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ABSTRACT:  Liquid chromatography (LC) is a cornerstone of analytical separations, but comparing the retention times (RTs) for different 

LC methods is difficult because of variations in experimental parameters such as column type and solvent gradient. Nevertheless, RTs are 

powerful metrics in tandem mass spectrometry (MS2) that can reduce false positive rates for metabolite annotation, differentiate isobaric 

species, and improve peptide identification. Here, we present Graphormer-RT, a novel graph transformer that performs the first “method-

independent” prediction of RTs. We use the RepoRT dataset, containing 142,688 reverse phase (RP) RTs (191 methods) and 4,373 HILIC 

RTs (49 methods).  Our best RP model achieved a test set mean average error (MAE) of 29.3±0.6 s, a significant improvement over the 

previous record (1 method). Our best performing HILIC model achieved a test MAE=42.4±2.9 s. Extending this proof-of-concept work 

could enable machine-optimization of automated LC workflows and in silico annotation of unknown analytes in LC-MS2 measurements.  

Introduction 

   Liquid chromatography (LC) has long been a cornerstone 

of analytical separations, providing a reliable means to iso-

late metabolites, peptides, pharmaceuticals, and xenobiot-

ics.1–4 The retention time (RT) is the defining parameter of 

this technique, describing the amount of time required for a 

particular analyte to be carried by a solvent mixture (i.e., a 

mobile phase) through a column packed with a stationary 

phase.4 LC is commonly coupled to mass spectrometry (MS) 

to separate and characterize molecules in complex mixtures 

such as those analyzed in “-omics” studies (i.e., proteomics, 

metabolomics, lipidomics, etc.).4 In targeted MS experi-

ments, predicted RTs have been used to differentiate isobaric 

lipids,5 reduce false-positive annotation rate of small mole-

cule MS2 fragmentation spectra,6 and increase the accuracy 

of peptide identification schema.7,8 In general, LC-MS anno-

tation using machine learning has been shown to meaning-

fully increases the confidence of small molecule,9,10 metab-

olite,10 peptide,11,12 and cell/organelle interactome identi-

ties.13  

    Quantitative structure-property relationships (QSPRs) 

have been used for decades to derive relationships with and 

predict analyte RTs. However, despite the  many machine 

learning (ML) models that have been reported to date, there 

exists no generalizable framework for the method-independ-

ent prediction of RT.14–16 Comparison of chromatographic 

methods between systems is difficult because of variances in 

measured RTs due to differences in parameters such as col-

umn properties, mobile phase composition, gradient profile, 

flow rate, pH, temperatures, and matrix effects to name a 

few. Current, successful, deep learning frameworks utilize 

an internally consistent set of predictions for a singular chro-

matographic setup.3,17 When the method is held constant, 

this multi-dimensional description of column and gradient is 

learned implicitly by the model because these parameters are 

invariant to all RTs.3,17 This paradigm is embodied by the 

METLIN SMRT dataset,3 a library of more than 80,000 

small molecule RTs obtained using a single LC method. Em-

ploying this database, RTs have been predicted to within less 

than a minute using artificial neural networks (ANNs),8 en-

semble regressors,8,18  Graph Neural Networks (GNNs),3,17–

22 and Convolutional Neural Networks (CNNs).23,24 Predic-

tion of RTs should be thought of as two complementary 

tasks: (i) learning the relationship between molecular struc-

ture and degree of interaction with the mobile and stationary 

phases and (ii) scaling those interactions to a given set of 

chromatographic conditions. Because the knowledge gained 

from (i) is consistent across chromatographic setups, transfer 

learning has been used to pass this information to setups 

where (ii) is learned upon finetuning.23,25 This approach has 

been successfully applied for RTs in smaller datasets where 

the chromatographic conditions are internally consistent and 

the “method rescaling” is learned implicitly.23,25 However, 

in these cases, the prediction error can be as much as double 

the first dataset (ca. 1-2 minutes) and questions about gener-

alizability remain unanswered.15,17  

    Although progress in RT prediction is encouraging, there 

yet exists no method-independent RT prediction tool. To 

create an accurate method-independent model, one needs a 

sufficiently large RT prediction dataset that contains the nec-

essary standardized method data (e.g., intrinsic column data, 

gradient, etc.) and a model that can combine tasks (i) and (ii) 

in context of each other to produce sufficiently descriptive 

embeddings. In 2024, the RepoRT dataset was published,16 

providing the necessary chromatographic library and 

metadata needed to describe the total set of column condi-

tions.  

     In this work we investigate the implementation of 

Graphormer to create the first method-independent predic-

tive model of RTs for reverse phase (RP) and hydrophobic 

interaction liquid chromatography (HILIC).26 Graphormer 

was developed by Ying et al. while working at Microsoft in 
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2021, and it extends the transformer architecture to graph 

neural networks.27 This architecture won the 2021 Open Cat-

alyst challenge by utilizing a global receptive field and atten-

tion mechanisms that allow for highly contextual descrip-

tions. 26,28,29 Graphormer has previously achieved state-of-

the-art predictions across a wide variety of (bio)cheminfor-

matics tasks.28,30,31 We utilize empirical descriptions of chro-

matographic metadata from RepoRT that are passed to a 

flexible “pre-graph” chromatography encoder that derives a 

dense, learned representation of method data. This infor-

mation is stored in a global graph node that allows method 

information to be considered in context of the molecular 

structure. We explore the strengths of Graphormer-RT in 

predictions for different methods (i.e., different columns, 

gradients, manufacturers, etc.), and further assess model 

generalizability by excluding methods from the training li-

brary and testing model performance against the held-out 

methods. We also show that these formalisms can be ex-

tended to HILIC RTs. To the best of our knowledge, this 

work achieves the first method-independent RT predictions, 

as well as the first prediction of HILIC RTs for small mole-

cules.  

Results and Discussion 

Model Performance  

RP Methods. Models were trained using five-fold cross val-

idation (c = 5) to optimize model configuration. Figure 1 

shows a summary of the chromatographic metadata used in 

encoding, where encoding formalisms are discussed in more 

detail in the Methods section. The best performing Graphor-

mer-RT model (see Figure 2) achieved a test mean average 

error (MAE) of 29.3 ± 0.6 s (c = 5). Although highly imper-

fect due to differences in number of retention times, meth-

ods, etc., we compare our results to models trained on only 

 

Figure 1. A summary of chromatographic method 0153 

from RepoRT.32 The column length (l), the column inner di-

ameter (ID), the particle size (PS), the dead time (t0), and the 

flow rate (fl) are characteristic method parameters. RTs and 

inflection points are plotted atop the gradient in red and 

green, respectively. 

the METLIN SMRT dataset as a coarse benchmark for our 

“method-independent” results. Table 1 provides a compari-

son between several published models trained on the 

METLIN SMRT dataset with their associated cross-vali-

dated MAEs. If we compare our results to the best perform-

ing model (i.e., the MPNN work by Osipenko et al.), which 

reported a MAE = 32.1 ± 0.6 s (c=5),17 Graphormer-RT 

achieves predictions that are 9.5% or 4.7σ improved, well 

beyond the 99.9% confidence interval threshold. This sub-

stantial improvement is achieved while also making simi-

larly accurate predictions for 190 other LC methods that are 

not considered by previous works. If we examine our 

model’s test performance on only the SMRT dataset, we 

achieve test set error of MAE = 37.7 s (n = 7,814), which 

suggests that the improved generalization of Graphormer-

RT comes at the expense of prediction accuracy for the 

SMRT library.  

Table 1. Comparison of Graphormer-RT performance ver-

sus other LC prediction models with associated number of 

RTs (NRT) and number of methods (Nmethods). The variable, 

c, denotes the number of cross validation folds used in eval-

uation. Method mean absolute errors (MAEs) are provided 

but should not be compared directly due to differences in da-

taset composition.  

Model/Dataset Description 

(HPLC Type) 

NRT  

(NMethods) 
Test MAE (s)  

Graphormer-RT (RP)  
 142,688 

(191) 
29.3 ± 0.6 (c = 5) 

MPNN-METLIN (RP)17 77,977 (1) 32.1 ± 0.6 (c = 5) 

GCN-METLIN (RP)3 80,038 (1) 57 (c = 1) 

1D-CNN-METLIN (RP)23 77,983 (1) 34.7 ± 1.2 (c =10) 

Graphormer-RT (HILIC) 4,373 (49) 42.4 ± 2.9 (c = 5) 

   Figure 3 depicts ML correlation diagrams for RP RT pre-

diction. The correlation plot for the best performing 

Graphormer-RT split is shown in panel i, and panels ii-vi 

provide color coding to indicate column manufacturer, col-

umn length, t0, mobile phase B, and flow rate, respectively. 

Figure 3ii shows that in our RP dataset, the most common 

manufactures are Waters and Agilent, where prediction ac-

curacy on Agilent systems (MAE = 37.7 s, n = 4,313) is 

much poorer than on Waters systems (MAE = 19.8 s, 

n = 7,821). Whether these differences are related to the 

hardware, methods, or the chemicals systems, is unknown. 

Figure 3v shows that Graphormer-RT is slightly better at 

predicting methods using a methanol (MeOH) organic phase 

(MAE = 28.9 s) rather than acetonitrile (ACN) 

(MAE = 26.6 s). Figure 3iv shows how methods with 

smaller t0 typically have shorter RTs and are better predicted 

(t0 < 1.0 min, n = 5,789, MAE = 16.6 s) than those with 

large t0 (t0 ≥ 1.0 min, n = 8,478, MAE = 36.8 s). Figure 3vi 

shows a similar but inverted effect, where low-flow rate (fl) 

systems, which typically have longer retention times, exhibit 

poorer prediction accuracy (fl < 0.4 mL/min, n = 9,604, 

MAE = 36.0 s) compared to high flow rate systems 

(fl ≥ 0.4 mL/min, n = 4,663, MAE = 13.3 s).  

 

https://doi.org/10.26434/chemrxiv-2024-gh05j-v2 ORCID: https://orcid.org/0000-0001-7365-1558 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-gh05j-v2
https://orcid.org/0000-0001-7365-1558
https://creativecommons.org/licenses/by/4.0/


2 

 

Figure 2. Schematic illustration of the Graphormer-RT architecture where the SMILES string for a molecule (xanthine, here) 

is mapped into a graph by the Atomic Feature Encoder (3) for node/atom embeddings and our combinatoric encoding scheme 

for edge encodings. Simultaneously, chromatographic metadata is passed into float (1) and integer (2) chromatography encod-

ers, which generate learned, dense, representations that are added together and stored in the global chromatography node (G). 

Molecular graphs are then passed to Graphormer (5), whose centrality, spatial, and node encodings are illustrated alongside 

the model architecture. 26 The learned molecular representation generated by Graphormer is aggregated into the mCLS token 

and decoded via the output MLP (6), producing the final RT prediction.

   These trends in flow rate and dead volume prediction error 

are likely influenced by the heteroscedasticity of MAE for 

retention time predictions. In other words, a 30 s absolute 

error is much more meaningful for a measured RT of 5 

minutes compared to one at 25 minutes. Figure S1i plots 

MAE as a function of RT to better visualize this behaviour. 

In comparison, Figure S1ii plots the mean absolute percent 

error (MAPE) as a function of RT. Numerically, we observe 

that the MAE is a smaller fraction (5.1 %, see Figure S1) of 

the average test RT value (𝑅𝑇𝜇 = 565.0 s), compared to the 

calculated test MAPE (7.0 %), suggesting that MAE 

underestimates the relative contribution of smaller RTs. It is 

clear that MAPE is a more consistent homoscedastic error 

metric, which we believe provides a more appropriate 

measure to describe the per-RT prediction error 

independently of the gradient duration. However, we will 

report MAE here as well since this is the error metric 

commonly used in the literature.3,17 Finally, to investigate 

consistency among RP data sets, we plotted the MAE for 

each individual RP method against the logarithm of the 

number of instances for that method in the test set (see 

Figure S2). Doing so revealed that the number of RTs for a 

given method that appear in the test set (and by extension, 

the entire dataset) does not bias the average performance of 

the model.  

External Method Validation. To further investigate the 

generalization of Graphormer-RT, we predicted RTs for LC 

methods had not been used to train the model. This approach 

provides information regarding the extent to which the 

model is “memorizing” the LC method scaling factors from 

the training set (task ii; vide supra). The results for “held-

out” external LC methods are reported in Table 2. Addi-

tional details are available in Supplementary Figures S3, S5-

S9. For methods 0127 and 0275,33,34 Graphormer-RT gener-

alizes well, achieving MAEs of 43.9 ± 3.3 s and 42.7 ± 6.2 s 

(c = 5), respectively. While slightly worse than the accuracy 

of the global test set that was randomly split from the train-

ing set LC methods, the sub-minute accuracies inspire  

  

Figure 3. Test set analysis for the best-performing Graphor-

mer-RT models for RP predictions showing performance (i) 

as a function of chromatographic conditions including man-

ufacturer (ii), column length (iii), t0 (iv), organic phase com-

position (v), and flow rate (vi) 
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confidence that Graphormer-RT is generalizing from chro-

matographic first principles. In contrast, Graphormer-RT 

fails to generalize (MAE = 596.8 ± 12.7 s) for method 

0029.35 This poor performance likely arises owing to the 

complexity of the gradient profile for method 0029 (see Fig-

ure S3), and it suggests that our formalism for gradient pro-

files may need to be improved for specific cases. 

Table 2. Summary of model performance on held-out exter-

nal validation sets. The number of cross validation folds (c) 

and the number of RTs per method (n) are given. 

Reversed 

Phase Method 

0029 35  

(n = 47) 

0127 34  

 (n = 93) 

0275 33  

(n = 75) 

External Test 

MAE (s)   
596.8 ± 12.7 43.9 ± 3.3 42.7 ± 6.2 

Column Type RP RP RP 

Mobile phase B ACN MeOH MeOH 

# Inflection 

Points 
3 2 2 

Manufacturer Waters Merck Phenomenex 

HILIC Method 
0103 34 

(n = 70) 
0283 33  

 (n = 74) 
0375 16 

(n = 59) 

External Test 

MAE (s)   
83.7 ± 7.3 66.6 ± 7.0 25.5 ± 2.5 

Column Type HILIC HILIC HILIC 

Mobile phase 

A 
ACN MeOH ACN 

# Inflection 

Points 
2 2 2 

Manufacturer HILICON Phenomenex Thermo. 

   To further explore the value of method-specific training, 

we proportionally reincorporated the held-out external meth-

ods back into the training-validation-test splits. Although an 

imperfect comparison to the “true” external evaluation due 

to differences in test set size (n = 215 vs. n = 22), this exper-

iment provided a coarse estimation of the improvement of-

fered by training on specific methods.  For LC method 0029, 

introducing examples to the training set markedly improved 

test performance (by nearly an order of magnitude; MAEin-

corporated = 65.6 ± 21.1 s versus MAEheld-out = 596.8 ± 12.7 s). 

Although the results for method 0029 are still worse than the 

average method performance, this outcome indicates that 

Graphormer-RT has learned the scaling factors for method 

0029 reasonably well. From the experimental perspective, 

researchers that are employing complex or uncommon LC 

methods could consider “calibrating” Graphormer-RT by in-

corporating measured RTs from a calibration set into the 

training library. 

HILIC Results. Our best performing HILIC model 

achieved MAE = 42.4 ± 2.9 s (c = 5, see Table 1). This 

model, which was first finetuned on the RP dataset, was 

trained using a library of 4,373 RTs associated with 49 

HILIC methods. Interestingly, the improvement obtained 

from transfer learning was relatively small; uninitialized 

models achieve MAE = 44.5 ± 1.3 s. This result suggests 

that the RP and HILIC prediction tasks may be sufficiently 

dissimilar that transfer learning is not useful or that the 

HILIC training set size is sufficiently large and diverse to 

enable generalization. Figure S4 provides correlation dia-

grams for HILIC predictions, like those discussed earlier for 

RP methods (i.e., Figures 3). In contrast to the model predic-

tions for RP methods, MAEs for HILIC method predictions 

are not heteroscedastic. Whether this is a result of effective 

generalization for HILIC methods by Graphormer-RT or due 

to the implicit properties of the dataset is not known; a larger 

HILIC RT library is needed to investigate this further. That 

said, Graphormer-RT’s performance on held-out external 

HILIC test sets does inspire some confidence in model gen-

eralization. As shown in Table 2, Graphormer-RT achieves 

MAEs of 83.7 ± 7.3 s, 66.6 ± 7.0 s, and 25.5 ± 2.5 s for Re-

poRT HILIC methods 0103,34 0283,33 and 0375,16 respec-

tively. Regarding method 0375, Graphormer-RT predictions 

are more accurate by almost 20 s than the average global per-

formance for methods that were included in the training set 

(MAE = 25.5 ± 2.5 s, see Table 2). A possible explanation 

for this relatively good performance could be that data for a 

very similar HILIC method is present in the training set. 

Given a sufficiently diverse set of HILIC methods, we ex-

pect that Graphormer-RT is expressive enough to predict 

RTs for novel methods. To the best of our knowledge, this 

is the first model that can accurately predict RTs for small 

molecule HILIC methods, as well as the first framework to 

generalize HILIC predictions across multiple methods. 

Feature Engineering. Previous work has shown that re-

moving descriptors can have a positive impact on model per-

formance for learned node embeddings.28,36 In some cases, 

certain descriptors may prove redundant or counterproduc-

tive to learning.28,36,37 For all features used in this study, we 

perform ablations to identify such behavior. Tables S1-3 

show all the encodings considered in this study and the final 

“pruned” set of descriptors that maximize model perfor-

mance. For descriptors whose removal improved model per-

formance, we propose possible explanations for why they 

are detrimental to model learning (see Supplementary Tables 

S1-3). For example, ablating the pH of the organic phase im-

proved model performance. This may be because changes in 

organic phase pH may not have sufficient time to induce 

changes in chromatographic interactions; most compounds 

will have eluted before the organic phase becomes dominant 

(>50%, see Figure 1). For HILIC models, we found that in-

cluding the concentration of the additives that are present in 

the mobile phase instead of simply signifying their presence 

with one hot encoding had a large, positive effect on perfor-

mance – but this same behavior was not observed for RP 

predictions. This improvement is likely because the relative 

concentration of additives (e.g., acidic or basic buffers) will 

influence the extent of hydrogen bonding occurring between 

analytes and the HILIC chromatography stationary phases.38 

For node (i.e., atom) features, we found that removal of 

atomic mass and formal charge improved model 
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performance. Atomic mass is likely redundant for RT pre-

diction, since this information can be inferred from atomic 

number and the associated scaling factor is likely less im-

portant in this context than it might be in others (e.g., IR fre-

quency predictions).28 Furthermore, the inclusion of partial 

charge, which encodes effects that are not well-described by 

the formal charge (e.g., resonance effects), likely makes the 

formal charge descriptor redundant.  

Ablation Studies. To test and justify architectural design, 

we performed ablation studies on the best performing RP 

prediction model using a single test split. This approach, 

which mitigates the runtime limitations associated with per-

forming many ablation experiments, aligns with the proto-

cols employed in previous works.26,28 Even using a single 

test split, ablation studies provide insights regarding the im-

portant of specific features on the model performance.   

   Our best performing model (see Table 3, Ablation 1) em-

ployed a global chromatography node with learned embed-

dings that were generated from gradient features and column 

features. These features were passed into two separate 

int/float encoders, achieving a MAE = 28.6 s. The addition 

of the calculated Tanaka/HSMB parameters decreased 

model accuracy slightly to MAE = 29.3 s (see Table 3, Ab-

lation 2),39,40 suggesting that these parameters are made re-

dundant by Graphormer-RT’s derived understanding of 

chromatographic separation. The inclusion of a singular 

chromatography encoder instead of two divided by domain 

(integer and float) also slightly decreased model accuracy, 

yielding MAE = 29.9 s (see Table 3, Ablation 3).  It may be 

that mixing of encoding types obfuscates learning. We also 

tested ablations that removed gradient features (e.g., %Bstart, 

inflection points, solvent/pH/additives of both mobile 

phases) and column features (e.g., diameter, particle size, 

length, t0, temperature, manufacturer, and United States 

Pharmacopeial (USP) code). Removal of gradient features 

(see Table 3, Ablation 5) resulted in a more substantial re-

duction in accuracy, MAE = 33.4 s, than did removal of col-

umn features (MAE = 32.0 s; see Table 3, Ablation 4). 

These results suggest that gradient information may be 

slightly more important than column information, but both 

sets of features are needed for optimal model performance. 

We also tested the removal of all empirical descriptions of 

the chromatography, instead labeling each method as a dis-

crete class. These encodings were passed through the chro-

matography encoder and achieved a MAE = 50.9 s (see Ta-

ble 3, Ablation 6). This large decrease in accuracy compared 

to that of the best model demonstrates the value of including 

descriptive empirical method descriptions. If two methods 

have similar gradients with different mobile phases, models 

can use the similarity in those empirical descriptions to learn 

by analogy and more effectively generalize from chromato-

graphic first principles. Finally, we investigated an ablation 

whereby we removed all method information (see Table 3, 

Ablation 7). Even without chromatography descriptors, 

Graphormer-RT yielded a MAE = 76.8 s. Removal of the 

chromatographic descriptors is tantamount to limiting learn-

ing to only task (i) (i.e., relative molecular interactions), and 

the fact that even coarse predictions are possible demon-

strates the ability of Graphormer-RT to learn interactions 

from molecular graph structure. 

Table 3. Ablation study (c = 1) results for the best perform-

ing test split of the Graphormer-RT RP model. All training-

validation-test splits are uniform across ablations. A 

checkmark indicates that the feature is present in the trained 

model.  

# 
Chrom. 

Node 

Grad. 

Feat. 

Col. 

Feat. 

Int/Float 

Encoders 

Tanaka

/HSMB 

Test 

MAE (s) 

1. ✓ ✓ ✓ ✓  28.6 

2. ✓ ✓ ✓ ✓ ✓ 29.3 

3. ✓ ✓ ✓   29.9 

4. ✓ ✓  ✓  33.4 

5. ✓  ✓ ✓  32.0 

6. ✓     50.9 

7.      76.8 

Conclusions. 

   This study demonstrates the application of graph trans-

formers in predictive method-independent models of RP and 

HILIC chromatography. After filtering the RepoRT dataset 

to improve method standardization,16 we develop formal-

isms to describe the gradient and column metadata for ma-

chine learned graph embeddings. Along with the chromato-

graphic method information, we employed SMILES strings 

as input. The final RP dataset contained 142,688 RTs asso-

ciated with 191 distinct methods and the final HILIC dataset 

contained 4,373 RTs associated with 49 methods. A key ad-

dition was a set of “pre-graph” encoding neural networks de-

signed to create a learned representation of gradient and col-

umn information. This information was fed into a flexible 

global node that was connected to all other nodes (viz. at-

oms) in the graph via a special edge type. This feature en-

sures that Graphormer-RT considers the column and gradi-

ent information in the context of molecular structure. Our 

best performing RP prediction method achieved a 

MAE = 29.3 ± 0.6 s, a meaningful improvement over previ-

ous state-of-the-art models, which employ only a single 

chromatographic method for training (compared to 191 

here).17 Our best performing HILIC model achieved 

MAE = 42.4 ± 2.9 s. To the best of our knowledge, Graphor-

mer-RT is the first “method-independent” prediction of RP 

and HILIC RTs. 

     Using the rich RepoRT chromatographic metadata, we 

explored the relative performance of Graphormer-RT as a 

function of chromatographic parameters. For RP methods, 

Graphormer-RT performs best for methods that employ 

MeOH as the organic phase rather than ACN, low flow rates, 

low t0, and Waters columns. HILIC methods showed no 

obvious bias in model performance with respect to 
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chromatographic conditions, possibly due to the relatively 

small dataset size. Ablation studies showed that the best 

performing Graphormer-RT architecture consisted of a split 

(by datatype) “chromatographic” encoder. We also found 

that gradient features were more important for producing ac-

curate model predictions than column features, though both 

are required for optimal model performance. Finally, alt-

hough removing empirical chromatographic method data di-

minished model performance, Graphormer-RT still per-

formed reasonably well, possibly due to its robust under-

standing of how molecular structure affects interaction 

strength.  

     To explore model generalizability, we held-out six meth-

ods (i.e., 3 RP, 3 HILIC) from our training dataset.  For four 

of these six methods, we find that Graphormer-RT general-

izes reasonably well, yielding MAEs of less than one minute. 

However, Graphormer-RT completely failed to generalize 

for a complex gradient method (MAE = 596.8 ± 12.7 s), 

suggesting that a more complex encoding scheme may be 

needed in such instances. Encouragingly, though, including 

80% of the RTs for this method in the training set led to a 

substantial improvement in model accuracy 

(MAE = 65.6 ± 21.0 s). This result suggests that researchers 

may be able to “calibrate” Graphormer-RT for more com-

plex or uncommon chromatographic methods if examples 

are incorporated into training libraries.  

    To utilize the predicted RT predictions outside of a single 

laboratory/method framework for applications such as auto-

mated LC-MS(2) metabolite annotation, a “method-inde-

pendent” model for RT prediction is needed. We achieved 

this goal using a novel graph transformer with contextual en-

codings for chromatographic metadata that generalizes well 

across diverse methods, including those that the model has 

not seen in training. We also demonstrate how this frame-

work can be extended to small molecule HILIC chromatog-

raphy. Although this study presents a large step forward in 

the generalizable predictions of RTs, more work can be per-

formed to further generalize and optimize model perfor-

mance. While we have demonstrated that Graphormer-RT 

can generalize to a variety of chromatographic conditions, 

training data for RTs measured in other conditions (e.g., mo-

bile phase of isopropanol, acetone) are needed for the model 

to meet the experimental chromatographic landscape. There 

are specific methods for which Graphormer-RT fails to gen-

eralize (e.g., complex gradients). Addressing these will re-

quire expanding the diversity of training data or expanding 

encoding formalisms. Experimental LC-MS(2) has proven to 

be extremely powerful as a tool for separating, identifying, 

and annotating “dark” metabolites and other novel samples. 

With our contribution to “method-independent” predictions 

of RTs, we take a meaningful step towards the automated in 

silico annotation of unknown structures.  

ASSOCIATED CONTENT 

DATA AND SOFTWARE AVAILABILTY 

Data is freely available in the RepoRT Github.16 We also in-

clude a list of the methods used in our dataset after filtering. 
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Graphormer-RT code at https://github.com/HopkinsLabora-

tory/Graphormer-RT   
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Methods 

Dataset. In this study, we utilize the RepoRT dataset,16 an 

evolving “machine learning ready” repository for retrieving 

RTs with chromatographic metadata. At the time of access, 

RepoRT contained 392 different methods, 172,416 total re-

tention times for 94,788 unique molecules represented by 

SMILES strings. 16 RepoRT is a superset of a variety of com-

monly used retention time datasets including the METLIN 

SMRT,3 Retip,41 and PredRet datasets,5 and it contains RTs 

measured on reversed phase (RP), HILIC, and amide col-

umns. For each method included in the dataset, there is a rich 

description of the column metadata that includes time-vari-

ant gradient profiles, mobile phase additives, intrinsic col-

umn parameters, calculated Tanaka and HSMB column pa-

rameters,16 among other descriptors of chromatographic 

conditions. While RepoRT dataset does perform preliminary 

filtering of retention times (error thresholds and void vol-

umes), we employed additional filtering steps to maximize 

the learnability of the dataset and the representation of chro-

matographic parameters. 

Reversed Phase (RP) Methods. Mobile phases in RepoRT 

include water (H2O), MeOH, ACN, isopropanol (iPrOH), 

and acetone (ACE).16 Since the methods using ACE and IPA 

only describe 293 and 378 unique retention times, 
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respectively, we exclude them from our dataset. We also ex-

clude all gradients containing more than two distinct mobile 

phases. We ensure that all mobile phases are described such 

that the solvent A is the aqueous component, and solvent B 

is the organic. All gradients with a non-constant flow rate 

are also excluded from our training dataset. All gradients 

with t0 greater than 3 minutes were excluded from our da-

taset because of the high variability associated with the 

measured RTs. As has been performed in other studies using 

the METLIN SMRT dataset,17,42 we exclude all molecules 

not retained on the column because of the large error associ-

ated with the dataset bimodality. Our final, pruned, RepoRT 

dataset consisted of 191 unique methods, totaling 142,668 

retention times, and 89,643 unique SMILES strings. Sum-

mary statistics for the chemical and chromatographic 

makeup of this dataset are available in Figures S10-26. 

Gradient Descriptions. The composition and gradient of a 

mobile phase in an LC method is highly relevant to the pre-

diction of an arbitrary molecule’s retention time. Our previ-

ous work has shown that for deep learning, it is important to 

balance providing models a sufficiently rich initial human-

engineered description of the parameter space and not over-

describing the problem based on human intuition in a way 

that gives the model an inflexible and overly specific initial-

ization.28 This is particularly true for mobile phase gradients 

which are described by complex, parameterized, piecewise 

time function that might contain extemporaneous infor-

mation.  

   We attempt to distill the RepoRT descriptions of gradient 

profiles into the simplest description that contains all useful 

gradient information. Since all filtered methods contain only 

two solvents at a constant flow rate, we can express the gra-

dient as % solvent B as a function of time (see Figure 1). To 

extract the changes in solvent composition and polarity as a 

function of time, we identify all inflection points in the curve 

between the minimum and maximum %B regions, and in-

clude these coordinates (time(min), %B) as input parameters 

(see Figure 1). We also include the starting solvent compo-

sition (%B) as an input parameter. We limit our dataset to 

only include gradients with at most three of these inflection 

points, which represents most of the RepoRT dataset. No 

gradient information is included after the system reaches 

%Bmax, since this is typically the column re-equilibration 

phase, where functionally all compounds have already 

eluted.  As shown in Figure S27, certain gradients reach a 

%B near 100% and then immediately (typically after ~0.1 

minutes) jump to %B = 100. We found that the inclusion of 

two inflection points in these instances diminished model ac-

curacy, so we remove the first of the two points. We also 

include one-hot encodings describing the presence or ab-

sence of mobile phase additives such as formic acid, triethyl-

amine (TEA), mandelic acid, or ammonium acetate (among 

others) in both mobile phases. We provide the pH of both 

mobile phases as a float encoding. For all float features, we 

attempted to normalize values to the dataset distribution but 

found that it had either a null or detrimental effect to perfor-

mance. A complete summary of all mobile phase and gradi-

ent descriptors, data types, and domains are present in the 

supplementary information Tables S1 and S2.  

Intrinsic Column Descriptors. It is well known that col-

umn dimensions, manufacturer, and type influence the reten-

tion times of all compounds that transit that column. In the 

RepoRT dataset, these parameters were collected and stand-

ardized from publications and manufacturer libraries, mean-

ing that this data could be used as descriptors for model 

learning. For the columns themselves, we include descrip-

tions of several important column parameters including the 

column dimensions (e.g., length inner diameter, particle 

size) in standardized units, the dead/void volume in minutes, 

and the temperature in degrees Kelvin. We provide one hot 

description of the column manufacturer (e.g., Thermofisher, 

Phenomenex), and USP code.16 If a column parameter was 

not provided in the original study, we encode that value as a 

zero.  

HILIC Methods. Identical encoding schemes and filtering 

methods were utilized for HILIC methods as were for the RP 

methods, ensuring that methods had a maximum of three in-

flection points, binary solvent composition, and constant 

flow rate. The primary difference between HILIC methods 

and RP methods in our dataset is that gradients are typically 

described as starting at %B ≈ 100 % (i.e., the organic phase), 

with increasing contributions from the aqueous phase. This 

profile produces gradients that are effectively “upside-

down” compared to those encoded in our RP models (see 

Figure 1). To maximize similarity to the gradient encodings 

in our RP models for the purposes of transfer learning, we 

invert the labels (e.g., A, B) for the mobile phase gradients 

such that the gradient starts at a %B minimum and matches 

the shape of the RP profiles. While this has the consequence 

of inverting the character of mobile phases A and B (viz. the 

organic and aqueous character), we believe that this differ-

ence is more easily learned as compared to a complete shift 

of all the gradient profile encodings. Additionally, in most 

of the HILIC methods, the organic phases (typically ACN) 

are not pure and contain 5-10% H2O. Since these concentra-

tions are relatively consistent, we approximate the organic 

phase as 100% the organic solvent, for ease of encoding and 

because the small volume of water should be learned implic-

itly by the model. We found that including the concentration 

of the additives present in the mobile phase instead of just a 

one hot encoding had a large, positive effect in performance 

not observed for RP predictions. After filtering and consoli-

dation, our HILIC library consists of 49 methods, totaling 

4,373 retention times.  

External Datasets. A consequence of dividing the entire li-

brary of retention times into the training, validation, and test-

ing splits is that it is very likely that in training, the model 

will “see” the embeddings of a method before the generali-

zability is tested. In other words, most methods will appear 
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in the training sets before evaluation in the test set. From the 

machine learning perspective this causes no data leakage be-

cause models will never see the ground truth retention times. 

However, if we choose to understand learning RTs as a com-

bination of the two tasks discussed in the Introduction sec-

tion, this effect will likely result in some memorization/leak-

age with respect to task (ii), the chromatographic method 

rescaling. In this work, test the “true” generalizability of 

Graphormer-RT by using methods and retention times that 

the models have never seen. For experimental pre-screening, 

this measures how effectively Graphormer-RT can predict 

retention times for completely “new” methods and require 

no experimental measurements to accompany retention time 

prediction. We remove six (3 RP, 3 HILIC) “representative” 

methods from our dataset from all training workflows. Upon 

testing, we report the error of these methods separately to the 

testing dataset (which contains methods that could have been 

seen in training/validation) to provide a more complete 

measure of model generalizability. For RP systems, we 

choose methods 0029 (n=47),35 0127 (n=93),34 and 0275 

(n=75)33 as denoted in RepoRT. For HILIC datasets we use 

methods 0103 (n=70),34 0283 (n=74),33 and 0375 (n=59).16 

These methods provide a diverse but representative set of 

columns, manufacturers, and gradients to maximize the di-

versity of our testing protocols. Complete descriptions of 

these chromatographic methods are available in Figures S1-

S6.  

Model Architecture: Transformers. We choose Graphor-

mer as our architecture because of its success in a variety of 

tasks and have been shown to outpace MPNNs, which have 

previously been the state-of-the-art model for many 

(bio)cheminformatics tasks.26,43–46 Transformers have been 

very successful because of their ability to describe relational 

data with highly contextual learned aggregations of the input 

representations. Attention mechanisms are largely responsi-

ble for this expressiveness, where models can assign learned 

degrees of relative importance between input tokens (atoms, 

for our purposes) in the input sequence. These higher order 

relationships between tokens are aggregated to generate 

dense representations with highly contextual of long-ranged 

interactions.27 While used with great success in natural lan-

guage processing (NLP), transformers were long thought to 

perform poorly when describing non-linear, graph structured 

data.  

    The advent of Graphormer provided a major step in show-

ing that transformers could be extended to this graph struc-

tured data. A detailed description of the mathematical under-

pinnings of Graphormer’s novelties can be found in refer-

ences 26 and 28. Graph structured data can include social net-

works, recommendation systems, or molecules. Expressive 

descriptions of these systems require a detailed considera-

tion of the structural representation of entities that can be de-

scribed by nodes and edges. In cheminformatics, this de-

scription is akin to expressing the fundamental rules of bond-

ing and chemical stability embedding in molecular structure. 

Graphormer describes these phenomena by utilizing a multi-

headed self-attention mechanism which allows for contex-

tual descriptions that represent contextual relationships be-

tween nodes (atoms) and edges (bonds). Graphormer also 

uses a robust consideration of the input graph structure to 

ensure a rich consideration of the complex relationships de-

scribed in graphs. Edge and spatial encodings (that are in-

dexed to the shortest distance between connected node pairs) 

are passed to the attention mechanism, allowing Graphormer 

to learn contextual relationships that depend on graph struc-

ture and include scaling based on graph distance. Graphor-

mer also utilizes a global receptive field, meaning that all 

nodes in a graph consider relationships with all other nodes 

in the graph in the attention mechanism.26 As such, the em-

beddings generated by Graphormer might consider im-

portant long range chemical interactions in a molecule (e.g., 

hydrogen bonding).   

Graph Feature Encoding. In using Graphormer to predict 

infrared spectra, we explored the best way to encode atomic 

and edge descriptors into the graph structure. A detailed 

summary of these methods is available in reference 28. The 

emphasis of this work was on understanding how to balance 

a knowledgeable model initialization (by using descriptors 

like hybridization, Gasetgier partial charge, etc.)47 and 

providing a flexible description of the local chemical envi-

ronment to not shoehorn model into an overly specific hu-

man-engineered description. We found that the optimal ar-

chitecture involved using a learned feature encoder (3 in Fig-

ure 2), where node features are projected into a fixed-size 

latent space using a small neural network. All hydrogens are 

described implicitly (as node features), with the exception 

for those that define stereocenters. We describe edge fea-

tures using the combinatoric mapping scheme utilized in the 

Graphormer-IR study.28 All node and edge features used to 

initialize these encoders can be found in Tables S1 and S2 

with associated domains.  

Global Chromatography Node. In our previous work,28 we 

used a global graph node connected to all other nodes in the 

molecular graph with special edge types to encode global 

properties such as spectral phase (i.e., gas phase, nujol mull, 

CCl4, etc). These global features were expressed as one-hot 

encodings (analogous to atomic number) and were found to 

generate embeddings that reflected the global state in the 

context of the molecular structure itself. For IR spectral pre-

dictions, this structural context was useful for predictions of 

bathochromic shifts, where the solvent phase can cause var-

ying shifts in specific IR frequencies.28 

    This contextualization of predictions inspires confidence 

that the use of a global graph node improves model under-

standing of emergent chemistry. For retention time predic-

tion across different chromatographic setups, we believe that 

molecular context is of the upmost importance. Not all func-

tional groups will interact identically with the stationary or 

mobile phase, and these interactions and they impact 
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retention times may change, or scale differently based on 

chromatographic conditions. Mobile phase pH provides an 

illustrative example in this regard. For molecules with ion-

izable functional groups, a difference of 2 pH units in the 

mobile phase may represent (de)protonation of those func-

tional groups, creating a dramatic difference in retention 

time driven primarily by ionic or hydrophobic interactions 

with a C18 column. For molecules without ionizable func-

tional groups, the shift in pH will likely not be as meaning-

ful. By describing these parameters by a global chromatog-

raphy node, we allow Graphormer’s attention mechanisms 

to derive relationships between the nodes in the graph (in-

cluding the global node) that allows models to derive rela-

tionships between the molecular structure and these global 

features. If we simply use the traditional approach48 and ap-

pend these features to the latent dense “fingerprint” repre-

sentation (see Figure 2), the decoding MLP loses ability to 

consider these properties in the context of the molecular 

structure because the tensor containing the chromatographic 

information loses its description of graph structure.   

    For spectral phase, we expressed the encodings as distinct 

classes analogous to a “new” atom type label that the model 

could appropriate to describe the changes in behavior. By 

mixing this atom type with a null description for all other 

node descriptors, we provide a sufficiently descriptive en-

coding for the global phase that allows the model to learn the 

different spectral encodings.  However, for the prediction of 

RTs, there are many useful empirical descriptions that would 

be lost by consolidating methods into a single class.  Addi-

tionally, these empirical chromatographic parameters de-

scribe fundamentally different chemical phenomena and as 

compared to those for the descriptions of atom (node) envi-

ronments. As such, mixing these parameter spaces in a single 

node feature encoder will almost certainly impinge on model 

learning.  

     Given this understanding, we introduced two additional 

pre-graph encoders to perform learned projections of the col-

umn parameters into a distinct embedding space. Global 

nodes are labelled and their parameters (which are padded to 

have identical shapes as the node features) are passed to 

global chromatography feature encoders. We found that sep-

arating the integer (viz. one-hot) and float features (1, 2 in 

Figure 2) into separate encoders improved model perfor-

mance. These encoders are very similar in shape to the node 

feature encoder,28 where column features are projected into 

a fixed-size latent space using two linear layers that project 

the number of features into an intermediate size of 256, then 

the embedding dimension (512 for the optimized model), us-

ing Rectified Linear Units (ReLUs) activation and dropout 

layers (p = 0.05). 49 Because this encoder has independent 

tunable parameters to the node feature encoder, the column 

parameters can be projected independently of the node fea-

tures. All the benefits of the node feature encoder apply to 

the chromatography encoder as well, where a learned repre-

sentation of column parameters maximizes the flexibility 

and informativity of the description passed to Graphormer 

without unnecessarily shoehorning model understanding by 

over-describing the input.  

Transfer Learning. Transfer learning is a powerful tool in-

spired by the psychology of human learning that is widely 

utilized in NLP and machine learning. A detailed description 

of the applications and theory of transfer learning is availa-

ble in reference 50. In the same way that humans improve 

learning by using analogy, so too can deep learning frame-

works improve performance by first being trained on a sec-

ondary task (perhaps with a larger dataset) that utilizes anal-

ogous mechanics to the primary task. While tasks may not 

be identical in scope, analogous skills can be applied in dif-

ferent contexts to accelerate learning.  

    In this study, we choose to treat the tasks of RP and HILIC 

chromatography as analogous but fundamentally different 

tasks. While they share an underlying analytical technique 

brand, the fundamental interactions that dictate the retention 

times of molecules are intrinsically different from one an-

other and attempting to predict both at the same time with a 

single model is akin to pulling the models latent description 

of molecular graph in two opposite directions at once. How-

ever, due to the similarity of the principles and input descrip-

tions of these chromatographic methods they present an ex-

cellent use case for the principles of transfer learning. As 

such, we attempt to transfer the knowledge learned from our 

RP model to improve learning of HILIC columns and see if 

it is sufficient overcome the relative dataset paucity. 

Model Training. All models trained in this work are built 

on the original Graphormer architecture,26 built on the 

PyTorch library.51 We use our and graph feature encoders ( 

3 in Figure 2) and chromatographic feature encoders (1,2 in 

Figure 2) to create molecular graphs with node- (i.e., atom) 

and edge- (i.e., bond) features using the DGL-LifeSci pack-

age52 with dense embeddings (4  in Figure 2). These graphs 

are passed to Graphormer (5 in Figure 2) to construct a set 

of learned node representations and the aggregate mCLS to-

ken. This molecular fingerprint is interpreted by the MLP (3 

in Figure 6), consisting of intermediate linear layers and ac-

tivation functions, which predicts the final retention time. 

The best performing model contained eight Graphormer en-

coder layers with an embedding dimension of 512. A self-

attention mechanism with 64 attention heads was employed 

with an attention dropout of 0.15. Adam was used as the op-

timizer with 𝛽1= 0.9, 𝛽2 = 0.999, and 𝜖 = 10-8.53  Reversed 

phase models were trained using an initial learning rate of 

1.0 × 10–4 and HILIC models used a learning rate of 1.5 × 

10-4. The MLP (decoder) consisted of four linear layers with 

an output of size 512, interleaved with ReLUs49 as the acti-

vation function. The loss function used in training was the 

root mean squared error (RMSE). In total, the best perform-

ing model had 54,700,619 tunable parameters. All hyperpa-

rameters for the best performing model were determined by 

manual tuning using the validation loss. All models were 
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trained for 250 epochs, with a batch size of 64 and early stop-

ping.54 All models utilized an 80–10–10 (%) training-valida-

tion-test split. All models were trained on a single NVIDIA 

GeForce RTX 4090 graphics card with 24 GB of VRAM. 

Training a model with RP retention times takes roughly 7.02 

hours to complete and finetuning on HILIC retention times 

takes roughly 14.7 minutes. One of the major benefits of the 

machine learning approach for RT prediction is that once a 

model is trained, calculation of retention times is extremely 

rapid. Evaluation of the total RP retention time test set (n = 

14,482) takes 3.4 minutes, which corresponds to roughly 14 

ms per retention time prediction.    

 

https://doi.org/10.26434/chemrxiv-2024-gh05j-v2 ORCID: https://orcid.org/0000-0001-7365-1558 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-gh05j-v2
https://orcid.org/0000-0001-7365-1558
https://creativecommons.org/licenses/by/4.0/

