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Abstract

We present a simple model of molecular distortions in spin crossover complexes,

based on crystal �eld theory and transition state theory. This allows us to model

the e�ect of molecular distortions on T1/2, the characteristic temperature of thermal

crossover and TLIESST, the maximum temperature at which trapped excited high spin

(HS) complexes are stable. We �nd that T1/2 is a purely thermodynamic quantity as

the kinetics are entirely determined by the relative free energies of the HS and low spin

(LS) states (∆G = GHS − GLS). The average distortion across HS and LS species

[Σ = (ΣHS +ΣLS)/2] has a signi�cant impact on ∆G whereas the change in the metal-

ligand bond length between HS and LS species (∆d = dHS − dLS), and the change in

the molecular distortion between the HS and LS states (∆Σ = ΣHS − ΣLS) do not.

Therefore, Σ has a large e�ect of T1/2, whereas ∆d and ∆Σ do not. TLIESST is largely

determined by the height of the barrier (Eb) between the metastable HS state and the

LS state. Eb is strongly a�ected by ∆d, ∆Σ, and Σ, so each of these quantities strongly

impact TLIESST. Thus, decreasing the average distortion across HS and LS species will

increase TLIESST and decrease T1/2, which may provide a route to high temperature

spin-state switching. Increasing the change in the metal-ligand bond length between
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the HS and LS species or the molecular distortion between the HS and LS states will

increase TLIESST without substantially changing T1/2.

Graphical abstract.

Introduction

Numerous coordination compounds of �rst-row transition metal ions undergo a reversible

change in electronic con�guration between a low-spin (LS) state and a high-spin (HS) state,

a process known as spin crossover (SCO).1 The SCO phenomenon can be induced by various

external stimuli, including temperature variations,2 pressure,3 magnetic4 or electric �elds,5

and light irradiation.6 The intrinsic small size and switchable spin states of SCO materials

make them suitable for potential applications such as molecular switches,7 nano-sensors,8

and memory devices.9

The study of structure-property relationships plays a crucial role in manipulating stable

and controllable SCO materials. In SCO molecules, the central metal ion is typically coordi-

nated by six ligands, with the inner coordination sphere generally exhibiting approximately

octahedral symmetry (Oh).10 In an octahedral symmetric ligand �eld, the 3d orbitals of the

2

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


ion split into two sets: the higher-energy eg orbitals and the lower-energy t2g orbitals. In

the most studied iron(II)-based SCO complexes, in the LS state, six electrons occupy the

t2g orbitals, whereas in the HS state, two electrons are promoted to the higher-energy eg

orbitals. A direct consequence of occupying the anti-bonding eg orbitals is a signi�cant in-

crease in the metal-ligand bond length. For many iron(II) complexes with nitrogen-based

ligands, the metal-ligand bond length increases (∆d) by ∼ 10% when transitioning from

the low-spin (LS) state to the high-spin (HS) state, resulting in an ∼ 25% increase in the

volume of the coordination octahedron.11 The strength of the ligand �eld is highly depen-

dent on the metal-ligand bond length,10 which in turn dictates the energy gap between the

eg and t2g orbitals.12 This energy gap signi�cantly in�uences both the relaxation time in

light-induced excited spin-state trapping (LIESST) experiments and, T1/2, the characteris-

tic temperature of thermally-induced SCO.13 As a result, many theoretical studies make a

single-mode approximation where the metal-ligand bond length is the only vibrational mode

considered explicitly.14�27 These simulations e�ectively reproduce many experimental obser-

vations, including the inverse relationship28 between the highest temperature at which the

trapped state remains stable following LIESST (TLIESST) and the characteristic tempera-

ture of the thermal transition (T1/2), the hysteresis observed in thermally-induced SCO, and

structure-property relationships for multistep transitions.22

However, the single-mode approximation of SCO molecules encounters challenges in ex-

plaining certain experimental observations. Chastanet et al.28 noted that an increase in ∆d

generally correlates with a larger potential barrier for the HS→LS transition, leading to a

higher TLIESST. Nevertheless, studies show that complexes made of phosphorus-based lig-

ands, despite having larger ∆d, do not exhibit a signi�cant improvement in TLIESST compared

to nitrogen-based ligands, that have smaller ∆d.29 This discrepancy suggests that a com-

prehensive understanding of SCO behavior requires consideration of additional structural

changes beyond just metal-ligand bond length.

A key structural change between the LS and HS states, which has been widely observed
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in experiments,30�33 is the distortion of the inner coordination sphere. Few, if any, SCO

complexes exhibit perfect octahedral symmetry. Furthermore, complexes are typically more

symmetrical in the LS state than the HS state. For example, [Fe(bpp)2]
2+ derivatives show

D2d symmetry in the LS state but deviate from this symmetry in the HS state.34 A similar

process is also observed in many other iron(II) complexes,35�38 as well as many cobalt(II),39�42

manganese(II),43�48 zinc(II),49�52 and iron(III)53�55 SCO complexes.

The molecular distortion from the octahedral symmetry can be de�ned in several ways.

Commonly used parameters include the angular (Σ) and torsional (Θ) distortions.56 Σ gives

a general description of the departure of the inner coordination sphere from octahedral

symmetry, whereas Θ represents a distortion from the octahedral symmetry to the trigonal

prismatic symmetry.

Molecular distortion has been shown to signi�cantly in�uence both thermally-induced

SCO and LIESST. Marchivie and co-workers57 reviewed several experimental observations

of [FeLn(NCS)2] complexes and discovered a linear relationship between TLIESST and the

torsional distortion di�erence between the high-spin (HS) and low-spin (LS) states (∆Θ =

ΘHS−ΘLS). Additionally, they found a inverse relationship between T1/2 and ∆Θ, indicating

the crucial role of distortion in SCO.

Boilleau and colleagues58 investigated these experimental observations with using density

functional theory. They calculated the harmonic potential energy surfaces for the LS and HS

states as functions of the average metal-ligand bond length and torsional distortion di�er-

ences. Their results show that the potential barrier, which correlates strongly with TLIESST,

has a linear relationship with torsional distortion, while the minimum energy di�erence be-

tween the LS and HS states, assumed to determine T1/2, exhibits a inverse relationship with

torsional distortion.

In this paper, we present a minimal model based on crystal �eld theory (CFT) to account

for molecular distortions in SCO molecules.59 We introduce both symmetric and asymmetric

vibrational modes in our model, resulting in a C4v symmetric ligand �eld. Under the C4v
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symmetric ligand �eld, both the single-electron orbitals and the d6 electronic con�guration,

originally associated with the Oh symmetric ligand �eld, split into additional energy terms.

Based on these split energy terms, we construct a 2D double-well potential surface as a

function of the two vibrational modes, e�ectively describing the transition between the LS

and HS states. Using transition state theory (TST),60 we simulate thermally-induced SCO

as well as the relaxation of the kinetically trapped HS state which is obtained after LIESST

process. We �nd clear relationships of the SCO properties with the average angular distortion

(Σ = (ΣHS +ΣLS)/2) and the angular distortion di�erence (∆Σ = ΣHS −ΣLS) between the

HS and LS molecular geometries. Larger Σ leads to a signi�cant increase in T1/2 and a

slightly decrease in TLIESST. Whereas, increasing ∆Σ does not change T1/2 but signi�cantly

increases TLIESST.

Model

Geometric changes due to spin crossover

The structural changes that accompany a spin-state transition in an octahedral transition

metal complex are conventionally parameterized56 by the average metal-ligand bond length,

d =
1

6

6∑
i=1

di, (1)

where di is the ith metal-ligand bond length; and the angular distortion,

Σ =
12∑
i=1

|90◦ − ϕi| , (2)

where ϕi is the angle subtended by a pair of ligands from the metal, as shown in �gure 1(a).

We build our model from CFT,59 as this is the simplest theory that captures SCO and we

aim, here, to understand the impact of molecular distortions on SCO at a general level. Thus,
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Figure 1: Positions of metal and ligands in a single SCO molecule. In crystal �eld theory
one assumes that the metal (red) with mass M0 and charge Z0e is surrounded by six ligands
(green) with mass M and charge −Ze. (a) An SCO molecule with perfect octahedral (Oh)
symmetry. The distance between each ligand and metal is di. The vectors êxi, êyi and êzi,
with i = 0 for the metal and i = 1− 6 for the ligands, form an orthogonal coordinate system
�xed at the equilibrium positions of the atoms. (b) Distortion along the T (II)

1u mode reduces
the symmetry of the molecule to C4v.
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we treat an octahedral SCO complex as a hydrogen-like metal atom with charge Z0e and

mass M0 surrounded by six ligands represented by point charges with charge −Ze and mass

M , �gure 1(a). This model has 15 vibrational modes. In order to construct a simple model

we will treat only two of these explicitly, and average over remaining 13 modes. We will show

below that it is reasonable to expect that a two-mode model captures the main features of

a 15 model � as has been argued previously in very di�erent contexts.61 It has been shown

previously,14�27 that the A1g breathing mode, which only describes changes in the average

metal-ligand bond length is crucial for understanding the dynamics of SCO. However, this

mode does not break the octahedral (Oh) symmetry of the complex. Therefore, at least one

more mode needs to be included to describe the angular distortion of the complex. Which

mode we include is somewhat arbitrary as there is no clear pattern among octahedral SCO

complexes as to which mode undergoes the second largest distortion after the A1g breathing

mode. Here we choose to include the T1u mode, sketched in �gure 1(b). The geometry of a

complex can thus be written as

Q = QAêA +QT êT , (3)

where Q is the 15-dimensional vector describing the geometry of the complex, QA and QT

are the magnitudes of A1g and T1u modes,

êA =
1√
6
(ê1x + ê2y + ê3z − ê4x − ê5y − ê6z) , (4a)

êT =

√
2M

2M +M0

ê0z −

√
M0

2 (2M +M0)
(ê3z − ê6z) . (4b)

are the basis vectors of A1g and T1u modes, and the Cartesian basis vectors, êin, are marked

in �gure 1(a).

The relationship between {QA, QT} and {d,Σ} is explored in �gure 2. As one might

expect, the average metal-ligand bond length (d) is mainly determined by QA, but QT also
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has a weak in�uence on d. Likewise, the degree of angular distortion (Σ) of the system is

mainly determined by QT but, given QT ̸= 0, QA also has a weak in�uence on Σ.

Figure 2: Variation of (a) the average metal-ligand bond length, d, and (b) the angular
distortion, Σ, of the system with the coordinates QA (red lines) and QT (blue lines). The
average metal-ligand bond length for QA = 0 Å and QT = 0 Å is set to d0 = 2 Å.

Crystal �eld theory

For QT ̸= 0 the symmetry of the complex is lowered from Oh to C4v. It is well known62 that

this lifts the orbital degeneracy, as sketched in �gure 3. The change in the orbital energy

eigenvalues as d and Σ (or equivalently QA and QT ) vary can readily be calculated, �gure

4 (see Supplementary Information for details of the calculation). Two important trends are

found. Firstly, as d increases, the crystal �eld becomes weaker, thus the splitting between

the eg and t2g states decreases. Secondly, the crystal �eld splitting within the eg and t2g

manifolds increases as Σ increases.

Based on the orbital energies, we calculate the six-electron (d6) energy terms including

electron-electron interactions (as detailed in the Supplementary Information). To do this we
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Figure 3: Splitting of the single 3d-electron of the metal atom in Oh and C4v symmetric
ligand �eld.

Figure 4: Single electron (d1) orbital energies from crystal �eld theory. (a) Variation in or-
bital energies with the metal-ligand bond length (d), for an octahedrally symmetric molecule
(Σ = 0◦). The energy splitting between eg and t2g states decreases as d increases. (b) Changes
in orbital energies with the angular distortion (Σ). The energy splitting within the eg and t2g
manifolds increases with the angular distortion. All other parameters are set to the default
values given in Table 1.
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use the Racah parameterization of the electron-electron Coulomb interactions and make the

standard assumption that the ratio of Racah parameters is �xed, C/B = 4.81.59 Thus the

electron-electron interaction strength is determined by B. We include only the �ve lowest

energy terms in our model, namely, the low-spin [LS; 1A1 (1A1)], intermediate spin [IS; 3T1

(3E, 3A2)], and high-spin [HS; 5T2 (5E, 5B2)] states, where the symmetry labels are given

for Oh (C4v) symmetry, relevant for QT = 0 (QT ̸= 0) respectively. The dependence of the

energies of the d6 terms on the geometry of the complex are explored in �gure 5. We see

that changes in bond length have the largest in�uence on the relative stability of the HS and

LS states, and that angular distortions partially lift the orbital degeneracy of the HS states.

Figure 5: The lowest energy terms of the LS (1A1), IS (3A2, 3E) and HS (5E, 5B2) states
calculated from the crystal �eld theory of a d6 SCO metal center in an C4v symmetry ligand
�eld. (a) Variation of energies with metal-ligand bond length (d). (b,c) Variation of energies
with angular distortion (Σ), this splits the 3E term from the 3A2 term and the 5E term from
the 5B2 term. All parameters are taken as the default values, given in table 1, except (a)
Σ = 0◦, (b) d = 2.0 Å, and (c) d = 2.012 Å.

Spin-orbit coupling

Transition between the LS, IS, and HS states are spin-forbidden. Thus they can only be

mediated by spin-orbit coupling.10,17,63 Spin-orbit coupling also causes zero-�eld splitting of

the IS and HS states, see �gure 6 and section S2.4. The most important e�ect, for what

follows, is that the 3E and 5E states are both split into three di�erent manifolds of degenerate

terms.
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Figure 6: Key spin-orbit interactions for SCO in a d6 complex with a C4v symmetric ligand
�eld. For simplicity, only the spin-orbit coupling between A1 states are shown and we include
only the LS (1A1), IS (3E, 3A2) and HS (5E, 5B2) states. The superscripts label the spin
multiplicity (2S + 1) of the term, where S is the total spin quantum number. A1, B2 and E
are the irreducible representations of C4v group, which have orbital degeneracies of 1, 1 and
2 respectively. A1, A2, B2 and E label the irreducible representations of the double group,
and have total degeneracies of 1, 1, 1 and 2 respectively. The arrows indicate the spin-orbit
coupling between states, and ζ represents the spin-orbit coupling strength.
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The usual (single) group theoretic labels are no longer strictly relevant once spin-orbit

coupling is included, therefore we henceforth label the terms by the double group represen-

tations of C4v, �gure 6. Henceforth, we will distinguish the double group representations

by placing a line above the relevant symbol; i.e., A1 is a representation of the double group

whereas A1 a representation of the single group.

Spin-orbit coupling is only non-zero between terms that have the same double-group

representation. One immediately sees that only A1 terms appear in all of the LS, IS, and

HS states. Therefore, these terms play a crucial role in spin crossover.

Diabatic low-energy model

We assume that the A1g and T1u modes explicitly included in our model are classical and

harmonic. Thus the diabatic potential energy surfaces are

Vα,ψ(χ)(QA, QT ) = Eα,ψ(χ)

(
d0, Q

(0)
T

)
+

1

2
kαA (QA − δαA)

2

+
1

2
kαT

(
QT −Q

(0)
T − δαT

)2
, (5)

where Eα,ψ(χ)
(
d0, Q

(0)
T

)
is the energy of the ψ(χ)th term of the αth spin state calculated

from crystal �eld theory with the average metal-ligand bond length set to d = d0 and the T1u

mode at QT = Q
(0)
T ; here α ∈ {LS, IS, HS}, ψ is a representations of the double group C4v

and χ is the parent representation of the single group C4v (which is necessary to distinguish

terms when more than one belong to the representation ψ), kαA and kαT are spring constants

for A1g and T1u modes respectively, δαA and δαT account for the di�erence in the minima of

the vibrational modes in di�erent spin states. For simplicity we set

δαA =


−δA, α = LS

0, α = IS

δA, α = HS

, δαT =


−δT , α = LS

0, α = IS

δT , α = HS

; (6)
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with this choice d0 and Q
(0)
T can be interpreted as either (a) the average bond length and

the minimum energy value of the T1u mode in the IS state, or (b) as the average of these

quantities in the LS and HS states.

We assume all ligands are identical and are connected to the metal by identical springs.

To model the changes of the metal-ligand bonds when the spin-state changes we set their

spring constants to be

kα =


k − κ, α = LS

k, α = IS

k + κ, α = HS

(7)

where k is the spring constant of the metal ligand bonds in the IS state and κ is the softening

(hardening) of the metal-ligand bonds in the HS (resp. LS) state. The e�ective masses, MA

and MT , and e�ective spring constants in the αth spin-state, kαA and kαT , for the A1 and

T1u modes, respectively, are then

MA =M, (8a)

MT =
2MM0

M +M0

·

(√
M0

2(2M +M0)
+

√
2M

2M +M0

)2

, (8b)

kαA = kα, (8c)

kαT =
(2
√
M +

√
M0)

2

2M +M0

kα. (8d)

As the frequencies, ωαA and ωαT , of the A1 and T1u modes in spin state α are given by

ωαν =

√
kαν
Mν

, (9)
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where ν ∈ {A, T}, we �nd that

ωαT
ωαA

=

√
1 +

M

M0

. (10)

We plot the potential surfaces of the A1 symmetry LS, IS, and HS states along the path

{QA, QT} =

{
ℓ,
δT
δA

(
ℓ−Q

(0)
A

)
+Q

(0)
T

}
, (11)

which passes through the minima of LS and HS states, in �gure 7(a); we also mark the

inter-term spin-orbit coupling coe�cients in this plot. Explicitly, the Hamiltonian for the

A1 states is

Ĥ =



VLS,A1(1A1)
−
√
2ζ ζ 0 0

−
√
2ζ VIS,A1(3A2)

− 1√
2
ζ 0

√
6
2
ζ

ζ − 1√
2
ζ VIS,A1(3E)

√
6
2
ζ 0

0 0
√
6
2
ζ VHS,A1(5B2)

−
√
2
4
ζ

0
√
6
2
ζ 0 −

√
2
4
ζ VHS,A1(5E)


, (12)

This model contains the key physics for SCO in a basis of diabatic states.

Adiabatic e�ective low-energy model

However, it is simpler to model SCO in terms of adiabatic states.17 For electrons in 3d-

orbitals the strength of the spin-orbit interaction, ζ, is about an order of magnitude smaller

than that of the Coulomb interaction.59 Therefore, to construct an e�ective low-energy model

in an adiabatic basis we begin by integrating out the IS states via a canonical transforma-

tion,17,64�66

Ĥe� =
∑
µ∈L

P̂µĤP̂µ −
1

2

∑
µ,µ′∈L

∑
ν∈L

 P̂µĤP̂νĤP̂µ′〈
P̂νĤP̂ν

〉
−
〈
P̂µ′ĤP̂µ′

〉 +
P̂µĤP̂νĤP̂µ′〈

P̂νĤP̂ν

〉
−
〈
P̂µĤP̂µ

〉
 , (13)
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Figure 7: Potential surfaces of the A1 states along the path de�ned by equation 11, which
passes through the minima of both the HS and LS states, for (a) diabatic and (b) adiabatic
states. (a) Labels of potential energy surfaces indicate the symmetries of the parent states
before including spin-orbit coupling. The dashed arrows indicate the spin-orbit coupling
between di�erent states. (b) The potential surfaces after integrating out the high-energy IS
states. The lowest energy surface is the double-well potential. The �rst-excited state is not
relevant to SCO, as the left minimum is a quantum superposition of the HS and LS states
(with a small IS admixture) and right minimum is a HS state (cf. �gure S1). The highest
energy state (black dashed line) is a pure HS state. ∆Eb is the potential barrier for moving
from the HS to the LS state, and ∆H is the enthalpy di�erence between two local minimums
of the double-well potential. In both plots, parameters are set to the default values given in
Table 1.
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where P̂µ is a projector onto the µth subspace, the low-energy subspace, L, contains the LS

and HS states, and the high-energy subspace, L, contains the IS states. This amounts to

treating the inter-term spin-orbit coupling at second order in perturbation theory.

After applying the canonical transformation the e�ective Hamiltonian, written in a basis

of dressed low-energy states, is

Ĥe� =


Ṽ1A1

λ1 λ2

λ1 Ṽ5B2
−

√
2
4
ζ

λ2 −
√
2
4
ζ Ṽ5E

 , (14)

where

Ṽ1A1
(Q) = VLS,A1(1A1)

− ζ2

2
·

(
4

VIS,A1(3A2)
− VLS,A1(1A1)

+
2

VIS,A1(3E) − VLS,A1(1A1)

)
, (15a)

Ṽ5B2
(Q) = VHS,A1(5B2)

− ζ2

2
· 3

VIS,A1(3E) − VHS,A1(5B2)

, (15b)

Ṽ5E(Q) = VHS,A1(5B2)
− ζ2

2
· 3

VIS,A1(3E) − VHS,A1(5E)

, (15c)

λ1(Q) = −ζ
2

2
·

( √
6/2

VIS,A1(3E) − VLS,A1(1A1)

+

√
6/2

VIS,A1(3E) − VHS,A1(5B2)

)
, (15d)

λ2(Q) = −ζ
2

2
·

(
−
√
3

VIS,A1(3A2)
− VLS,A1(1A1)

+
−
√
3

VIS,A1(3A2)
− VHS,A1(5E)

)
. (15e)

The e�ective low-energy Hamiltonian (equation 14) after the canonical transformation

directly describes the connection between the dressed LS and HS states. Diagonalizing this

matrix results an adiabatic basis consisting of a ground state double-well (DW) potential

energy surface and two excited states, �gure 7(b).

Mapping the double-well potential as a function of QA and QT , �gure 8, reveals that the

LS and HS states are separated by the seam, S. The minimum of the seam is the saddle

point between the two local minima. We de�ne ∆Eb as the energy di�erence between the
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saddle point and the HS local minimum, and ∆H as the potential di�erence between the

local minima for LS and HS states, �gure 7b. When the angular distortion of the system

increases, ∆H increases but ∆Eb decreases, �gure 9.

Figure 8: The DW potential as a function of QA and QT (all parameters are set to the
default values given in Table 1). The black curve is the seam, S, separating the LS (left)
and HS (right) areas. The minimum of this curve is the saddle point. The red dashed line,
de�ned in Eq. 11, connects the local minimums of the LS and HS areas, and passes close to
the saddle point.

The �rst excited state also has two local minima in �gures 7(b), S1. However, the state

at local minimum at large ℓ (i.e., on the right hand side of �gure 7(b)) has predominately

5E HS character; and the state at small ℓ is a quantum superposition of the 5B2 HS and

1A1 LS states due to the avoided crossing of these states. Thus, the �rst excited state is

of little importance for the equilibrium properties of SCO. Therefore, we neglect the two

excited states and build a semi-classical model by considering the DW potential alone.
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Figure 9: Variation of the minimum potential barrier (∆Eb) and enthalpy di�erence (∆H) of
2D double-well potential with the angular distortion Σ. The plot uses the default parameters
given in Table 1. Increasing Σ decreases ∆Eb, and increases ∆H.

Entropy and free energy of spin crossover

The A1g and T1u modes are explicitly included in the model. However, even if the the

remaining thirteen vibration modes do not qualitatively change the crystal �eld theory they

cannot be ignored as they contribute signi�cantly to the entropy di�erence between LS and

HS states, ∆S. For simplicity, we replace the thirteen di�erent frequencies of these modes

by a single `average' frequency which we assume to be di�erent in the for LS (ωLS) and HS

(ωHS) states.67

Furthermore, one of the HS states has been subsumed into the DW potential, but the

entropy of the remaining fourteen pure HS states also contributes to the entropy change

on SCO. Treating the fourteen pure HS states at this level of approximation is equivalent

to assuming that the transitions between di�erent HS states occur much more rapidly that

transitions from the LS to HS states.

Thus the entropy di�erence between the HS and LS states is

∆S(T ) = 13

 h̄ωHS
T

1

e
h̄ωHS
kBT − 1

− h̄ωLS
T

1

e
h̄ωLS
kBT − 1

+ kB ln

1− e
h̄ωLS
kBT

1− e
h̄ωHS
kBT

+ kB ln

[
gHS
gLS

]
, (16)
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where gHS/gLS = 15 is the ratio of the electronic degeneracies of the HS and LS states, h̄ is

the reduced Plank constant, T is the temperature, and kB is Boltzmann's constant. With

the implicit vibrational and electronic terms of the entropy included, the free energy is given

by the lowest eigenvalue of

F̂ =


Ṽ1A1

λ1 λ2

λ1 Ṽ5B2
− T∆S(T ) −

√
2
4
ζ

λ2 −
√
2
4
ζ Ṽ5E − T∆S(T )

 . (17)

The entropy of the implicit degrees of freedom is largely responsible for driving the thermo-

dynamic equilibrium from LS to HS as temperature increases, �gure 10.

Figure 10: The double-well potential after including the entropy di�erence from the
thirteen implicit vibration modes and fourteen pure HS states at di�erent temperatures
(T = 0, 200, 400 K). All other parameters are the default values given in Table 1. For
T > T1/2 ≃ 210 K the local minimum of the HS state is the global minimum, whereas
T < T1/2 the local minimum of the LS state is the global minimum. This drives the spin
crossover.
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Parameterization of the model

We estimate the parameters from experiment. Typical ranges are given in table 1, along

with `default values' that we will use for most of our calculations. For those parameters that

appear in the single mode model, we use the estimates given in our previous work.17 We

brie�y justify the other parameter choices in the remainder of this section.

Table 1: Typical ranges of the parameters that appear in our model and the default values
used in this paper

Parameter Range Default Value
M/M0 ≥ 1.512,68 2
Z0/Z 5.167-5.21217,59 5.208
d0 1.8-2.2 Å12 2.0 Å
B 90-105 meV1,63 100 meV
C/B 4.8159 4.81
ζ 2-40 meV69,70 15 meV
k 10-20 eV/Å2 10 15 eV/Å2

κ 0.75-5.5 eV/Å2 71 0.75 eV/Å2

δA 0.08-0.15 Å12 0.11 Å
δT 0.05-0.10 Å72,73 0.05 Å
Q

(0)
T 0.15-0.20 Å72,73 0.15 Å

ωHS 100-500 cm−1 71 220 cm−1

ωLS 100-500 cm−1 71 300 cm−1

∆T/∆t 0.3-12.0 K/min 0.3 K/min

The ratio of ligand and metal masses, M/M0, is trivial to calculate for a given material.

Even for SCO complexes with relatively small ligands, like [Fe(ptz)6](BF4)2,68 M/M0 = 1.92.

δT has a large e�ect on the di�erence of the angular distortion in LS and HS states,

∆Σ = ΣHS−ΣLS, but only a small in�uence on average metal-ligand bond length di�erence,

∆d = dHS−dLS, �gure 11. Therefore, we base the value of δT on experimental measurements

of ∆Σ.72,73

Q
(0)
T strongly a�ects the average angular distortion of HS and LS states, Σ = (ΣHS +

ΣLS)/2, but only has a small in�uence on the average metal-ligand bond length, d = (dHS +

dLS)/2; �gure 12. Therefore, the value of this parameter is estimated from experimental

measurements of the average angular distortion of the LS state and HS state.72,73
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Figure 11: The relationships between the model parameter δT and the relative changes of:
the average metal-ligand bond length, d = 1

2
(dHS + dLS) (red line); the average metal-ligand

bond length di�erence, ∆d = dHS − dLS (red dashed line); the average angular distortion,
Σ = 1

2
(ΣHS +ΣLS) (blue line); and the angular distortion di�erence between the LS and HS

states, ∆Σ = ΣHS − ΣLS (blue dashed line). Here δT,def = 0.05 Å is the default value of
δT (see Table 1); all other model parameters are set to the default values, given in Table 1.
Clearly, d depends much more strongly on δT than d, ∆d, or Σ.
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Figure 12: The relationships between the model parameter Q(0)
T and the relative changes of:

the average metal-ligand bond length, d = 1
2
(dHS + dLS) (red line); the average metal-ligand

bond length di�erence, ∆d = dHS − dLS (red dashed line); the average angular distortion,
Σ = 1

2
(ΣHS + ΣLS) (blue line); and the angular distortion di�erence between the LS and

HS states, ∆Σ = ΣHS − ΣLS (blue dashed line). Here Q(0)
T = 0.15 Å is the default value of

Q
(0)
T (see Table 1); all other model parameters are set to the default values, given in Table

1. Clearly, d depends much more strongly on Q(0)
T than d, ∆d, or Σ.
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Thermal spin crossover and relaxation following LIESST

The model introduced above provides an explicit construction of a two-dimensional double-

well free energy surface in the space of the coordinates QA and QT that describes the spin

crossover between the LS and HS states. To give a detailed description of SCO we use tran-

sition state theory (TST)60 to calculate the transition rates and determine the characteristic

temperature of the thermal-induced crossover (T1/2), and the highest temperature (TLIESST)

for which the trapped state is stable following light-induced spin-state trapping (LIESST).

It is helpful to utilize mass-weighted coordinates,

QA =
√
MAQA, (18)

QT =
√
MTQT , (19)

and denote the seam separating HS and LS states by QT = S(QA). This allows us to write

the TST spin crossover rates as

kL→H(T ) =

√
kBT

2π

∫
e−VDW(QA,S(QA))/kBTdQA∫∫

L
e−VDW(QA,QT )/kBTdQAdQT

, (20)

kH→L(T ) =

√
kBT

2π

∫
e−VDW(QA,S(QA))/kBTdQA∫∫

H
e−VDW(QA,QT )/kBTdQAdQT

, (21)

where
∫∫

L
is the integral over the LS area (left of S in �gure 8),

∫∫
H
is the integral over

the HS area (right of S in �gure 8). We determine S from direct inspection of the ground

state wavefunctions and perform these integrals numerically via the trapezoidal rule. As

the integrated function decays exponentially for QT far from S(QA), we can cut the integral

o� far from S(QA). We set the limits of integration to be −1.0 Å ≤ QA ≤ 1.0 Å and

0 ≤ QT ≤ 1.0 Å. The value of integrand is essentially zero and beyond these limits, �gure

S3.

Both rates are strongly temperature dependent. At low temperatures, kL→H is less than
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kH→L, �gure 13. This corresponds to a lower free energy of the LS local minimum than in

the HS local minimum of the DW free energy surface, and thus a larger barrier for going

from LS to HS than the reverse process, �gure 10. Thus, in equilibrium, there will be more

LS molecules. At high temperatures, kL→H > kH→L, as the LS local minimum has higher

free energy than the HS local minimum, �gure 10. Thus, in equilibrium, there will be more

HS molecules. When kL→H = kH→L there will be equal numbers of HS and LS molecules in

equilibrium. The temperature at which this occurs de�nes the characteristic temperature

of thermal spin crossover, T1/2. This occurs when the barriers for HS→LS and LS→HS

are equal. As the transition state is common to both process this implies that the free

energies of the two local minima must be equal. Thus, the dynamics reproduce the expected

thermodynamic result.

Figure 13: Variation of the transition rates with temperature. At low temperatures, the LS
to HS rate (kL→H) is lower than the HS to LS rate (kH→L), thus in equilibrium there are
more LS molecules. At high temperatures kL→H > kH→L); thus in equilibrium there are more
HS molecules. These two rates are equal at the temperature T1/2, whence there are equal
numbers of HS and LS molecules in equilibrium. This plot uses the default values of the
parameters listed in Table 1.
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The chemical rate equations60 for the HS and LS states are

dγL(t, T )

dt
= −kL→H(T )γL(t, T ) + kH→L(T )γH(t, T ), (22a)

dγH(t, T )

dt
= −kH→L(T )γH(t, T ) + kL→H(T )γL(t, T ), (22b)

where γLS and γHS are the fractions of LS and HS molecules respectively. As γH(t, T ) +

γL(t, T ) = 1 for all t and T these have solutions

γL(t, T ) = [γL(0, T )− γL(∞, T )] e−k
∗(T )t + γL(∞, T ), (23a)

γH(t, T ) = [γH(0, T )− γH(∞, T )] e−k
∗(T )t + γH(∞, T ), (23b)

where k∗(T ) = kL→H(T )+ kH→L(T ) is the rate at which the system equilibrates, γL(∞, T ) =

kH→L(T )/k
∗(T ) is the equilibrium LS fraction, and γH(∞, T ) = kL→H(T )/k

∗(T ) is the equi-

librium HS fraction.

To simulate cooling from high temperatures, we initialize the system in the all-HS state

[γH(0, T ) = 1; γL(0, T ) = 0] and then equilibrate at 500 K before lowering the temperature

from 500 K to 10 K in steps of ∆T . At each temperature step, we set the initial condition

of the system as the �nal condition of the system at the last temperature step and then let

the system evolve according to the rate equations (23) for a time ∆t. Thus, the cooling rate

is ∆T/∆t. After reaching 10 K we then heat the system at the same rate until it returns to

500 K.

We de�ne T1/2,↓ (T1/2,↑) as the temperature on cooling (resp. heating) when, after the

�nal time step, γLS = γHS = 1/2; T1/2 = (T1/2,↓ + T1/2,↑)/2; and the hysteresis width as

∆T1/2 = T1/2,↑−T1/2,↓. The calculated e�ect of thermal cycling is shown in �gure 14 for two

di�erent cooling rates, in the range typically explored experimentally. We do not observe

hysteresis, even for unphysically fast cooling/heating rates. From the perspective of equilib-

rium thermodynamics this is as expected: we are considering a single molecule theory and so
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have a crossover and not a �rst order phase transition. However, in many SCO materials the

width of the apparent hysteresis is found to depend strongly on the cooling/heating rate,74

suggesting that there is a signi�cant contribution from kinetic trapping to the di�erence in

T1/2 on cooling and heating. This is entirely absent from our calculations on the timescales

relevant to such experiments; suggesting that the relevant kinetic traps are caused by inter-

actions between molecules in the solid state rather than the activation energy required to

cross the HS↔LS barrier in a single molecule.

Furthermore, we �nd that T1/2 is independent of the cooling/heating rate, �gure 15.

This is consistent with recent experiments75 that show that while heating (cooling) rates

can increase (decrease) T1/2,↑ (resp. T1/2,↓), the average T1/2, does not change.

Figure 14: Variation of HS fraction (γHS) with temperature (T ). Both heating (red) and
cooling (blue) are initiated in an all HS state. Thus the heating curves model relaxation
following, e.g., a LIESST experiment. The heating/cooling rates are (a) ∆T/∆t = 0.3 K/s.
(b) ∆T/∆t = 5 K/s. In both plots, we set δA = 0.15 Å. The other parameters are the default
values given in Table 1.

To simulate thermal relaxation following LIESST, we initialize the system in the all-HS

state and equilibrate at 10 K before raising the temperature from 10 K to 500 K in steps of

∆T . We take TLIESST as the lowest temperature when γHS = 1/2 in this simulation. Again

we show the results of these simulations for two di�erent heating/cooling rates in �gure 14.

We �nd that TLIESST depends strongly on the heating rate, �gure 15, in marked contrast to
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T1/2 and in agreement with experiment.76

These results underline that Eb, the height of the barrier in the DW potential, controls

TLIESST, as this measures the stability of a metastable state; whereas T1/2 is independent of

the barrier height as this temperature is determined by thermodynamics, speci�cally T1/2

is the temperature where the free energies of the HS and LS states are equal and hence

kH→L = kL→H . That is, the kinetics are determined by the thermodynamics at T = T1/2.

Figure 15: TLIESST (red) depends strongly on the heating rate, ∆T/∆t, whereas T1/2 (blue)
is independent of the heating or cooling rate. Here we set δA = 0.15 Å and the other
parameters are the default values, shown in Table 1.

Di�erent SCO complexes will be described by di�erent parameters of the model. There-

fore, understanding how di�erent parameters change the macroscopic behaviors (e.g., T1/2

and TLIESST) is an important step towards optimizing these behaviors in new materials.

It has been argued17,77,78 that the sti�ness of the inner coordination sphere, k, is a key

parameter controlling TLIESST. We �nd that this still holds true once molecular distortions

are included, with sti�er inner coordination spheres (larger k) leading to higher TLIESST, but

that the sti�ness of the inner coordination sphere has little e�ect of T1/2 in this model, �gure

16.

While, they have a simple interpretation within the theory, it is not immediately obvious
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Figure 16: Molecular distortions have (a) a major in�uence on TLIESST but (b) a minor
in�uence on T1/2. Here we show the e�ect of varying the key microscopic parameters on the
(a) TLIESST and (b) T1/2. The color of the data points matches the label on the corresponding
x-axis. Variations in any of the four parameters causes a similar magnitude of variation in
TLIESST, as this is highly sensitive to kH→L. However, only the average angular distortion, Σ,
has a signi�cant impact on T1/2; as this is the only structural parameter that has a signi�cant
impact on ∆H, see �gure 9. In these plots the changes in ∆d = dHS−dLS, ∆Σ = ΣHS−ΣLS,
and Σ = (ΣHS+ΣLS)/2 are controlled by varying δA, δT , and Q

(0)
T respectively with all other

parameters other than the one varied set to their default values, cf. �gures 11, 12, and S2.
An equivalent plot, �gure S4, in terms of the model parameters is reported in the supporting
information.
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how δA, δT , and Q
(0)
T should be understood in an experimental context. To aid comparison

with experiment we calculate the change in the average metal-ligand bond length between

the HS and LS states, ∆d = dHS−dLS, as a function of δA; the change in angular distortion,

∆Σ = ΣHS−ΣLS, as a function of δT ; and the average angular distortion, Σ = (ΣH+ΣL)/2,

as a function of Q(0)
T . In each case all other parameters are set to their default values. This is

helpful because changes in ∆d, ∆Σ, and Σ are largely driven by δA, δT , and Q
(0)
T respectively,

cf. Fig. 11, 12, and S2.

The average metal-ligand bond length di�erence between HS and LS states (∆d) and the

angular distortion di�erence (∆Σ) have a signi�cant e�ect of TLIESST, with larger ∆d or ∆Σ

increasing TLIESST. For reasonable changes in k, ∆d and ∆Σ the impact on TLIESST is of a

similar magnitude, �gure 16. These changes can be understood as increasing k, ∆d or ∆Σ

increases the barrier between the HS and LS states. This reduces kH→L and hence increases

TLIESST, which is determined by dynamics.

However, neither k, ∆d nor ∆Σ has a signi�cant e�ect on T1/2, as these three parameters

have little in�uence on the energy di�erence between the LS and HS local minima, ∆H.

This emphasizes that T1/2 is a thermodynamic property [as ∆t ≫ 1/kH→L(T = T1/2) =

1/kL→H(T = T1/2)]. So changes in the barrier height do not a�ect T1/2.

However, Σ has signi�cant e�ects on both TLIESST and T1/2. As Σ increases, TLIESST

decreases. This is because increasing Σ increases the energy of the HS local minimum, thus

slightly decreasing the potential barrier ∆Eb, see �gure 9. This makes it easier to transit

from the HS state to the LS state. Furthermore, the average angular distortion has a huge

in�uence on T1/2 because variation in Q
(0)
T can cause large (e.g., factor of two) changes in

∆H, see 9, with larger Σ stabilizing the LS state over the HS state (increasing ∆H).
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Conclusion

We have introduced a simple model of molecular distortions in SCO complexes, based on

crystal �eld theory. We used this model, and transition state theory, to parameterize chem-

ical rate equations for isolated complexes (i.e., neglecting elastic interactions that occur

in the solid state). This allowed us to model the e�ect of molecular distortions on the key

macroscopic temperature scales used to classify SCO complexes: T1/2, the characteristic tem-

perature scale parameterizing the thermal crossover; and TLIESST, the maximum temperature

at which trapped excited HS states are stable.

We found that the rigidity of the inner coordination sphere (k), the change in the metal-

ligand bond length between the HS and LS species (∆d = dHS−dLS), and the change in the

molecular distortion between the HS and LS states (∆Σ = ΣHS−ΣLS), have very little e�ect

on T1/2. However, the average distortion across HS and LS species (Σ = (ΣHS+ΣLS)/2) has

a large e�ect of T1/2.

Our model provides a simple explanation of this: T1/2 is a purely thermodynamic quantity.

At T = T1/2, by de�nition, the number of HS and LS complexes are equal. Thus, the rate

constants for going from HS-to-LS and LS-to-HS must be equal [kH→L(T1/2) = kL→H(T1/2)].

This is only possible if the free energies of the HS and LS states are equal [GH = GL]. Thus,

the thermodynamics entirely determine the kinetics and T1/2 is a purely thermodynamic

quantity (i.e., the height of the barrier between the HS and LS states has no e�ect of T1/2).

We �nd that k, ∆d, and ∆Σ have little impact on the relative free energies of the HS and

LS states, and therefore little impact on T1/2. But Σ strongly impacts ∆G (�gure 9) and

hence T1/2.

As we have only considered the single molecule theory we do not expect true, thermo-

dynamic hysteresis. However, interestingly, we do not �nd any apparent hysteresis; even

for cooling/heating rates orders in magnitude in excess of those used experimentally. This

contrasts with the experimental situation where the apparent hysteresis width does strongly

depend on the cooling/heating rate.74 This suggests that these kinetic e�ects in the thermal
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transition are driven by intermolecular reactions rather than the single molecule behavior.

In marked contrast, the rigidity of the inner coordination sphere, the change in the

metal-ligand bond length between HS and LS species, the change in the molecular distortion

between the HS and LS states, and the average distortion between HS and LS species all

strongly impact TLIESST. Again, our model provides a simple explanation: that TLIESST is

a measure of the dynamics of the system, and not a thermodynamic quantity. TLIESST is

e�ectively a comparison of the decay rate of the trapped HS state to the timescale of the

experiment (typically, the heating rate). TST tells us that the decay rate of the metastable

HS state is largely set by the barrier height, Eb (i.e., the energy di�erence between the saddle

point of the DW potential and the local HS minimum of the DW potential). As Eb is strongly

a�ected by k, ∆d, ∆Σ, and Σ (�gure 9), each of these quantities strongly impact TLIESST.

This analysis yields insights into designing SCO complexes with tailored properties. De-

creasing the average distortion across HS and LS species will increase TLIESST and decrease

T1/2, which may be an route to high temperature spin-state switching.17 Increasing the rigid-

ity of the inner coordination sphere, the change in the metal-ligand bond length between

the HS and LS species, and the change in the molecular distortion between the HS and LS

states will increase TLIESST without substantially changing T1/2.

It has been suggested that increasing TLIESST above T1/2 could provide new routes to

switching at or above room temperature in `hidden SCO' materials.17 Our work provides a

speci�c recipe of how to achieve this.
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� SupportingInformation.pdf: In this �le, we provided additional data detailing the na-

ture of the �rst excited state, how key structural observables vary with the model

parameter δA, the error is evaluating the integral in equation 21, and how TLIESST and

T1/2 vary with key model parameters. We also provide the detailed calculations of the

single electron energy terms, d6 electron-electron interactions, and spin-orbital coupling

under C4v symmetric ligand �eld based on crystal �eld theory, including tabulation of

the relevant wavefunctions.

References

(1) Gütlich, P.; Goodwin, H. Spin Crossover in Transition Metal Compounds I; Spin

Crossover in Transition Metal Compounds; Springer, 2004.

(2) Gütlich, P.; Gaspar, A. B.; Garcia, Y. Spin state switching in iron coordination com-

pounds. Beilstein Journal of Organic Chemistry 2013, 9, 342�391.

(3) Tailleur, E.; Marchivie, M.; Itié, J.-P.; Rosa, P.; Daro, N.; Guionneau, P. Pressure-

Induced Spin-Crossover Features at Variable Temperature Revealed by In Situ Syn-

chrotron Powder X-ray Di�raction. Chemistry � A European Journal 2018, 24, 14495�

14499.

(4) Bonhommeau, S.; Molnár, G.; Goiran, M.; Boukheddaden, K.; Bousseksou, A. Uni�ed

dynamical description of pulsed magnetic �eld and pressure e�ects on the spin crossover

phenomenon. Phys. Rev. B 2006, 74, 064424.

(5) Tiwari, R. K.; Paul, R.; Rajaraman, G. Investigating the in�uence of oriented external

electric �elds on modulating spin-transition temperatures in Fe(ii) SCO complexes: a

theoretical perspective. Dalton Trans. 2024, 53, 14623�14633.

(6) Hayami, S.; Gu, Z.-z.; Shiro, M.; Einaga, Y.; Fujishima, A.; Sato, O. First Observation

32

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


of Light-Induced Excited Spin State Trapping for an Iron(III) Complex. Journal of the

American Chemical Society 2000, 122, 7126�7127.

(7) Senthil Kumar, K.; Ruben, M. Emerging trends in spin crossover (SCO) based func-

tional materials and devices. Coordination Chemistry Reviews 2017, 346, 176�205, SI:

42 iccc, Brest� by invitation.

(8) Molnár, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin Crossover Nano-

materials: From Fundamental Concepts to Devices. Advanced Materials 2018, 30,

1703862.

(9) Kahn, O.; Martinez, C. J. Spin-Transition Polymers: From Molecular Materials Toward

Memory Devices. Science 1998, 279, 44�48.

(10) D'Avino, G.; Painelli, A.; Boukheddaden, K. Vibronic model for spin crossover com-

plexes. Phys. Rev. B 2011, 84, 104119.

(11) Nicolazzi, W.; Bousseksou, A. Thermodynamical aspects of the spin crossover phe-

nomenon. Comptes Rendus. Chimie 2018, 21, 1060�1074.

(12) Collet, E.; Guionneau, P. Structural analysis of spin-crossover materials: From

molecules to materials. Comptes Rendus. Chimie 2018, 21, 1133�1151.

(13) Hauser, A. Intersystem crossing in Fe(II) coordination compounds. Coordination

Chemistry Reviews 1991, 111, 275�290.

(14) Enachescu, C.; Linarès, J.; Varret, F. Comparison of static and light-induced ther-

mal hystereses of a spin-crossover solid, in a mean-�eld approach�. Journal of Physics:

Condensed Matter 2001, 13, 2481.

(15) Nishino, M.; Boukheddaden, K.; Konishi, Y.; Miyashita, S. Simple Two-Dimensional

Model for the Elastic Origin of Cooperativity among Spin States of Spin-Crossover

Complexes. Phys. Rev. Lett. 2007, 98, 247203.

33

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


(16) Ordejón, B.; de Graaf, C.; Sousa, C. Light-Induced Excited-State Spin Trapping in

Tetrazole-Based Spin Crossover Systems. Journal of the American Chemical Society

2008, 130, 13961�13968.

(17) Nadeem, M.; Cruddas, J.; Ruzzi, G.; Powell, B. J. Toward High-Temperature Light-

Induced Spin-State Trapping in Spin-Crossover Materials: The Interplay of Collective

and Molecular E�ects. Journal of the American Chemical Society 2022, 144, 9138�9148,

PMID: 35546521.

(18) Natt, N.; Powell, B. J. Complex Relaxation of Trapped Spin-States

in Spin Crossover Materials. Chem. Sci. 2024, Accepted Manuscript,

https://doi.org/10.1039/D4SC04225E.

(19) Mi, S.; Molnár, G.; Ridier, K.; Nicolazzi, W.; Bousseksou, A. All-atom molecular dy-

namics simulation of the [Fe(pyrazine)][Ni(CN)4] spin-crossover complex. I. Thermally

induced spin transition in the bulk material. Phys. Rev. B 2024, 109, 054103.

(20) Paez-Espejo, M.; Sy, M.; Boukheddaden, K. Elastic Frustration Causing Two-Step and

Multistep Transitions in Spin-Crossover Solids: Emergence of Complex Antiferroelastic

Structures. Journal of the American Chemical Society 2016, 138, 3202�3210.

(21) Cruddas, J.; Powell, B. J. Spin-State Ice in Elastically Frustrated Spin-Crossover Ma-

terials. Journal of the American Chemical Society 2019, 141, 19790�19799.

(22) Cruddas, J.; Powell, B. J. Structure�property relationships and the mechanisms of

multistep transitions in spin crossover materials and frameworks. Inorg. Chem. Front.

2020, 7, 4424�4437.

(23) Boukheddaden, K.; Nishino, M.; Miyashita, S. Molecular Dynamics and Transfer Inte-

gral Investigations of an Elastic Anharmonic Model for Phonon-Induced Spin Crossover.

Phys. Rev. Lett. 2008, 100, 177206.

34

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


(24) Miyashita, S.; Konishi, Y.; Nishino, M.; Tokoro, H.; Rikvold, P. A. Realization of the

mean-�eld universality class in spin-crossover materials. Phys. Rev. B 2008, 77, 014105.

(25) Nishino, M.; Boukheddaden, K.; Miyashita, S. Molecular dynamics study of thermal

expansion and compression in spin-crossover solids using a microscopic model of elastic

interactions. Phys. Rev. B 2009, 79, 012409.

(26) Nishino, M.; Enachescu, C.; Miyashita, S.; Boukheddaden, K.; Varret, F. m. c. In-

trinsic e�ects of the boundary condition on switching processes in e�ective long-range

interactions originating from local structural change. Phys. Rev. B 2010, 82, 020409.

(27) Nishino, M.; Singh, Y.; Boukheddaden, K.; Miyashita, S. Tutorial on elastic interaction

models for multistep spin-crossover transitions. Journal of Applied Physics 2021, 130,

141102.

(28) Chastanet, G.; Desplanches, C.; Baldé, C.; Rosa, P.; Marchivie, M.; Guionneau, P. A

critical review of the T(LIESST) temperature in spin crossover materials � What it is

and what it is not. Chemistry Squared 2018, 2.

(29) Rosa, P.; Debay, A.; Capes, L.; Chastanet, G.; Bousseksou, A.; Le Floch, P.; Létard, J.-

F. Heat- and Light-Induced Spin Transition of an Iron(II) Polymer Containing the

1,2,4,5-Tetrakis(diphenylphosphanyl)benzene Ligand. European Journal of Inorganic

Chemistry 2004, 2004, 3017�3019.

(30) Gütlich, P. Spin crossover in iron(II)-complexes. Metal Complexes. Berlin, Heidelberg,

1981; pp 83�195.

(31) Matouzenko, G. S.; Jeanneau, E.; Verat, A. Y.; de Gaetano, Y. The Nature of Spin

Crossover and Coordination Core Distortion in a Family of Binuclear Iron(II) Com-

plexes with Bipyridyl-Like Bridging Ligands. European Journal of Inorganic Chemistry

2012, 2012, 969�977.

35

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


(32) Kepp, K. P. Theoretical Study of Spin Crossover in 30 Iron Complexes. Inorganic

Chemistry 2016, 55, 2717�2727, PMID: 26913489.

(33) Halcrow, M. A. Structure:function relationships in molecular spin-crossover complexes.

Chem. Soc. Rev. 2011, 40, 4119�4142.

(34) Capel Berdiell, I.; Michaels, E.; Munro, O. Q.; Halcrow, M. A. A Survey of the An-

gular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-

Bis(pyrazolyl)pyridine Complexes. Inorganic Chemistry 2024, 63, 2732�2744, PMID:

38258555.

(35) Halcrow, M. A. Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines�A versatile system

for spin-crossover research. Coordination Chemistry Reviews 2009, 253, 2493�2514.

(36) Attwood, M.; Turner, S. S. Back to back 2,6-bis(pyrazol-1-yl)pyridine and 2,2':6',2"-

terpyridine ligands: Untapped potential for spin crossover research and beyond.

Coordination Chemistry Reviews 2017, 353, 247�277.

(37) Olguín, J.; Brooker, S. Spin crossover active iron(II) complexes of selected pyrazole-

pyridine/pyrazine ligands. Coordination Chemistry Reviews 2011, 255, 203�240.

(38) Halcrow, M. A. Recent advances in the synthesis and applications of 2,6-

dipyrazolylpyridine derivatives and their complexes. New J. Chem. 2014, 38, 1868�

1882.

(39) García-López, V.; Orts-Mula, F.; Palacios-Corella, M.; Clemente-Juan, J.; Clemente-

León, M.; Coronado, E. Field-induced slow relaxation of magnetization in a mononu-

clear Co(II) complex of 2,6-bis(pyrazol-1-yl)pyridine functionalized with a carboxylic

acid. Polyhedron 2018, 150, 54�60.

(40) Rigamonti, L.; Bridonneau, N.; Poneti, G.; Tesi, L.; Sorace, L.; Pinkowicz, D.; Jover, J.;

Ruiz, E.; Sessoli, R.; Cornia, A. A Pseudo-Octahedral Cobalt(II) Complex with Bispyra-

36

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


zolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis

Anisotropy. Chemistry � A European Journal 2018, 24, 8857�8868.

(41) Ding, Z.-Y.; Meng, Y.-S.; Xiao, Y.; Zhang, Y.-Q.; Zhu, Y.-Y.; Gao, S. Probing the

in�uence of molecular symmetry on the magnetic anisotropy of octahedral cobalt(ii)

complexes. Inorg. Chem. Front. 2017, 4, 1909�1916.

(42) Kershaw Cook, L. J.; Tuna, F.; Halcrow, M. A. Iron(ii) and cobalt(ii) complexes of

tris-azinyl analogues of 2,2':6',2�-terpyridine. Dalton Trans. 2013, 42, 2254�2265.

(43) Rajan, R.; Rajaram, R.; Nair, B. U.; Ramasami, T.; Mandal, S. K. Synthesis, char-

acterisation and superoxide dismutase activity of a manganese(II) complex. J. Chem.

Soc., Dalton Trans. 1996, 2019�2021.

(44) Stamatatos, T. C.; Luisi, B. S.; Moulton, B.; Christou, G. Employment of 2,6-

Diacetylpyridine Dioxime as a New Route to High Nuclearity Metal Clusters: Mn6

and Mn8 Complexes. Inorganic Chemistry 2008, 47, 1134�1144, PMID: 18173267.

(45) Stupka, G.; Gremaud, L.; Bernardinelli, G.; Williams, A. F. Redox state switch-

ing of transition metals by deprotonation of the tridentate ligand 2,6-bis(imidazol-

2-yl)pyridine. Dalton Trans. 2004, 407�412.

(46) Capel Berdiell, I.; Michaels, E.; Munro, O. Q.; Halcrow, M. A. A Survey of the An-

gular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-

Bis(pyrazolyl)pyridine Complexes. Inorganic Chemistry 2024, 63, 2732�2744, PMID:

38258555.

(47) Wu, H.; Kou, F.; Jia, F.; Liu, B.; Yuan, J.; Bai, Y. A V-shaped ligand 1,3-bis(1-

methylbenzimidazol-2-yl)-2-oxapropane and its Cu(II) complex: Synthesis, crystal

structure, antioxidation and DNA-binding properties. Journal of Photochemistry and

Photobiology B: Biology 2011, 105, 190�197.

37

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


(48) Migita, C. T.; Migita, K.; Iwaizumi, M. Electron paramagnetic resonance stud-

ies of highly anisotropic low-spin states of ferrimyoglobin derivatives. Biochimica et

Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1983, 743,

290�298.

(49) Dumitru, F.; Legrand, Y.-M.; Van der Lee, A.; Barboiu, M. Constitutional self-sorting

of homochiral supramolecular helical single crystals from achiral components. Chem.

Commun. 2009, 2667�2669.

(50) Burrows, K.; Kulmaczewski, R.; Cespedes, O.; Barrett, S.; Halcrow, M. The Speciation

of Homochiral and Heterochiral Diastereomers of Homoleptic Cobalt(II) and Zinc(II)

PyBox Complexes. Polyhedron 2018, 149, 134�141, © 2018 Elsevier Ltd. This is an

author produced version of a paper published in Polyhedron. Uploaded in accordance

with the publisher's self-archiving policy.

(51) Pringouri, K.; Anwar, M. U.; Mansour, L.; Doupnik, N.; Beldjoudi, Y.; Gavey, E. L.;

Pilkington, M.; Rawson, J. M. A novel bis-1,2,4-benzothiadiazine pincer ligand: syn-

thesis, characterization and �rst row transition metal complexes. Dalton Trans. 2018,

47, 15725�15736.

(52) Pask, C. M.; Greatorex, S.; Kulmaczewski, R.; Baldansuren, A.; McInnes, E. J. L.;

Bamiduro, F.; Yamada, M.; Yoshinari, N.; Konno, T.; Halcrow, M. A. Elucidating

the Structural Chemistry of a Hysteretic Iron(II) Spin-Crossover Compound From its

Copper(II) and Zinc(II) Congeners. Chemistry � A European Journal 2020, 26, 4833�

4841.

(53) Capel Berdiell, I.; Michaels, E.; Munro, O. Q.; Halcrow, M. A. A Survey of the An-

gular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-

Bis(pyrazolyl)pyridine Complexes. Inorganic Chemistry 2024, 63, 2732�2744, PMID:

38258555.

38

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


(54) Sertphon, D.; Harding, D. J.; Harding, P.; Murray, K. S.; Moubaraki, B.;

Adams, H.; Alka³, A.; Telfer, S. G. Substituent-In�uenced Spin Crossover in FeIII

Quinolylsalicylaldiminates. European Journal of Inorganic Chemistry 2016, 2016, 432�

438.

(55) Takahashi, K.; Sakurai, T.; Zhang, W.-M.; Okubo, S.; Ohta, H.; Yamamoto, T.;

Einaga, Y.; Mori, H. Spin-Singlet Transition in the Magnetic Hybrid Compound from

a Spin-Crossover Fe(III) Cation and π-Radical Anion. Inorganics 2017, 5.

(56) Ketkaew, R.; Tantirungrotechai, Y.; Harding, P.; Chastanet, G.; Guionneau, P.;

Marchivie, M.; Harding, D. J. OctaDist: a tool for calculating distortion parameters in

spin crossover and coordination complexes. Dalton Trans. 2021, 50, 1086�1096.

(57) Marchivie, M.; Guionneau, P.; Létard, J.-F.; Chasseau, D. Photo-induced spin-

transition: the role of the iron(II) environment distortion. Acta Crystallographica

Section B 2005, 61, 25�28.

(58) Boilleau, C.; Suaud, N.; Guihéry, N. Ab initio study of the in�uence of structural

parameters on the potential energy surfaces of spin-crossover Fe(II) model compounds.

The Journal of Chemical Physics 2012, 137, 224304.

(59) Sugano, S.; Tanabe, Y.; Kamimura, H. Multiplets of Transition-Metal Ions in Crystals;

Academic Press, 1970.

(60) Nitzan, A. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems;

Oxford University Press, 2006.

(61) Levine, B. G.; Martínez, T. J. Isomerization Through Conical Intersections. Annual

Review of Physical Chemistry 2007, 58, 613�634.

(62) Gri�th, J. The Theory of Transition-Metal Ions; Cambridge University Press, 1961.

39

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


(63) Buhks, E.; Navon, G.; Bixon, M.; Jortner, J. Spin conversion processes in solutions.

Journal of the American Chemical Society 1980, 102, 2918�2923.

(64) Khosla, A. L.; Jacko, A. C.; Merino, J.; Powell, B. J. Spin-orbit coupling and strong

electronic correlations in cyclic molecules. Phys. Rev. B 2017, 95, 115109.

(65) Powell, B. J.; Kenny, E. P.; Merino, J. Dynamical Reduction of the Dimensionality of

Exchange Interactions and the �Spin-Liquid� Phase of κ-(BEDT−TTF)2X. Phys. Rev.

Lett. 2017, 119, 087204.

(66) Powell, B. J.; Merino, J.; Khosla, A. L.; Jacko, A. C. Heisenberg and Dzyaloshinskii-

Moriya interactions controlled by molecular packing in trinuclear organometallic clus-

ters. Phys. Rev. B 2017, 95, 094432.

(67) Wajn�asz, J. Etude de la transition �Low Spin�-�High Spin� dans les complexes octaé-

driques d'ion de transition. physica status solidi (b) 1970, 40, 537�545.

(68) Lakhlou�, S.; Guionneau, P.; Lemée-Cailleau, M. H.; Rosa, P.; Létard, J.-F. Struc-

tural phase transition in the spin-crossover complex [Fe(ptz)6](BF4)2 studied by x-ray

di�raction. Phys. Rev. B 2010, 82, 132104.

(69) Dunn, T. M. Spin-orbit coupling in the �rst and second transition series. Trans. Faraday

Soc. 1961, 57, 1441�1444.

(70) Kondo, M.; Yoshizawa, K. A theoretical study of spin-orbit coupling in an Fe(II) spin-

crossover complex. Mechanism of the LIESST e�ect. Chemical Physics Letters - CHEM

PHYS LETT 2003, 372, 519�523.

(71) Gütlich, P.; Goodwin, H. Spin Crossover in Transition Metal Compounds III; Spin

Crossover in Transition Metal Compounds; Springer, 2004.

(72) Carbonera, C.; Sánchez Costa, J.; Money, V. A.; Elhaïk, J.; Howard, J. A. K.; Hal-

crow, M. A.; Létard, J.-F. Photomagnetic properties of iron(ii) spin crossover com-

40

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/


plexes of 2,6-dipyrazolylpyridine and 2,6-dipyrazolylpyrazine ligands. Dalton Trans.

2006, 3058�3066.

(73) Zenno, H.; Sekine, Y.; Zhang, Z.; Hayami, S. Solvation/desolvation induced reversible

distortion change and switching between spin crossover and single molecular magnet

behaviour in a cobalt(ii) complex. Dalton Trans. 2024, 53, 5861�5870.

(74) Brooker, S. Spin crossover with thermal hysteresis: practicalities and lessons learnt.

Chem. Soc. Rev. 2015, 44, 2880�2892.

(75) Traiche, R.; Sy, M.; Oubouchou, H.; Bouchez, G.; Varret, F.; Boukheddaden, K. Spa-

tiotemporal Observation and Modeling of Remarkable Temperature Scan Rate E�ects

on the Thermal Hysteresis in a Spin-Crossover Single Crystal. The Journal of Physical

Chemistry C 2017, 121, 11700�11708.

(76) Paradis, N.; Chastanet, G.; Palamarciuc, T.; Rosa, P.; Varret, F.; Boukheddaden, K.;

Létard, J.-F. Detailed Investigation of the Interplay Between the Thermal Decay of the

Low Temperature Metastable HS State and the Thermal Hysteresis of Spin-Crossover

Solids. The Journal of Physical Chemistry C 2015, 119, 20039�20050.

(77) Létard, J.-F.; Guionneau, P.; Nguyen, O.; Costa, J. S.; Marcén, S.; Chastanet, G.;

Marchivie, M.; Goux-Capes, L. A Guideline to the Design of Molecular-Based Materials

with Long-Lived Photomagnetic Lifetimes. Chemistry � A European Journal 2005, 11,

4582�4589.

(78) Marcén, S.; Lecren, L.; Capes, L.; Goodwin, H.; Létard, J.-F. Critical temperature of

the LIESST e�ect in a series of hydrated and anhydrous complex salts [Fe(bpp)2]X2.

Chemical Physics Letters 2002, 358, 87�95.

41

https://doi.org/10.26434/chemrxiv-2024-n7cs9 ORCID: https://orcid.org/0000-0002-3147-4263 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-n7cs9
https://orcid.org/0000-0002-3147-4263
https://creativecommons.org/licenses/by-nc/4.0/

