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Abstract

Modeling protein-ligand interactions is a challenging task that has been approached
through an array of perspectives. From physics-based computational approaches
to vast deep learning pipelines, in silico methods hold promise in reducing exper-
imental overhead in the otherwise tedious and costly drug discovery campaigns.
We introduce Protein-Ligand Equivariant Transformer (ProLET), a generalizable
model built upon chemically inspired SE(3) equivariant geometric deep learn-
ing. We evaluate ProLET on a wide range of established standards, including
the notoriously difficult PoseBusters and Merck’s FEP benchmarks, consistently
demonstrating superior performance in binding affinity prediction and pose esti-
mation. We demonstrate its effectiveness across different stages in drug discovery,
showing that ProLET can be used for lead optimization and hit identification as
well as for prioritizing compounds that are selective towards a desired target. By
bridging the gap between accuracy, efficiency, and generalizability, ProLET stands
as a powerful and adaptive resource, signifying a step towards safe and reliable
AI-driven drug discovery.

1 Introduction

The discovery of new drugs is a complex and expensive process involving multiple stages including
target identification, lead discovery, lead optimization, and clinical trials. Typically, it is estimated
that the average drug discovery campaign may take up to 15 years and cost billions of dollars [1]. In
early-stage drug discovery, it is crucial to identify diverse molecular candidates that are potent, novel
and selective, as this can help reduce the risk of side effects and increase the likelihood of success in
clinical trials [2]. Across these stages, large-scale assays are typically run to empirically quantify
the hit rates and dose-response curves of potential drug candidates towards a selected target protein.
Known metabolic targets are also tested within the pipeline for collateral binding (selectivity) and
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to unmask the toxic and metabolic implications. However, running large-scale assays is laborious
and oftentimes economically infeasible, which limits the number of compounds that can be tested
and significantly slows down the drug discovery process. Therefore, given the rise of discovered
diseases [3], there is an ever increasing need for accurate accelerated in silico solutions which can
help identify novel promising drug candidates and reduce the need for high-throughput laboratories.

With the aim to address this issue, data-driven and computational structure-based drug discovery
(SBDD) alternatives have gained significant attention over the last decade, particularly within the
last few years [4, 5, 6, 7, 8]. Established physics-based SBDD methods such as molecular docking
and data-driven quantitative structure activity relationship (QSAR) models have proven resourceful
across drug discovery campaigns [9]. However, these often fail short from generalizing outside their
domain [10, 11]. On the other hand, more accurate computational techniques such as molecular
dynamics (MD) and free-energy perturbation (FEP) simulations have shown superior performance and
robustness [12, 7]. However, whilst these methods have demonstrated resourcefulness in providing
insights into the binding mechanism and ranking of potent binders, they are too computationally
demanding and require significant domain knowledge. In turn, this limits their applicability to
large-scale drug discovery campaigns.

Biologically, protein-ligand interactions are fundamental to explaining processes such as signal trans-
duction [13], immune response [14], and enzymatic catalysis [15]. Understanding these interactions
is crucial for drug discovery, as you can consequently design modulators (ligands) which alter the
activity of a desired target [16]. In light of this, the estimation of binding modes and corresponding
affinities are two key tasks in computational drug discovery. Recently, there has been a surge of deep
learning models developed to address these tasks [17, 18, 19, 4, 6, 20, 21, 22, 23, 24, 25]. However,
due to a lack of generalization, bridging these models in practice has been short from arduous [26].

Whilst some models achieve state-of-the-art results on some benchmarks, they often fail to generalize
to others. One of the reasons for the lack of generalization is the use of simple feature reduction
methods, such as pairwise atomic environments, to achieve translational and rotational invariances
which are not built within the model architecture [25, 27]. In addition to rigorous and practical
evaluation protocols, another well established issue in SBDD is the elusion of protein-specific
information. Particularly, these models often fail to learn from protein-ligand interactions and instead
learn to identify promiscuous binders that bind to multiple targets [28]. This is a major issue in drug
discovery as it can lead to side effects and toxicity.

Geometric deep learning (GDL) has emerged as a powerful framework for learning from structured
data, such as graphs and point clouds [29]. GDL atomistic models are designed to manipulate
Euclidean geometries, exploiting the symmetries present in the data. This makes them particularly
well-suited for learning invariant properties in multi-body physical systems. In this work, we propose
Protein-Ligand Equivariant Transformer (ProLET), a novel chemically-inspired framework for
protein-ligand modelling. Based on the principles of equivariant GDL, ProLET exploits irreducible
representations to model symmetries present in multibody physical systems. We base our core
architecture on Equiformer [30], an extension of the SE(3) Transformer [31], and perform significant
modifications to adapt it to structural chemistry.

Our main contributions can be summarised as follows: (i) We introduce ProLET, a novel chemically
inspired SE(3) equivariant transformer for protein-ligand binding modelling; (ii) We evidence state-
of-the-art performance across various benchmarks, including CASF-2016, PoseBusters and the Merck
FEP benchmark, consistently outperforming existing methods; (iii) We introduce two novel case
studies to asses ProLET’s ability to find selective compounds across competing protein target pairs;
(iv) We utilize heterogeneous training data sources, including re-docked (RD) poses and molecular
dynamics (MD) trajectories and highlight their independent significance.

2 Methods

2.1 ProLET

In structure-based drug discovery, small molecule binders (ligands) and their target proteins are
often co-crystallized to discern their corresponding binding mode and elucidate the predominant
interactions within the complex which may lead to a certain activity or binding outcome. However,
this does not scale and is oftentimes impossible due to experimental difficulties [32]. In practice, a
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virtual structure-based drug discovery pipeline should be able to generate probable poses in silico.
Finding the correct binding mode is critical towards estimating the affinity of a ligand and is a key first
step in SBDD (especially in later stages such as lead optimization). In this paper we deconstruct the
task of pose estimation into two distinct tasks: (i) pose generation; (ii) pose discrimination. For the
former, we use both physics-based and AI-based pose generation schemes to generate distributions
of protein-ligand complexes, which we refer to as pose ensembles. For each conformation ci ∈ P
in the pose ensemble we model the pose probability pi as well as its associated affinity ai. Pose
ensembles generated at the binding site are used to evaluate the overall affinity aens of a ligand. Here
we leverage inference from sets via Boltzmann-weighted averaging to better capture entropic effects
(Eq. 1), where k is the temperature of the operator.

aens =
∑
i∈P

aie
fi∑

i∈P efi
, fi = −pi

k
(1)

2.2 Chemically Inspired Geometric Deep Learning

We model the protein-ligand complex as a graph G = (V, E) with N nodes vi ∈ V , and edges
(ei, ej) ∈ E ,∀i ∈ N (j), where N (·) represents a neighbourhood function. Nodes are assigned to all
atoms, featurized with a vector defining its relative position from the ligand center of mass (CoM).
Atomic nodes are furthermore described as one-hot vectors over the proton number, as well as a
one-hot representation describing the owning species, i.e. if it belongs to the protein or the ligand.

We build 3 distinct families of edges to create our chemically-inspired Euclidean graph: bond (Eb),
interaction (Ei) and structural (Es), where {Eb ∪ Ei ∪ Es} = E . Correspondingly, each edge type
has a unique neighbourhood lookup function: (i) Bond edges are defined by the chemical bond
across neighbouring atoms. Additionally, these are augmented with the bond type (single, double,
triple, aromatic) as well as the owning species; (ii) Interaction edges are defined by a radial distance
function from nodes in the ligand graph to nodes in the protein graph. As the number of interactions
scales cubically with distance, we set a maximum interaction threshold of 5Å. To reduce risk of
oversquashing [33], we select at most 3 interaction edges per ligand node, prioritizing the closest
heavy protein atoms; (iii) Structural edges are defined across all protein alpha carbons (Cα) residing
within 15Å from the CoM, creating a convex hull over the complex. We add these edges to provide
a more informed representation of the binding pocket, facilitating global message passing and
improving the topological convergence towards the ligand nodes. In a way, these edges can be viewed
as structure-informed skip connections [34, 35]. For all edges, a one-hot vector describing the edge
family is also added as an additional feature. A schematic of the presented structure-based pipeline
can be found in Fig. 1a. Further details on the architecture are included in A.2.

2.3 SE(3) Invariant Transformer for Protein-Ligand Modelling

As physical objects in space, protein-ligand complexes can be described using atomistic coordinate
systems. Coordinate systems can be freely chosen and transformed using group actions from the
Euclidean group (E(3)): translations, rotations and inversions. These can be separated into sub-groups:
translations and rotations form SE(3), rotations alone form SO(3), and inversions form O(3). Since
the pose or affinity of a molecular complex is invariant to the first two groups, yet not always to the
last one due to enantiomeric specificity, we seek for a model that is SE(3) equivariant. In doing so,
symmetries in the data can be inductively captured by the model, reducing the unnecessary complexity
of learning these via data augmentation techniques. Formally, a function mapping between vector
spaces X and Y is equivariant to a group of transformations G if, for any input x ∈ X , output y ∈ Y ,
and group element g ∈ G, the function satisfies g · f(x) = f(g · x).
Group representations in the context of the 3D Euclidean group E(3) involve transformations acting
on different quantities, such as scalars and Euclidean vectors, which may change under rotations (sign
changes for vectors, scalars are invariant). Irreducible representations (irreps) of SO(3) are smaller
decompositions of these group representations into Wiegner-D matrices, acting on independent
vector spaces of different angular frequencies, denoted by degree L [36]. These irreps are formed
by concatenating type-L vectors, which capture equivariant information under rotations in SO(3),
enabling the analysis of geometric properties in space.
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Figure 1: ProLET system framework. Figure a illustrates the defined structure-based pipeline: (i) A
pose generation protocol generates conformations of a query ligand in the pocket of 2OHS, resulting
in a pose ensemble (depicted as the set of faded-out poses); (ii) ProLET predicts the pose probability
and corresponding affinity of each pose. A Boltzmann-weighted aggregate returns the predicted
affinity of the pose ensemble (red square). The best predicted pose (green conformation) and its
predicted probability (green square) are left for the reader. The original crystal structure of the
query ligand is depicted in blue. Figure b presents an instance of the protein-ligand geometric graph
generated via ProLET (left), where interaction edges (green dotted lines), structural edges (red dotted
lines) and bond edges (black (protein) and green (ligand) lines) are displayed. A simplified version of
ProLET’s SE(3) Equivariant model architecture is shown on the right.

Positional Euclidean vectors rij ∈ R3 across pairwise nodes (vi, vj) ∈ V are transformed into
irreducible representations via spherical harmonics. This generates the first layer of irreducible
representations, which are concatenated at each node with their corresponding scalar irreps (atomic
number embedding, node family embedding, etc.). Instead of linear matrix multiplication, separable
tensor products across irreps u and v of degree l1 and l2 can be formally defined in a computationally
efficient manner across each layer (Eq. 2), where C denotes the pre-computed Clebsch-Gordan
coefficients, and m denotes the m-th component of the irrep. In our setup, we use a maximum degree
of 2: ∀li ∈ l, i ∈ {0, 1, 2} stemming from the spherical harmonic feature in the first layer.

(u⊗ v)lm =

l1∑
m1=−l1

l2∑
m2=−l2

Cl,m
(l1,m1)(l2,m2)

ul1
m1

vl2m2
(2)

We create the SE(3) Invariant Transformer for molecular modelling by adapting the works from
[37] and [31]. Specifically, we work on top of Equiformer [30] and use their separable tensor
product attention with the following major modifications: (i) Instead of a radius graph built on
distance neighbourhoods, we use the chemically inspired procedure outlined in section 2.2, drastically
improving message passing efficiency and reducing over-squashing; (ii) We create a virtual node
over ligand atoms only, removing the otherwise undesired dependency on local neighbourhood
functions in the final aggregate operator. We believe this is imperative in this particular topology,
as the proximity of a ligand to its binding site (strictly disjoint topologies) should not bias the final
computational graph. For instance, as that the number of nodes scales cubically with the distance
between a ligand conformation and a protein’s binding site, this would lead to inconsistencies in
scaling in the aggregate operator.

Note that in ProLET we maintain SE(3) equivariance across L stacked layers and achieve SE(3)
invariance in the last layer by isolating the 0’th degree scalar contributions in the separable tensor
product operator. Permutation invariance is ultimately achieved via a permutation invariant aggregate
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over the ligand vector representations. Translational invariance is achieved by centering the coordinate
system over the ligand CoM. See Figure 1b for an overview of the proposed model architecture.

2.4 Data

ReDocked. One of the most established structural datasets is PDBbind (version 2020) [38, 39],
with its corresponding held-out benchmark subset, CASF-2016 [8]. PDBbind contains a curated set
of 19k+ protein-ligand crystal structures with empirically-obtained binding affinities: dissociation
constants, Ki, Kd, or inhibition constant IC50 measurements. BindingMOAD [40] offers a more
extensive list of ligand binders. Although (usually) devoid of affinity labels, BindingMOAD offers
an additional 30k+ structural complexes. For all datasets, we filter and pre-process the structures
to remove any ligands/proteins with missing atoms or residues. We extract the pocket residues (any
residue within 10Å from any ligand atom) from the protein structure and use these to define the
protein graph for training.

Recent works demonstrate the benefit of including re-docked poses to augment the training data
[6, 41]. Thus, we re-dock the crystal ligand in BindingMOAD and PDBbind using Smina [42].
Our docking pipeline generates poses for our pose ensemble both during training and inference.
Pocket-defined docking is used with a bounding box of 5Å around the crystal ligand. We generate
100 poses per ligand, with a minimum root mean square deviation (RMSD) filter threshold of 0.25 Å
from the crystal pose and an exhaustiveness of 8.

Molecular Dynamics. To further improve the generalization of the model and reduce potential
memorization of static protein targets, we include protein-ligand poses generated through MD within
the training set. The flexibility in both the protein and ligand aims to provide the model with a wider
pool and a more representative distribution of the protein-ligand binding mode. We use the Misato
dataset [43] which contains the MD simulations of a subset of 15k relaxed protein-ligand complexes
from the PDBbind 2020 dataset. This constitutes our dynamic data sources used for training.

2.5 Training

We build our framework in Pytorch Geometric. We define our loss function by a weighted average of:
(i) A smoothed cross-entropy loss between the predicted and true RMSD (Eq. 3), where ϕ : R → R
is an inverse softmax envelope over the RMSD offset by 2Å; (ii) A soft hinged mean square error
between the predicted and true affinities (Eq. 4). We train our model using gradient descent with a
batch size of 96 on an A10 GPU, 16 CPU machine until convergence (∼ 20 epochs). We employ
an AdamW optimizer with default parameters and an initial learning rate of 3e− 4 wrapped with a
cosine annealing scheduler. See A.2 for more details.

Lce(ϕ, ϕ̂) = −
(
ϕlog(ϕ̂) + (1− ϕ)log(1− ϕ̂)

)
(3)

Laff (a, â, ϕ) = ||ϕ · (a− â)||22 (4)

3 Results

ProLET is designed to be a versatile, generalizable tool applicable across various stages of drug
discovery. In order to test the limits of our model, we assess its performance across a wide a range
of established benchmarks for protein-ligand binding affinity and pose estimation. Namely, we
evaluate ProLET against existing state-of-the-art (SOTA) methods leveraging both machine learning
and physics-based propositions across three main benchmarks: CASF-2016 [8], PoseBusters [26]
and the Merck FEP benchmark set [7]. We outline the importance of heterogeneous data for robust
generalization and follow up with a case study on selectivity.

3.1 CASF-2016

The CASF-2016 benchmark consists of a subset of 285 held-out, carefully curated protein-ligand
complexes from the PDBbind 2016 refined set. The affinities within this set consist of only high-
quality Ki and Kd affinity values. Given the reportedly large similarity between protein targets in
CASF-2016 and the rest of the PDBbind set [44], we use this benchmark as a preliminary indicator
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of generalizability to unseen ligands. Primarily, we asses our performance by ranking scoring power
with the benchmark’s standard metrics: Pearson’s correlation coefficient (r) and Root Mean Squared
Error (RMSE) between the true and predicted affinity for each complex. We compare ProLET to
prior art and present our results in Table 1.

Table 1: Comparative assessment of ProLET in the CASF-16 benchmark against prior art. For each
model, inference is performed over the crystal (C), docked poses (D), or both. We use RMSE and
Pearson’s r to evaluate each entry.

MODEL YEAR FRAMEWORK TRAINING INFERENCE POSE ESTIMATION r RMSE

SMINA [42] 2013 PHYSICS — C T 0.55 —
MMGB-SA [45] 2015 PHYSICS — C T 0.65 —
GNINA [4] 2021 CNN R C T 0.80 1.37
AESCORE [27] 2021 MLP R C F 0.83 1.22
POINTTRANSFORMER [24] 2022 CNN + ATT R C F 0.85 1.19
ONIONNET-2 [23] 2021 CNN R C F 0.86 1.16
CONBAP [46] 2024 GNN R C T 0.86 1.13
∆-AESCORE [27] 2021 MLP R D & C T 0.80 1.32
HYDRASCREEN [6] 2023 CNN R D & C T 0.86 1.15

2024 R + MD D & C 0.86 1.12
PROLET 2024 SE(3) ATT R + MD C T 0.86 1.12

2024 R + MD D 0.84 1.17

ProLET achieves top performance in both Pearson’s r (0.86) and RMSE (1.12) across the 57 target
clusters within this benchmark, with an average RMSE per cluster of 1.06 and a corresponding
standard deviation of 0.41. In the more practical scenario where we employ docked poses (D) instead
of crystal poses (C), ProLET still performs well, evidencing its suitability for virtual screening, where
the true binding mode of a candidate ligand is unknown. Note that there are no reported values for
inference via docked-only poses in literature, marking this an important result. However, although
this suggests high generalization across protein targets, this result is a necessary yet insufficient
indication to evaluate the practical implications of ProLET in finding potent drug candidates.
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3.2 FEP Benchmark

The FEP benchmark is a collection of prospective FEP calculations [47] from Schrödinger’s FEP+
workflow [48], and Molecular Mechanics Generalized Born Surface Area (MMGB-SA) calculations
over multiple ligands across 8 different protein pharmaceutically relevant targets. As is common in
FEP procedures, for each of the target proteins, the corresponding N ligands share a high degree
of similarity (common scaffold), making this benchmark particularly difficult as the model needs
to distinguish small changes in the ligand structure and its corresponding interactions. We compare
ProLET to FEP+, MMGB-SA and GLIDE (Schrödinger’s off-the-shelf docking tool) [49, 50]. FEP+
is a gold standard method for binding affinity prediction. However it is highly unscalable, requires
significant domain knowledge, and is often prohibitively expensive.

As shown in Table 2, ProLET significantly outperforms industry-standard GLIDE and MMGB-SA
scoring functions overall, with a ρ value increase of 63% and 42% respectively. Noteworthy is
that ProLET is also superior to FEP+ on CDK8, EG5 and TNKS2 (R2), all of which belong to
different protein families. The robustness of our approach in this particularly difficult task suggests
its suitability in accelerated and trustworthy lead optimization, where small changes in molecular
structure often lead to large changes in biological activity.

Table 2: Performance comparison across 8 targets from the Merck FEP benchmark set [7]. The
results are reported in terms of coefficient of determination (R2), Spearman’s correlation (ρ) and
pairwise Root Mean Squared Error (RMSE). Averaged results contain 1σ standard deviations.

TARGET N FEP+ GLIDE MMGB-SA PROLET

R2 ρ RMSE R2 ρ RMSE R2 ρ RMSE R2 ρ RMSE

CDK8 33 0.38 0.74 2.09 0.28 0.55 1.67 0.60 0.82 7.03 0.58 0.85 1.29
C-MET 24 0.81 0.88 1.43 0.34 0.56 2.16 0.36 0.64 5.96 0.32 0.59 1.86
EG5 28 0.50 0.72 1.23 0.01 -0.21 2.02 0.02 0.10 10.09 0.57 0.66 0.68
HIF-2α 42 0.37 0.59 1.60 0.15 0.41 1.56 0.29 0.48 11.69 0.21 0.52 1.03
PFKFB3 40 0.63 0.79 1.78 0.23 0.48 1.41 0.25 0.54 6.99 0.31 0.56 1.94
SHP-2 26 0.50 0.78 1.39 0.54 0.64 1.05 0.36 0.50 8.76 0.44 0.60 1.18
SYK 44 0.25 0.42 1.61 0.01 -0.02 1.49 0.00 -0.12 15.81 0.12 0.37 0.78
TNKS2 27 0.16 0.41 2.20 0.22 0.41 1.29 0.07 0.22 7.9 0.32 0.54 0.90

TOTAL 264 0.44.64
.25 0.65.79

.44 1.681.76
1.59 0.20.41

.07 0.33.54
.05 1.571.65

1.49 0.24.41
.11 0.38.59

.12 9.7210.17
9.24 0.34.49

.19 0.58.71
.45 1.211.65

0.77

3.3 PoseBusters

The PoseBusters benchmark set acts as our temporal-split test set. It consists of 308 protein-ligand
complexes with novel protein sequences from 2021 onwards. The task is to predict generated ligand
pose that resembles the true binding mode of the ligand (RMSD ≤ 2). It is notoriously difficult for
machine learning models to perform well on this benchmark due to it containing: (i) proteins with
novel sequences which have not been trained on; (ii) a high proportion of co-binding structures where
a substrate and the ligand co-exist within the binding pocket. Furthermore, each pose provided by the
pose generation tool is first validated both sterically and energetically, ruling out a large portion of
the suggested poses. Further details can be found in [26]. We compare ProLET to a wide range of
SOTA deep-learning and physics-based approaches in Fig. 2.

In contrast to other DL methods, ProLET marks a significant improvement in pose estimation over
physics-based approaches. Using docked poses generated from standard computational chemistry
software, ProLET achieves a top-1 score of 74%, where the second best DL model (Diffdock) reports
a 14% success rate over valid poses. Noteworthy is that ProLET is agnostic to the technique used to
generate poses (Smina vs Physics), so long as these are chemically valid and are generated in the
binding pocket. Nevertheless, generating poses from different protocols improves the diversity in the
pose ensembles and in turn, ProLET’s ability to identify the right binding mode.

We further explored the transferability of ProLET to AI-generated pose distributions extracted from
Diffdock. Interestingly, although ProLET has not been trained on blind docked structures, we find
that re-scoring via ProLET signifies an increase in top-1 performance of 180% with respect to
Diffdock’s original confidence scoring function. However, for the invalid poses, ProLET performs
slightly worse than Diffdock. In addition to the frequent steric clashes and self-intersections present
in Diffdock-generated poses [26], a large portion of false positives are picked up far away from the
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Figure 2: PoseBusters benchmark across state-of-the-art deep learning (green), physics-based (or-
ange), and combined (blue) baselines. On the bars, "Physics" consists of stacked Vina, Smina and
Gold docked conformations whilst "Smina" consists of Smina poses with added Vina poses where
Smina failed to generate a single pose (13%).

binding pocket. We believe fine-tuning and/or training in blind docking scenarios would help boost
ProLET’s ability to find adequate binding modes across the whole protein structure.

It is noteworthy that our reported scores account for the limitations of Smina and other physics-based
approaches in generating poses, where pose ensembles of up to 100 diverse poses do not include
a single pose below 2Å RMSD (∼ 7% of all complexes). Since a good pose does not exist, the
average Top-1 penalizes ProLET unfairly. However, when excluding complexes in which there were
no accurate and valid poses generated, the performance is thus increased from 74% to 82%.

3.4 Dataset Specificity

To better understand the significance of heterogeneous data in our training, we independently evaluate
10 model ensembles trained on MD data, RD data and both MD + RD data. We study the contributions
of each ensemble towards the FEP, CASF and Posebusters benchmarks. As observed in Fig. 3, adding
MD trajectories to the RD set consistently improves the performance in all 3 benchmarks. From an
incremental perspective, the results clearly indicate that MD trajectories are especially important in
ensuring generalisation in affinity estimation, as indicated by the ∼ 30% improvement in average ρ
across the 8 targets in FEP. This is likely the case due to the regularisation imparted in the structural
changes present across molecular dynamic simulations, reducing the otherwise common overfitting
nature of SBDD models. On the other hand, the lack of discriminative power behind MD-trained
models in Posebusters highlights the importance of decoy poses in training. As shown in section A.1,
the distributions of RMSDs in the MD set are substantially lower than in RD. This naturally leads to a
substantial increment in false positives when evaluated in redocked data due to the distribution shift.
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Figure 3: Comparative performance of ProLET trained using MD, RD or both datasets across the
CASF, FEP and Posebusters benchmarks. Error bars denote a 1σ standard deviation bound computed
from 10 separate model ensembles.

3.5 Selectivity

The ability to find ligands which are potent towards a desired protein target, whilst remaining inactive
towards undesired target(s) is paramount in successful drug discovery. Proteins within and across
different protein families often have a high degree of sequence and structural similarity, making the
design of selective ligands notoriously difficult. This is often a common problem in drug discovery,
particularly in kinases which share an ATP binding site, where off-target effects can lead to not
only adverse side effects, but also determine the drug’s metabolism and pharmacokinetics [51].
To that end, we design two novel case studies and assess ProLET’s ability to prioritize selective
binders for a given desired target over an undesired target. True experimental affinities are extracted
from the Kinome dataset produced by Metz et al. [52]. We remove ligands for which the affinity
measurements are unspecified (i.e. < 5.7). For each case study, we compute the difference between
the experimental binding affinity of a set of ligands towards a desired and undesired target (∆t),
and compare the differences to the predicted difference returned by ProLET (∆p). We calculate the
model’s ability to discern selective compounds by means of Spearman’s ρ between ∆t and ∆p. Given
the heteroscedastic nature of the limited affinity data available for this study, we opt to use ρ as our
main selectivity metric. For all pairwise measurements, we set a minimum difference threshold of
0.69, which is the average log10(Ki) experimental error in binding affinity measurements [53], and
only include ligand pairs which are above this threshold. This allows us to compute accurate metrics
(ranking ligands that have very similar activity is likely to be experimental noise).

LCK/EGFR. The first case study involves kinases LCK and EGFR, both members of the tyrosine
kinase family. We extract two PDB structures, 3KMM and 5XDK, which are the inhibitor-bound
crystal structures of LCK and EGFR respectively. We dock the corresponding set of ligands to the
binding site (keeping all residues 10Å away from the reference co-crystallized ligand) via Smina,
using the same protocol described in section 2.4.

ProLET achieves a ρ value of 0.53 on the LCK/EGFR pair, indicating considerable ranking power
in selective compounds towards LCK. Figure 4 illustrates this positive correlation, where ProLET
successfully discriminates between ligands which are highly selective towards LCK over EGFR
(LCK++) and ligands which are slightly more selective towards EGFR over LCK (EGFR+). When
looking at the top 4 compounds, ProLET identifies 3 strong (∆t ≥ log10(50)) and 1 moderately
selective (0 ≥ ∆t < log10(50)) candidate. Furthermore, out of the 10 highest rank candidates, only 1
compound is not selective towards LCK (∆t < 0), whilst 5 are highly selective and 4 are moderately
selective.
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Figure 4: Overlay of ∆t and ∆p for active LCK/EGFR ligand pairs (left) and their corresponding
affinities (right). Green, gray and red points correspond to highly selective, moderately selective and
moderately unselective compounds for LCK.

CSF1R/PDGFRA. CSF1R and PDGFRA are two receptor kinases involved in cell growth and
differentiation. We extract PDB structures 6T2W and 6JOL in a similar procedure as with the
first case study. With this pair of proteins, ProLET achieves a similar ρ of 0.50. Given the highly
correlated pairwise affinity between these two targets (narrow ∆t), it is notably more difficult to find
prominently selective ligands. As shown in Figure 6 in A.3, whilst the model is able to accurately
rank selective ligands, it is less accurate than in the previous case study due to the lack of spread in
the data.

4 Conclusion

In this study we introduce ProLET, a novel chemically inspired SE(3) Transformer for protein-ligand
modelling. We propose alternatives to circumvent topological bottlenecks in conventional atomistic
geometric deep learning and demonstrate our method’s generalized ability to accurately predict
protein-ligand binding affinities and identify promising binding modes.

We show that ProLET consistently outperforms existing physics-based and machine learning proposi-
tions across a range of established benchmarks. Particularly, our results signify a substantial boost in
credibility for deep learning methods by surpassing prior art in the PoseBusters set, the otherwise
"achiles heel" of ML-driven structure-based models. Moreover, in addition to leading the CASF-16
benchmark and demonstrating comparable performance without bound structures, we demonstrate
impressive results in Merck’s FEP collection, closely matching and occasionally improving upon
FEP+, the industry leading method for lead optimization. Finally, we highlight the importance
of combining docked poses and molecular dynamic trajectories in the training data and verify the
suitability of ProLET in the complex and understudied task of target selectivity. Overall, these
indications evidence ProLET’s suitability in accelerating the otherwise costly and lengthy search of
potent and diverse drug candidates.

Allowing faster development of new medications and a "fail fast" approach, ProLET could be
employed to address unmet medical needs and improve public health outcomes. By reducing the
reliance on extensive early experimental procedures which are often inconsistent, ProLET can not
only lower the costs associated with drug development, but also reduce the environmental impact from
running large scale experiments in a laboratory, making medications more affordable and accessible
to a broader population either by allowing the development of cheaper drugs, or through re-purposing
of current drugs. Furthermore, enhanced selectivity in compound prioritization can lead to more
effective and tailored treatments, improving patient outcomes and reducing adverse effects.
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A Appendix

A.1 RMSD Distributions

The Root Mean Square Deviation (RMSD) stands as a measure of spatial distance between two
identical molecular conformations. In our work we use a symmetry corrected RMSD calculation via
the RDKit python package. We compare the distributions of RMSDs for the MISATO dataset (MD
trajectories) and the Redocked dataset (re-docked generated poses in the pocket). Note that for MD
trajectories, an aligned version of the crystal ligand is used to calculat the RMSD, accounting for
dynamic changes in the pocket.

Figure 5: RMSD distributions for molecular dynamics (MD) trajectories vs. re-docked (RD) poses.

A.2 ProLET Architecture

We create an SE(3) transformer by stacking 6 layers of multi-head attention (4 attention heads). Each
attention head contains a separable embedding composed of 3 irrep vectors of order different sizes
64x0e + 32x1o + 16x2e, using the notation in [37].

In the first layer, node features consist of a concatenation of:

• L-0 with size |nelem|

• L-1 with size |nspecies|

where nspecies is a 2-dimensional one-hot vector defining the origin of the atom (ligand or protein) and
nelem is a a one-hot embedding of the element type, where elem ∈ [H,C,N,O, P, S, F, Cl, Br, I].
Note that separate embedding functions are used for each of these features.

Conversely, edges are initially featurized with scalar-only features:

• L-0 with size |vbond|

• L-0 with size |vspecies|

where vbond is a 5-dimensional one-hot vector defining the bond type bond ∈ [single, double, triple,
aromatic, other], and vspecies is a 4-dimensional one-hot vector defining the species of the edge
species ∈ [ligand bond, protein bond, interaction, a− C hull].

Spherical harmonics contributions (L-0: 1, L-1: 2, L-2: 1) calculated from separable radial (learnable)
and angular (pre-computed) contributions are generated from the distance vector rij from nodes i
and j and concatenated to the embedded edge features. With these, edge degree embeddings are
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computed and concatenated to the 0-th degree node features, propagating the separable L-1 and L-2
irrep contributions. Via the separable tensor products, equivariant representations from the spherical
harmonic features are propagated alongside the 0-th degree embeddings in the first layer.

In the last layer, learnable fully-connected separable tensor product (FCTsP) transform the aggregate
SE(3) equivariant embedding into a 0-th degree SE(3) invariant irreps of dimension 256. These scalar
logits are used as inputs to the loss functions during training using the following labels extracted
from the training data.

• Pose (after a Sigmoid function)
• Affinity
• Energy (docking energy)
• RMSD

Note that both energy (Kcal/mol) and RMSD are only used as auxiliarly loss functions to help
regularise the model during trianing.

A.3 Selectivity

As shown in Figure 6, the narrow and highly correlated distribution of pairwise affinities for the
labelled ligands in the kinome dataset [52] makes it rather difficult to find selective compounds which
are both potent towards CSF1R and not potent towards PDGFRA. However, ProLET still manages to
rank these successfully: out of the 8 highest rank compounds, only 1 is moderately unselective whilst
2 are highly selective and 7 are moderately selective.

Figure 6: Overlay of ∆t and ∆p for active CSF1R/PDGFRA ligand pairs (left) and their corresponding
affinities (right). Green, gray and red points correspond to highly selective, moderately selective and
moderately unselective compounds for CSF1R.
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