (“ma”) versions of the standard Karl-
sruhe basis sets,’”°® which are known as def2-ma-SVP,
def2-ma-TZVP, and def2-ma-QZVP.>® (These are proper
subsets of the basis sets def2-SVPD, def2-TZVPD, and
def2-QZVPD.%%5%) Diffuse basis functions are important
for non-covalent DFT calculations, even when triple-¢
basis sets are employed, but minimal augmentation ap-
pears to be sufficient.?? Our preference for the simple
MBE(n) fragmentation scheme that is described in Sec-
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tion 2.1, without any kind of charge embedding, is based
on a desire to use diffuse basis functions and large ba-
sis sets. Fragment-based charge embedding tends to be
unstable in the presence of diffuse basis functions.!?-60-63
For all calculations, the self-consistent field convergence
threshold was set to 1078 Ej, and the integral and shell-
pair drop tolerances were both set to 1072 a.u.. The
latter setting is appropriate for calculations in medium-
size molecules where diffuse functions are used, as looser
thresholds may engender convergence problems.%

Previous work applying MBE(n) to thermochemical
calculations in large enzyme models has demonstrated
that low-dielectric boundary conditions are necessary to
make MBE(n) converge in the presence of ionic frag-
ments, as will inevitably arise when native protonation
states are considered. Therefore, all quantum chemistry
calculations reported here use a conductor-like polariz-
able continuum model (C-PCM),5% with a dielectric
constant € = 4. This is implemented using the switching/
Gaussian discretization procedure.’6-9 C-PCM calcula-
tions use a van der Waals molecular cavity,®® constructed
from modified Bondi atomic radii,’® with Ryqw =
1.2RBondi- The van der Waals surface is discretized using
atom-centered Lebedev grids.5” For the n-body DFT cal-
culations, this discretization employs 110 Lebedev points
for hydrogen and 194 points for other nuclei, whereas the
HF-3c subsystem calculations and the HF-3c¢ full-protein
calculations use 50 points for hydrogen and 110 for other
nuclei. A conjugate gradient PCM solver was used for
the full-protein calculations.%?

3 Results and Discussion

The primary goal of this work is to demonstrate that
fragment-based semi-empirical calculations can be used
as an efficient means to test convergence of automated
procedures for QM model construction in enzyme cal-
culations. To do so, we first validate the use of HF-
3c against conventional DFT, in Section 3.1. We then
consider energy screening of the two-body HF-3c calcu-
lations in Section 3.2, which further improves the effi-
ciency. The resulting method is used in Section 3.3 to
evaluate the convergence of AF;, for various binding-
site models. Comparisons to DFT results are presented
in Section 3 .4.

3.1. Comparing HF-3c to DFT. We first consider
how two- and three-body corrections computed at the
HF-3c level compare to the corresponding quantities ob-
tained using wB97X-V in basis sets through quadruple-¢
quality. Correlations between the two methods are illus-
trated in Fig. 2 for one particular protein—ligand complex
(181L), and analogous plots for the other complexes con-
sidered in this work can be found in Figs. S1-S3.
Correlation between HF-3¢ and wB97X-V is quite
good for the two-body terms (Fig. 2a), and there is a
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Fig. 2:  Correlations between HF-3¢c and wB97X-V (with

the latter evaluated in several different basis sets), for (a)
two-body corrections AEr; and (b) three-body corrections
AFEr;Kk, for the protein-ligand complex 181L. The diagonal
line indicates where the two methods predict the same value
and gray area in (a) represents +1 kcal/mol difference. Only
terms that involve the ligand (benzene) are plotted, using
Rewt = 8 A for the three-body terms. For the wB97X-V
calculations, the basis sets are def2-ma-SVP (labeled “DZ”),
def2-ma-TZVP (“TZ”), and def2-ma-QZVP (“QZ”).

clear separation between energetically important terms
(|JAEr;] > 1073 E},) and those that are very nearly zero.
Linear fits to the data in Fig. 2a afford slopes of 1.12,
0.85, and 0.81 for the def2-ma-SVP, def2-ma-TZVP, and
def2-ma-QZVP basis sets, respectively, with R? > 0.9
in each case. (Results are similar for the other systems
and best-fit parameters can be found in Table S1.) A
slope greater than unity implies that AFE;; is more at-
tractive at the wB97X-V level as compared to HF-3c. In
three of four examples, this happens only for the def2-
ma-SVP basis set while other slopes are less than unity.
In the remaining case (1048), the slope is closest to unity
for def2-ma-SVP and smaller in the more complete basis
sets (Table S1). All of this behavior is indicative of sig-
nificant BSSE in the double-( calculations. Close agree-
ment between triple- and quadruple-( values for the two-
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Fig. 3: Histograms of the two-body terms AFE;;, where either I or J is the ligand, for protein-ligand complexes (a) 181L, (b)
1LI2, (c) 1048, and (d) 1BOZ. All calculations were performed using HF-3c.

body corrections suggests that the BSSE is largely elim-
inated using def2-ma-TZVP, which is typical for small
fragments.?2

Correlations between HF-3c and wB97X-V are much
less pronounced for the three-body terms (Fig. 2b), with
R? ~ 0.4. The lone exception to this trend is that HF-3c
and wB97X-V values of AFE; ;i correlate very well for
1048, with R?* = 0.93 for HF-3c versus wB97X-V /def2-
ma-QZVP, for example. We regard this as a coincidence
as it is not borne out in the other three systems consid-
ered. Three-body terms may not be reliably captured
using HF-3c due to the minimal basis set, since polariza-
tion is the most important three-body contribution,'® al-
though it is also possible that the three-body interactions
are exaggerated by wB97X-V calculations in a double-
¢ basis set.?? Setting aside the wB97X-V /def2-ma-SVP
results in Fig. 2b, which are significantly impacted by
BSSE, it does appear that HF-3c can at least identify
the small number of three-body terms whose magnitude
is significant.

The remaining analysis focuses on two-body interac-
tions because MBE(2) can be used for rapid screening
and to evaluate convergence of binding-site models. Fig-
ure 3 provides a closer look at the two-body terms com-
puted at the HF-3c level, organized into histograms for
each of four protein—ligand complexes . These histograms
include only those terms |AEj jigand|, meaning that one
of the fragments is the ligand. Each distribution in Fig. 3
is asymmetric about zero. Additionally, there does not
seem to be a single energy threshold that would be viable
across all four of these systems, as the energy scale for

|AET ligand| is rather different in each of the four exam-
ples.

3.2. Selecting 7,5. We next consider the construc-
tion of enzyme models via the two-body energy crite-
rion in eq. 6. Table 1 compares errors for MBE(2) and
MBE(3) approximations for models generated in this
way. All calculations were performed at the HF-3c level
and the error is defined with respect to a full-system cal-
culation performed at the same level. Timings for the
full-system calculations can be found in Table 2.

With the exception of 1048, it is possible to obtain
sub-kcal/mol fidelity with respect to a full-protein cal-
culation using only MBE(2), if the model is constructed
using a sufficiently small value of the two-body energy
threshold (7,5) in eq. 6. Even for 1048, sub-kcal/mol
fidelity is achievable but in that case it requires MBE(3),
and comes with a significant increase in cost. For 1048,
MBE(3) is consistently and significantly more accurate
than MBE(2) but for the other three systems, MBE(2)
and MBE(3) results are typically within ~ 1 kcal/mol of
one another.

For high-fidelity calculations, the best choice appears
to be T, = 2.5x107* Ej, for both MBE(2) and
MBE(3). The tighter value 7,5 = 1.25 x 10~ E}, pro-
duces larger models, for which MBE(2) and MBE(3) re-
sults are actually marginally worse in a few cases, as
judged by comparison to AFEj,, computed using the full
protein. This indicates that convergence of AFE;,; need
not be monotonic (to the full supramolecular result) with
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Table 1: Errors in AFEi, for HF-3c Calculations on Enzyme Models Constructed Based on Two-Body Energies

System 7%/ No. MBE(2) MBE(3)

107*E), atoms error (kcal/mol)® time? error (kcal/mol)® time?

absolute per monomer (h) absolute per monomer (h)

10.0 266 3.10 0.22 1 3.32 0.24 10

181L 5.0 284 2.23 0.15 1 2.43 0.16 10

2.5 360 1.58 0.08 2 1.91 0.10 21

1.25 451 0.92 0.04 3 1.20 0.05 47

10.0 263 1.10 0.08 1 1.22 0.09 10

1LI2 5.0 285 0.59 0.04 1 0.70 0.04 10

2.5 333 0.36 0.02 1 0.61 0.03 18

1.25 572 0.08 0.00 4 0.22 0.01 91

10.0 494 4.20 0.17 6 0.84 0.03 98

1048 5.0 644 3.92 0.12 10 0.41 0.01 246

2.5 797 4.32 0.10 15 0.04 0.00 457

1.25 991 4.47 0.08 22 0.00 0.00 891

10.0 439 3.05 0.15 5 4.20 0.21 7

1BOZ 5.0 737 0.59 0.02 10 1.10 0.03 246

2.5 1,145 0.57 0.01 22 0.49 0.01 892

1.25 1,637 1.85 0.02 45 2.85 0.03 3,512

aError is defined with respect to a full-system HF-3c calculation. ?Total time (aggregated across processors)

on hardware described in Section 2.1.

Table 2: Full-System (Unfragmented) HF-3c Interaction En-
ergies and Timings

System AFEint time®

(kcal/mol)  (hours)
181L —-19.4 4,156
1LI2 —18.8 5,542
1048 —89.9 854
1BOZ -31.3 5,018

@ Supersystem calculations were
performed using a single 48-core
node (Intel Xeon Platinum 8268).

increasing model size, and that there is some interplay be-
tween the model size and the order of the n-body expan-
sion. Larger models may introduce noise, stemming from
finite-precision issues, 4237172 while including less rele-
vant residues that do not contribute meaningfully to the
accuracy. Conversely, a smaller but well chosen model
can focus on the most energetically significant interac-
tions, leading to more accurate predictions for AFj,; at
lower cost. In MBE(n) calculations, one should not as-
sume that larger models are always more faithful to the
full-system result, except possibly in very small models.

As we refine these models, it is also crucial to con-
sider how we evaluate their performance, particularly in
terms of error reporting. Standard practice in fragment-
based quantum chemistry calculations is to report errors
on a per-monomer basis. For applications of MBE(n)
to water clusters, a target accuracy of 0.1 kcal/mol per
monomer has been suggested,” representing 10% of kgT
at T = 298 K. The idea is that fragmentation errors of
this magnitude are indistinguishable from thermal noise.

Models with 7,5 = 2.5 X 10~* E}, do achieve this level of
accuracy, although the 0.1 x kT standard is probably
unnecessarily stringent for macromolecular AFE;,; calcu-
lations. Even with the best conventional density func-
tionals such as wB97X-V, the disparity between single-
pose AE;,; calculations (or even ensemble-averaged val-
ues, (AEin)) and experimental binding affinities AGY, 4
is many times larger than 0.1kgT. (For a lengthy dis-
cussion of this point, see our recent work on fragmenta-
tion protocols for protein-ligand interaction energies.'®)
In addition, it is important to recognize the intrinsic lim-
itations of semi-empirical quantum chemistry, as there
is no sense in pushing for higher fidelity than is war-
ranted by the intrinsic accuracy of the electronic struc-
ture method. To that end, we note that errors in HF-
3c interaction energies average 4 kcal/mol for the com-
bined L77* and S30L" data sets of large supramolecular
complexes.”® This is comparable to the performance of
dispersion-corrected and dispersion-inclusive DFT meth-
ods applied to the same data sets.””"®

One of the primary reasons to complete these calcu-
lations using fragmentation is the significant reduction
in the cost per calculation. Given sufficient hardware,
the wall-time cost of fragment-based calculations can be
made very small because the subsystem calculations are
inherently distributable. However, we are more inter-
ested in the extent to which the total (aggregate) com-
puting time can be reduced via fragmentation. Aggregate
computing time is a better metric for evaluating the cost
because it reflects the carbon footprint of a given cal-
culation, whereas wall time is a selfish time-to-solution
metric.'®™ Table 1 provides the aggregate computing
time for the HF-3¢c MBE(n) calculations and Table 2
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Table 3: Errors in AFEjin for MBE(n) Calculations at the HF-3c Level for Various Enzyme Models.”

No. MBE(2) MBE(3)

System  Model 5 — 5 —
atoms error (kcal/mol) time error (kcal/mol) time

absolute per monomer (h) absolute per monomer (h)

d=4A 243 4.15 0.32 1 4.11 0.32 5

181L d=6A 452 1.26 0.05 2 1.61 0.07 19
Probe 221 4.90 0.41 1 4.87 0.41 4
Arpeggio 243 4.15 0.32 1 4.11 0.32 5

d=4A 244 2.31 0.17 1 2.31 0.17 6

WL @=6A 475 0.32 0.01 2 0.01 0.00 22
Probe 222 3.59 0.33 1 3.99 0.33 3
Arpeggio 247 1.33 0.10 1 1.42 0.10 7

d=4A 420 3.29 0.16 3 0.82 0.04 21

1o1g  1=6A 623 2.42 0.08 5 1.15 0.04 44
Probe 383 2.55 0.14 2 1.70 0.09 17
Arpeggio 449 2.48 0.11 3 1.88 0.09 24

d=4A 467 3.34 0.15 4 1.53 0.07 28

1BOZ d=6A 947 3.95 0.08 10 2.53 0.05 109
Probe 371 0.52 0.03 2 0.94 0.06 14
Arpeggio 476 2.86 0.12 4 1.47 0.06 31

“MBE(n) calculations use Rcut = 8 A. PError with respect to a full-system HF-3c calculation. ¢Total time
(aggregated across processors) on hardware described in Section 2.1.

provides the same data for the supersystem HF-3c cal-
culations. The latter were performed on a single com-
pute node so they do not suffer from the low parallel
efficiencies that typically characterizes massively parallel
electronic structure calculations.™

Even so, the cost reduction is significant for the
MBE(2) calculations, amounting to no more than 1-2%
of the supersystem cost, depending on model size. For
the largest system considered here (1BOZ, with 3,124
atoms), and for the model constructed using 7,z =
2.5 x 107* E},, the MBE(2) calculation requires 22 h
or 0.4% of the conventional HF-3c¢ cost, while MBE(3)
requires 892 h or 18% of the cost without fragmenta-
tion. For 1048 (with 1,781 atoms), the cost of the
Top = 2.5 x 107 Ej, model is 2% of the supersystem
cost for MBE(2) or 54% for MBE(3). Thus, fragmen-
tation dramatically reduces the cost even for low-scaling
methods like HF-3c¢ that are already affordable in large
systems. This presents a compelling advantage for high-
throughput screening of different model-building algo-
rithms, which is the topic of the next section.

3.3. Comparison of Enzyme Models. Having es-
tablished that two-body energy screening is a viable
means to construct binding-site models, we next con-
sider the application of MBE(n) to models constructed
in other ways, either using a simple distance criterion or
else by means of the RINRUS code (as described in Sec-
tion 2.3). Table 3 lists errors in MBE(2) and MBE(3)
values of AFE;,; for various models, with all calculations

performed at the HF-3c level.

We considered distance-based models ranging from
d=25Atod=10.0 A but only the 4 A and 6 A
models are listed in Table 3, as these were judged to pro-
vide reasonable accuracy while also affording models that
are comparable in size to those obtained in other ways.
As we saw with the 7,5 models in Section 3.2, increas-
ing d (to increase model size) improves the MBE(2) and
MBE(3) accuracy only up to a point; errors eventually
reach a plateau such that larger models do not improve
the results, as compared to a value of AFE;,; computed
without fragmentation. For some systems, that plateau
is reached at d = 5 A while for others the fragmenta-
tion errors continue to decrease until the model reaches
d = 8 A. Errors for models ranging from 2.5-10.0 A can
be found in Tables S2-S5.

The best performing model in Table 3, according to
both MBE(2) and MBE(3) calculations, is the d = 6 A
model. This construction also affords the largest model
for each of the four protein-ligand complexes that we
consider, and includes residues that were not picked up
in the RINRUS constructions or even by the 7,5 criterion.
At the same time, a strictly distance-based construction
almost certainly includes unimportant residues, leading
to systematically larger models. For the T4-lysozymes
181L and 1LI2, the 6 A model affords a smaller error at
the MBE(2) level as compared to the 7,5-derived model,
but for those systems the binding site is more spherical
(and the ligand is much smaller) as compared to 1048
and 1BOZ. Convergence to the supermolecular value of
AFE;, is slower for the latter two systems.
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Fig. 4: Errors in AEins for MBE(3) calculations at the HF-3c
level, comparing comparing three different methods to con-
struct a binding-site model for four different protein-ligand
complexes.

Models generated using the RINRUS toolkit in either its
“Probe” or “Arpeggio” configurations (Section 2.3) are
generally similar to one another although Arpeggio in-
cludes a slightly larger number of residues. (In each case
considered here, residues selected by the Probe model
represent a proper subset of those selected using the
Arpeggio construction.) While the Arpeggio models are
slightly larger, they are not significantly or consistently
more accurate.

At present, the RINRUS-generated models do not out-
perform the others but there are several avenues that
could be used to improve the former. These include
addition of a second interaction sphere, or the use of
a seed that is larger than just the ligand, containing
some nearest-neighbor residues. A recent development in
RINRUS is an option to use a form of pairwise symmetry-
adapted perturbation theory (SAPT),* as a means to
decompose the interaction energy between a protein and
individual residue main chains or side chains.!® (It is
not entirely clear why the “functional group” version of
SAPT® is necessary in this capacity. Other pairwise
forms of SAPT could probably be used instead.”®:81:82)
Thus, it is probably possible to further refine the RINRUS-
based construction of binding-site models.

Models discussed in this section are generally smaller
than the 7,5 models described in Section 3.2, which im-
pacts both the computational load and the time required
for processing. This is clearly reflected in the timing
data in Table 3, where MBE(2) calculations using the 6 A
model require on 10 h for the largest protein—ligand com-
plex, as compared to 22 h for our preferred 7,5-derived
model.

Figure 4 compares MBE(3) errors in across the data
set, using three different paradigms to construct the
binding-site model: eq. 6 with 7,5 = 2.5 x 107* Ej,
ad =6 A model, and finally an Arpeggio model ob-

Table 4: Interaction Energies Computed using MBE(2) with
Rewt =8 A®

APFint (kcal/mol)

System —_ SBITXV

“C DT TZE QZf
181, —19.1 —21.0 —163 —154
L2 —19.8 —23.1 —18.0 —16.8
1048  —93.7 —101.6 —82.5 —80.6
1BOZ —36.8 —53.6 —34.1 —30.4

From Ref. 14. bdef2-ma-SVP. ¢def2-ma-
TZVP. def2-ma-QZVP.

tained using RINRUS. For three of the four protein-ligand
complexes, all of these models overestimate the interac-
tion strength whereas for 1BOZ they all underestimate
it, suggesting there may be an enzyme size-related bias
that is common to all three algorithms. None of these
three procedures consistently outperforms the others but
the 7,5 approach stands out as the most reliable overall,
with a mean absolute fragmentation error of 0.8 kcal/mol
for MBE(3) calculations using HF-3c. Furthermore, the
Ty = 2.5 x 107* E}, method also affords the smallest
fragmentation error for MBE(2), which is 1.7 kcal/mol
when averaged over the four complexes. However, the
6 A model is only slightly less accurate on average, and
more accurate in two out of four complexes. It is also
considerably less expensive.

The 6 A model contains several unique residues that do
not appear in any of the 7,5 models: three such residues
in 181L, eight in 1LI2, one in 1048, and eleven in 1BOZ.
Apparently, these do not significantly improve the accu-
racy when compared to the 7,5 model construction, how-
ever. The most significant differences between these two
algorithms are found in 1048 and 1BOZ, where the num-
ber and identity of residues varies greatly. For example,
for 1048 the 6 A model contains only one unique residue
but the model constructed using 7,5 = 2.5 x 107* Ej,
includes 15 additional residues. This discrepancy mani-
fests as a 2 kcal/mol difference in errors at the MBE(2)
level, illustrating how the precise choice of residues can
significantly impact the result, and furthermore demon-
strating that larger models do not always lead to smaller
errors.

3.4. DFT and Basis-Set Convergence. To ground
the performance of MBE(2) for HF-3c in terms of more
conventional quantum chemistry, we next examine the
performance of various QM models when AFE;, is com-
puted using the wB97X-V functional, in basis sets rang-
ing from def2-ma-SVP to def2-ma-QZVP. Supersystem
calculations at the wB97X-V/def2-ma-QZVP level ex-
ceed our computational resources so instead we ex-
amine MBE(2) results that include all residues up to
Reyt = 8 A. The resulting interaction energies are pro-
vided in Table 4, comparing wB97X-V (in various basis
sets) to HF-3c. These data come from previous work,'*
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Table 5:
wB97X-V.¢

Errors in AFEin: for MBE(2) Calculations Using

Error (kcal/mol)®

System Model DZ°  TZT Qz°

Top = 2.5 x 107% E), 1.2 1.1 1.4
181L d=6A 0.9 09 08
Arpeggio 4.4 4.0 3.8
T =2.5x 107 E, 1.0 1.0 0.9
1ILI2  d=6A 0.6 05 04
Arpeggio 2.6 2.3 2.2
Top = 2.5 x 107% E), 0.2 0.2 0.2
1048 d=6A 1.5 0.1 1.4
Arpeggio 1.1 0.9 0.8
Top = 2.5 x 1071 E}, 4.2 2.0 1.2
1BOZ d=6A4A 24 3.7 1.5
Arpeggio) 4.4 3.5 2.8
“MBE(2) calculations use Rcut = 8 A. PError is measured

with respect to the full-system (fragmented) calculation at the
same level of theory. cdef2-ma-SVP. ¢def2-ma-TZVP. ©def2-
ma-QZVP.

where we established that wB97X-V /def2-ma-SVP pre-
dicts stronger interaction energies than HF-3c whereas
wB97X-V with triple- and quadruple-¢ basis sets predicts
weaker interactions. We also know that BSSE can be
quite large for sizable protein-ligand models, especially
in double-( basis sets,?? and convergence of the wB97X-V
interaction energies in Table 4 provides some measure of
it. For the largest system considered here (1BOZ), the
wBI7X-V /def2-SVP and wB97X-V/def2-QZVP interac-
tion energies differ by 23 kcal/mol.

We next use the MBE(2) interaction energies in Table 4
as benchmarks for MBE(2) applied to smaller QM mod-
els, using wB97X-V in basis sets through def2-ma-QZVP.
Errors in AEiy, relative to MBE(2) with Reye = 8 A,
are listed in Table 5 for the best-performing model sys-
tems, as determined in Sections 3.2 and 3.3. For the
small-ligand complexes 181L and 1LI2, the d = 6 A
model tends to exhibit the smallest errors, although the
Top = 2.5 x 107* E}, model affords errors that are larger
by only about 0.5 kcal/mol. For the large-ligand com-
plexes 1048 and 1BOZ, the 7,5 model is the most ac-
curate one except in one case, namely, 1BOZ at the
wBI7X-V /def2-ma-SVP level. Those results are likely
to be significantly impacted by BSSE, since 1BOZ is the
largest system considered here. In almost every case,
fragmentation errors are smaller in the triple- basis set
as compared to the double-¢ one, with the 6 A model
of 1BOZ as the lone exception. MBE(2) errors at the
wBI7X-V /def2-ma-QZVP level are all < 1.5 kcal/mol for
the 7,5 = 2.5 x 10~* FEJ, and the d = 6 A models.

4 Conclusion

This work extends other recent work from our
group,'*2* whose goal is to develop automated methods
for reliable and affordable QM calculations in enzymatic
systems. Fragmentation offers significant advantages for
calculating protein—ligand interaction energies in sizable
binding-site models, and renders such calculations ac-
cessible to workstation-level computing resources. The
open-source FRAGMENT code®” is a practical and im-
mediate solution that makes accurate QM calculations
available to a wide range of researchers who may not
have access to supercomputer resources.

For protein-ligand systems, we have demonstrated
that two-body interaction terms AF;;, computed us-
ing the semi-empirical HF-3c method,'® correlate very
well with results from high-quality DFT calculations
(e.g., wBITX-V/def2-ma-QZVP). The two-body terms
vary significantly in both magnitude and sign, and pro-
vide a means to generate QM models in a well-defined
way. A threshold 7,5 = 2.5 x 107* Ej, offers a good
balance between accuracy and computational efficiency.
This is perhaps the most reliable algorithm for QM model
construction of the ones examined here.

Energy-based model construction typically results in
larger models as compared to algorithms implemented
in the RINRUS program, 1349 nevertheless the Toyp Mod-
els consistently deliver higher accuracy. Simple distance-
based models with a 6 A cutoff are also found to be ef-
fective. RINRUS models could be further improved by in-
cluding a coordination sphere in the seed moiety, but this
would require users to know which residues are relevant.
Alternatively, two-body semi-empirical calculations are
affordable enough to be incorporated into model-building
workflows and require no a priori information beyond a
crystal structure.

For MBE(2)-DFT calculations with wB97X-V, the best
QM models constructed in this way achieve a fidelity
of 1-2 kecal/mol in triple- or quadruple-¢ basis sets, as
compared to MBE(2)-DFT calculations on larger, con-
verged models of the protein. The combination of fast
semi-empirical MBE(2) calculations, used to test con-
vergence of AF;,; with respect to model size, and con-
vergent MBE(n) protocols for evaluating A Fiy,'* repre-
sents a powerful tool chain for quantum-chemical studies
of drug—protein interactions. The same semi-empirical
model-building and convergence tests should also be use-
ful for studies of enzyme thermochemistry and kinet-
ics, for which we have also reported convergent MBE(n)
protocols.?*

Data Availability Statement

All calculations were performed using the open-source
FRAGMENT code that is available at the URL in Ref. 30.
In the present work, FRAGMENT is interfaced with Q-
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CHEM,?! although other electronic structure engines can
also be used. A trial license for Q-Chem can be obtained
from https://www.q-chem.com/try. The RINRUS soft-
ware is available at the URL in Ref. 49. Coordinates for
the protein—ligand complexes are provided in the Sup-
porting Information.

5 Supporting Information

Additional data for fragmentation calculations (PDF)
List of residues included in the QM models (PDF)
Coordinates for the protein-ligand complexes (zip)
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