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Abstract

Hydration free energy (HFE) of molecules is a fundamental property having impor-

tance throughout chemistry and biology. Calculation of the HFE can be challenging

and expensive with classical molecular dynamics simulation-based approaches. Ma-

chine learning (ML) models are increasingly being used to predict HFE. Although the

accuracy of ML models for datasets for small molecules is impressive, these models

suffer from lack of interpretability. In this work, we have developed a physics-based

ML model with only six descriptors, which is both accurate and fully interpretable,

and applied it to a database for small molecule HFE, FreeSolv. We have evaluated

the electrostatic energy by an approximate closed form of the Generalized Born (GB)

model and polar surface area. In addition, we have logP and hydrogen bond acceptor
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and donors as descriptors along with the number of rotatable bonds. We have used

different ML models such as random forest and extreme gradient boosting. The best

result from these models has a mean absolute error of only 0.74 kcal/mol. The main

power of this model is that the descriptors have clear physical meaning and it was found

that the descriptor describing the electrostatics and the polar surface area, followed

by the hydrogen bond donors and acceptors, are the most important factors for the

calculation of hydration free energy.

Introduction

Solvation free energy is one of the key quantities in chemistry and biology as most of the

molecular phenomena occur in different solvents.1,2 Water being the most versatile solvent,

determination or calculation of hydration free energy (HFE) is the most important step

in understanding any complex process. The calculation of HFE is typically done using

either a quantum mechanical description of the solute in a dielectric continuum3–8 or a

classical description of the solute where water is treated either with explicit models9–14 or

implicit models (which are mostly dielectric continuum).10,15–17 The classical forcefields are

usually used for macromolecules, and for small molecules interacting with macromolecules,

classical forcefields are used for compatibility. Henceforth, all discussions on the calculation

of hydration free energy will be with the classical models. Although the physics-based

methods are well developed, there are outstanding issues in getting accurate solvation free

energy and it has been an active area of new developments and improvements.11,18–20 The

most rigorous calculations are alchemical methods like thermodynamic integration21,22 and

free energy perturbation.23 However, these calculations are time-consuming and generally

speaking, are not suitable for a large set of molecules.

Continuum solvent models are often preferred methods when dealing with a larger number

of small molecules, typical in a drug design project. The Poisson-Boltzmann (PB) and

Generalized Born (GB) are the two most common models used in continuum solvent models.
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In the PB approach, PB eq. (or Poisson eq. in the absence of any salt concentration) is

solved by defining an interior dielectric constant for the solute and an external dielectric

constant for the solvent. The Generalized Born approach also defines internal and external

dielectric constants; however, here no electrostatic equation is solved, rather an expression,

obtained from the generalization of the Born equation for a single ion, is evaluated.15,24,25

In both PB and GB approaches, the molecular surface area is calculated and in GB, the so-

called Born radii is calculated, which can be time-consuming. Also, there are some inherent

limitations for continuum models as they neglect the molecular nature of water. There have

been several attempts to build cluster-continuum models.26,27

From an entirely different perspective, several machine learning (ML) models are devel-

oped, in the last couple of years,28–39 to predict solvation free energy using experimental

data in the FreeSolv database.9 The faster speed of ML models compared to physics-based

models is advantageous and can be used for large databases of small molecules used in drug

discoveries. However, ML models often suffer from a lack of interpretability and the reasons

why they work (or do not work) are often not clear. There have been attempts to define

descriptors having clear physical meaning. For instance, Zhang et al. used electron density

(obtained from quantum mechanical calculations) based descriptors.37 In some of the other

representative works, Alibakhshi et al. have combined ML models with PCM model to pre-

dict solvation free energy in different solvents using the components of the PCM calculations

as the features of the ML model,32 Pattnaik et al. have developed an ML model to predict

relative solvation free energy in forty-one solvents.38 Vyboishchikov has developed a few

NN-based models based on the GB model of solvation.39–41 The effective Born radii, charges

are used as the features in these models. Machine learning has also been used to predict the

HFE obtained from MD simulation-based methods.30

In the current work, our motivation is to use a minimal number of physically interpretable

and simple descriptors for predicting HFE. Starting from the GB expression and with an

approximate analytical calculation of Born radii,25 we evaluate the HFE (after adding five
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more descriptors) and got accuracy almost as good as the paper by Zhang et al.37 for the

FreeSolv dataset. The power of our method is that it is completely physics-based, hence

fully interpretable. It has only six descriptors, an electrostatics term (GB term summed

with Coulomb electrostatic), polar surface area, number of donor and acceptor atoms, logP ,

and the number of rotatable bonds. We have used four different models, namely Random

Forest (RF), Extreme Gradient Boosting (XGBoost), Gradient Boosting (GradBoost), and

Light Gradient Boosting Machine (LightGBM). Our best result is a mean absolute error

(MAE) of 0.74 kcal/mol comparable to the work of Zhang et al.37 This method can be used

for large datasets used in drug designing and the reason for specific HFE values can be

understood clearly as opposed to most of the ML models.

Methodology

Database Description

The experimental hydration free energy database, FreeSolv, prepared by Mobley et al.,9 has

been widely used and benchmarked by various physical solvation models as well as machine

learning (ML) and deep learning models. The FreeSolv database has 643 small organic

molecules with their experimental HFE and their SMILES (simplified molecular-input line-

entry system). The database also includes the calculated HFE, enthalpy, and entropy data

from explicit molecular dynamics simulations. These calculations utilized the GAFF force

field,42 AM1-BCC partial charges,43,44 and the TIP3P water model.45 The experimental HFE

values have the mean and standard deviation as -3.82 and 4.84 kcal/mol, respectively. We

have divided the total dataset into nine different groups based on the functional group or

presence of a specific atom in the molecule. The eight groups are Alkanol, Alkanone, Alkene,

Alkyl Alkanoate, Halo Alkane, Aromatic, Aliphatic cyclic, N-based Aliphatic, and the ninth,

misc, is the group for molecules that do not come under any of the previous eight groups. We

have assessed the performances of our models both for the whole dataset and these different
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groups.

Descriptor Generation

One of the primary objectives of this work is to utilize a minimal number of descriptors

while ensuring they possess physical interpretability. To achieve this, we have used only six

descriptors: polar surface area, hydrogen bond donors, hydrogen bond acceptors, the number

of rotatable bonds, logP , and an electrostatic term which we call as the pol term (GB term

summed with Coulomb electrostatic). The first five descriptors were calculated using the

RDKit46 package in Python, while the last descriptor is calculated as described below.25

The simplified polar energy is the sum of two terms, the Coulombic electrostatic energy,

and a generalized Born energy term. The generalized Born energy term is calculated by the

Generalized Born equation as follows

∆Gpol = −1

2

(
1− 1

ϵw

)∑
i<j

qiqj
fGB

(1)

where ϵw is the dielectric constant of water (the process being moving a solute from

vacuum to water), qi, and qj are the charges of atoms i and j. And fGB is a function,

dependent on the distance between the atoms i and j, that interpolates between the distance

rij and the Born radii. Most widely used functional form of fGB is given below

fGB =

[
r2ij +RiRj exp

(
− rij
4RiRj

)] 1
2

(2)

where Ri and Rj are the effective Born radii of atoms i and j. The main challenge in the

implementation of the GB model is the calculation of the effective Born radius.
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Approximate analytical evaluation of Born Radius

When the accessible surface of the atoms of a molecule are non-overlapping, then it can be

shown that the following (eq. 3) is an analytical expression for Born radius, ai being the

sum of the radii of the atom i and water.25

R−1
i = a−1

i −
∑
j

aj

2
(
r2ij − a2j

) − 1

4rij
log

(
rij − aj
rij + aj

)
(3)

The charge and radius of atoms are taken from the Generalized Amber ForceField

(GAFF) forcefield42 (water radius was taken as 1.4 Angstrom). Although, eq. (3) is valid

only for non-overlapping atoms, this can act as an excellent descriptor in an ML model. In

the evaluation of eq. (3), the numerator of the second term can be negative for overlapping

accessible surfaces of the atoms. To circumvent this problem, we have performed the sum

over the pairs of atoms with non-overlapping accessible surfaces only. This approximation

provides a fast estimation of the polar part of the solvation free energy. Our results show that

using this approximation as a descriptor, ML-based methods perform well for the FreeSolv

database.

Machine Learning Models

Figure 1 illustrates the workflow for predicting the hydration-free energy. It highlights that

the six descriptors are calculated for the FreeSolv database first. Then different ML meth-

ods are trained and HFE is predicted. Regression algorithms will enable ML models to

make predictions based on the information represented by each chemical feature. After

calculating RDKit descriptors, the database was divided into two subsets. We used an

80:20 split to divide the dataset into training and testing sets, ensuring that this ratio was

consistently maintained across the nine predefined groups. These subsets were utilized to

develop, train, and statistically evaluate the model using different ML algorithms. We ap-

plied StandardScaler to standardize the features, which helps improve model performance
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by scaling data to have a mean of zero and a standard deviation of one. This ensures that

all features contribute equally to the model training process and in improving convergence

during optimization. After these preprocessing steps, different machine learning models are

trained on the training set to learn the crucial relationships for making predictions and then

tested on the unseen testing set to assess prediction accuracy.

Figure 1: Workflow to predict ∆GHyd using ML-based models. It involves the calculation of
descriptors, ML model training and then predicting HFE.

We have employed four different machine learning models: Random Forest (RF),47 Ex-

treme Gradient Boosting (XGBoost),48 Gradient Boosting (GradBoost),49 and Light Gra-

dient Boosting Machine (LightGBM).50 These models are trained on the training set to

learn the crucial relationships of the descriptors with the HFE which is the target property.

Although all the above four machine learning models— RF, XGBoost, GradBoost, and Light-

GBM — use ensemble techniques, their approaches to prediction differ. Random Forest is

a bagging-based technique that builds multiple decision trees independently, averaging their

predictions to reduce variance and improve stability. Gradient Boosting applies a boosting

strategy to further train the weak learners one after another in a sequence to minimize the

loss function while correcting the mistakes of the preceding one. The other two methods –
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XGBoost, and LightGBM – are more advanced versions of the Gradient Boosting algorithm.

XGBoost uses regularization, parallel processing, and tree-trimming methods to overcome

the over-fitting. LightGBM, another variant of Gradient Boosting, was developed to handle

large amounts of data, it uses leaf-wise growth and histogram-based learning to speed up and

reduce memory usage. Collectively, these models use various techniques to merge decision

trees to balance the prediction accuracy and computing time. We have trained and tested

our ML models on two classes of data: 1) full data set, and 2) without outliers. We have used

the interquartile range (IQR) method to define outliers in the experimental hydration-free

energy, with bounds set at Q1 − 1.5 ∗ IQR and Q3 +1.5 ∗ IQR. Q1 and Q3 are the first and

third quartiles, respectively. This leaves 628 number of molecules in the second dataset set.

We have also utilized GridSearchCV with 5-fold cross-validation to optimize the hyper-

parameters of our model. This method involves systematically searching through a grid of

hyperparameter values to identify the best settings for our model. In conjunction with 5-fold

cross-validation, the dataset is divided into 5 folds. The model is trained on 4 folds for each

hyperparameter combination and evaluated on the remaining fold. This process is repeated

5 times, each time using a different fold as the test set. We ensure that the selected hyperpa-

rameters provide robust and generalizable model performance by averaging the performance

across these iterations. In Table S1 in SI, we have listed the optimized parameters of the

four models we have used.

To evaluate the performance of our model, we employed several metrics: Root Mean

Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (Pr),

and R2 score. RMSE and MAE provide insights into the magnitude of prediction errors,

while Pr assesses the strength of the linear relationship between observed and predicted

values, and R2 indicates the proportion of variance explained by the model. These metrics

were used to evaluate our model’s accuracy and robustness rigorously, and the results were

compared with those from other studies to benchmark our model’s performance against

existing methods. The feature importance for each descriptor was calculated using the mean
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decrease of impurity.

Results and discussion

Performance of the simplified GB model

First, we have assessed the performance of the approximated GB model alone in figure 2.

The figure shows that the model has relatively high values of RMSE and MAE indicating

that this model alone is not accurate enough and needs further refinement.

Figure 2: The scatter plot compares the experimental hydration free energy with predicted
values.

Machine Learning-based Model Performance

To select the appropriate model for our study, we have compared the hydration-free energy

prediction performance of the Random Forest (RF) and XGBoost models in Figure 3. Per-

formances of the other two models are shown in Figure S1 in Supporting Information (SI).

For the RF model, the test set Root Mean Squared Error (RMSE) is 1.30 kcal/mol, and

the coefficient of determination (R2) is 0.89, indicating that the model explains approxi-

mately 89% of the variance in the test set. The Pearson correlation coefficient (Pr) is 0.94,

demonstrating a strong linear correlation between predicted and experimental HFE values.
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The Mean Absolute Error (MAE) of 0.83 kcal/mol reflects that the model provides accurate

predictions overall.

Figure 3: Comparison of hydration free energy predictions using Random Forest (left) and
Extreme Gradient Boosting (right) models for the full data set.

In comparison, the XGBoost model outperforms Random Forest, with a lower RMSE of

1.16 kcal/mol and a higher R2 value of 0.91, explaining about 91% of the variance in the test

set. The Pearson correlation coefficient for XGBoost is Pr = 0.95, indicating a very strong

linear relationship between predicted and experimental values. The MAE of 0.74 kcal/mol

confirms XGBoost’s improved predictive accuracy and precision compared to Random Forest.

Both models exhibit strong agreement between predicted and experimental values, with data

points clustered along the diagonal line in the parity plots. However, XGBoost shows a more

concentrated distribution, particularly at lower ∆G values, suggesting it provides a better

fit overall. The Gradient Boosting model and LightGBM, shown in Figure S1 in SI, perform

comparably to the Random Forest and XGBoost models. For Gradient Boosting, with an

RMSE of 1.28 kcal/mol and R2 = 0.89, it explains about 89% of the variance in the test set,

similar to Random Forest. The Pearson correlation coefficient of Pr = 0.95 indicates a strong

linear relationship between predicted and experimental values. The MAE of 0.81 kcal/mol

highlights its reliable predictive performance. On the other hand, LightGBM has an MAE of

0.84 kcal/mol. The analysis demonstrates that XGBoost and Gradient Boosting outperform
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Random Forest and LightGBM, with XGBoost offering the most accurate predictions overall.

All the models display slight deviations indicating potential areas for further improve-

ment. To overcome the deviations, we retrained the models to assess their performance

without outliers. We have compared the hydration free energy prediction performance of

the RF and XGBoost models without outliers in Figure 4. Performances of the other two

models are shown in Figure S2 in SI. The Random Forest model had an RMSE of 1.27

kcal/mol, an MAE of 0.75 kcal/mol, an R2 of 0.80, and a Pearson correlation coefficient of

0.90. Despite the removal of outliers, the model’s performance slightly decreased compared

to the original dataset, especially in terms of the correlations i.e. R2 value and Pr. While,

the XGBoost model maintained strong predictive performance without outliers, with an im-

proved RMSE of 1.16 kcal/mol, an R2 value of 0.83, and a Pearson correlation coefficient of

0.92. The MAE for XGBoost decreased to 0.72 kcal/mol, reflecting only a slight increase in

accuracy compared to its performance on the full dataset. The LightGBM model’s perfor-

mance was comparable to Random Forest, with an RMSE of 1.27 kcal/mol, an MAE of 0.78

kcal/mol, an R2 value of 0.80, and a Pearson correlation coefficient of Pr = 0.90. In con-

trast, the Gradient Boosting model performed significantly better without outliers, achieving

an RMSE of 1.11 kcal/mol and an R2 value of 0.85, along with a Pearson correlation co-

efficient of Pr = 0.92. The MAE for this model was 0.70 kcal/mol, indicating improved

accuracy compared to the full dataset. While LightGBM showed similar results to Random

Forest, it performed slightly worse compared to Gradient Boosting and XGBoost in terms of

both RMSE and MAE. The removal of outliers generally led to improved accuracy for most

models, making Gradient Boosting the strongest performance on this cleaner dataset. The

following table 1 summarizes the metrics for the RF, GradBoost, XGBoost, and LightGBM

models with and without outliers.
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Figure 4: Comparison of hydration free energy predictions Random Forest (left) and Extreme
Gradient Boosting (right) models for the data set without outliers.

Table 1: Performance metrics for models with and without outliers (RF: Random Forest,
GradBoost: Gradient Boosting, XGBoost: Extreme Gradient Boosting, LGBM: Light Gra-
dient Boosting Machine).

With Outliers

RF GradBoost XGBoost LightGBM

RMSE (Train/Test) 0.60 / 1.30 0.51 / 1.28 0.47 / 1.15 0.93 / 1.32
MAE (Train/Test) 0.37 / 0.83 0.38 / 0.81 0.34 / 0.74 0.64 / 0.84
R2 (Train/Test) 0.98 / 0.89 0.98 / 0.89 0.98 / 0.91 0.94 / 0.88
Rp (Train/Test) 0.99 / 0.94 0.99 / 0.94 0.99 / 0.96 0.97 / 0.94

Without Outliers

RF GB XGB LGBM

RMSE (Train/Test) 0.56 / 1.27 0.68 / 1.11 0.56 / 1.16 0.85 / 1.27
MAE (Train/Test) 0.37 / 0.75 0.49 / 0.70 0.41 / 0.72 0.60 / 0.78
R2 (Train/Test) 0.97 / 0.80 0.96 / 0.85 0.97 / 0.83 0.93 / 0.80
Rp (Train/Test) 0.99 / 0.90 0.98 / 0.92 0.99 / 0.92 0.97 / 0.90

Descriptor performance

The feature importances for the different models highlight the varying roles each descriptor

plays in predicting the target variable. We have shown the feature importance for RF and

XGBoost in Figure 5 and for Gradient Boosting and LightGBM in Figure S3 in SI. In both

the Random Forest and Gradient Boosting models, the polar surface area (psa) emerges

12

https://doi.org/10.26434/chemrxiv-2024-v8h0j ORCID: https://orcid.org/0000-0002-4133-1880 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-v8h0j
https://orcid.org/0000-0002-4133-1880
https://creativecommons.org/licenses/by/4.0/


as the most important feature, contributing around 50%, followed by the pol term, which

accounts for approximately 30%. It is to be noted that polar surface area and non-polar

surface area are complementary features. In this work, we have taken PSA; however, taking

PSA as a feature implicitly includes non-polar surface area also. Hence, the importance

of PSA as a feature indicates the importance of polarity of surface areas in general. These

polarity of surface area and the pol term dominate the prediction capabilities of these models,

suggesting that molecular surface properties play a crucial role in the prediction task. Other

descriptors like the number of hydrogen bond donors (n donors), rotatable bonds (nrotb),

acceptors (n acceptors), and logP contribute significantly less. This highlights a strong

dependence on molecular polarity and surface area in these ensemble tree-based models.

Interestingly, the XGBoost model demonstrates a different feature importance distri-

bution, where the number of acceptors (n acceptors) becomes the most dominant feature,

contributing 30% to the predictions. Pol term and psa play smaller but still significant roles,

contributing around 18-22%. This indicates that the XGBoost model is more sensitive to

hydrogen bond acceptor characteristics compared to the other models. LightGBM also high-

lights psa, logP , and pol term as the most critical features. These results suggest that while

molecular surface and polarity remain crucial across models, each model places a different

emphasis on these features based on their algorithmic structure.

Comparison with Other ML Models used for FreeSolv dataset

We have compared our models with previous models trained on the FreeSolv database. In

comparison to several previous models, such as CIGIN34 (0.76), MLSolvA33 (0.76), and

MoleculeNet29 (1.15), our XGB model achieves a lower test MAE (0.74). At the same

time, there are models (e.g. the A3D-PNAConv-FT35 with the MAE of 0.42) having lower

MAE than ours. However, essentially all previous models for predicting HFE use complex

and a large number of descriptors (and more complex predictors) making the interpretation

difficult. Our model stands out from the others while competitive with other models in terms
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Figure 5: Comparison of feature importances for Random Forest (left) and XGBoost (right)
models. The bars represent the relative importance of each feature in predicting the target
variable.

of performance, it is completely physics-based and fully interpretable.

Performance against different functional groups

We have assessed the performance of our models on the nine groups defined in the methods

section. Figure 6 shows the performance metrics for RF regression model for the nine groups.

The RMSE and MAE for the ninth group i.e. misc (molecules not categorized in any of the

previous eight groups) show the highest deviation in the prediction with their values of 0.86

and 0.54 kcal/mol respectively. But the correlation metrics i.e. R2 and Pr show different

behaviour than the error metrics. The correlation metrics for this group (R2 = 0.9 and

Pr = 0.95) indicate that this group’s performance closely agrees with experimental hydration

free energy. These two contradicting metrics show that there is a systematic error in the

model both in the training and testing phases. The same contradicting trend is also observed

in the case of aromatic group. Except for these two groups, our models perform well across

different groups with relatively low RMSE (less than 0.53 kcal/mol) and low MAE (less than

0.36 kcal/mol). For the correlation metrics except for alkanone group, all other groups are

highly correlated with their corresponding experimental hydration free energy. The R2 is
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always more than 0.85 and Pr is always greater than 0.95 except for alkanone group which

signifies the performance of our model across the groups.

Figure 6: Group-wise performance

Conclusions

In this work, we have developed a physics-based and interpretable machine learning model

for predicting hydration free energy of small molecules with only six descriptors. Our results

compare well with other works with this dataset. However, the advantage of our method is

that the results are fully interpretable, which is often the issue with the ML models. Our

models perform well across different chemical groups signifying their applicability to larger

databases such as those used in drug discoveries.
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