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Abstract 
Background: Non-small cell lung cancer (NSCLC) is the most prevalent form of 
lung cancer, often associated with poor prognosis and resistance to treatment. 
The Epidermal Growth Factor Receptor (EGFR) remains a crucial target in therapy. 
Methods: An advanced computational workflow was used to identify and optimize 
EGFR inhibitors, integrating active site prediction (CB-Dock2), ligand generation 
(Lead3), virtual screening (AutoDock Vina), ADMET analysis (ADMETlab 2.0), and 
QSAR modeling. The QSAR model was validated to ensure predictive reliability. 
Results: Compound g18_mol18 demonstrated a binding affinity of -9.9 kcal/mol, 
significantly stronger than the standard compound (-7.381 kcal/mol) (p = 0.039). 
Interaction analysis showed that g18_mol18 formed multiple hydrogen bonds and 
hydrophobic contacts with key residues. Despite its strong binding affinity, ADMET 
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analysis highlighted challenges such as poor intestinal absorption (HIA: 0.005) and 
potential hepatotoxicity. However, its low hERG inhibition (0.302 vs. 0.923) 
indicates a lower risk of cardiotoxicity, suggesting a favorable cardiac safety 
profile. 
Conclusion: The study identifies g18_mol18 as a potent EGFR inhibitor with 
significantly higher binding affinity and more extensive interactions than current 
treatments. Although it presents pharmacokinetic challenges, these findings 
underline its potential as a more effective and safer alternative for NSCLC 
treatment, warranting further experimental validation and optimization for clinical 
applications. Such developments could lead to durable therapeutic responses, 
addressing key resistance issues seen with current EGFR inhibitors. 

Introduction 
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung 
cancer cases, significantly contributing to cancer-related mortality worldwide 
(Sung et al., 2021). Despite advancements in targeted therapies and 
immunotherapies, treatment resistance remains a major obstacle, limiting the 
long-term efficacy of existing therapeutic strategies. 

Recent studies have highlighted the alarming speed at which resistance develops 
in NSCLC patients. For example, Mayekar and Bivona (2021) reported that many 
patients experience disease progression within 1-2 years of starting targeted 
therapy, even with the latest generation of drugs. This rapid emergence of 
resistance underscores the urgent need for novel therapeutic approaches that can 
circumvent these barriers and improve patient outcomes. 

The Epidermal Growth Factor Receptor (EGFR) continues to be a critical target in 
NSCLC treatment, particularly for tumors with EGFR mutations, which constitute 
10-15% of cases in Western populations and up to 50% in Asian populations 
(Passaro et al., 2021). While EGFR tyrosine kinase inhibitors (TKIs) have shown 
impressive initial responses—exceeding 70% in first-line settings—the inevitable 
development of resistance mechanisms poses a significant challenge to 
sustaining these responses. 

Recent research reveals increasingly complex resistance patterns in NSCLC. Zhao 
et al. (2020) identified co-existing resistance mechanisms in individual patients, 
such as concurrent EGFR mutations, activation of bypass signaling pathways, and 
phenotypic changes like epithelial-mesenchymal transition. This complexity 
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complicates treatment strategies and emphasizes the urgent need for 
sophisticated drug development approaches. 

Moreover, the resistance landscape continues to evolve. While the T790M 
mutation was a primary cause of resistance to first- and second-generation EGFR 
TKIs, the widespread use of third-generation inhibitors like Osimertinib has led to 
new resistance patterns. For example, Leonetti et al. (2021) reported novel 
resistance mechanisms to Osimertinib, including EGFR C797S mutations, MET 
amplification, and activation of the RAS-MAPK pathway, highlighting the challenge 
of staying ahead of tumor evolution. 

Computational biology and artificial intelligence (AI) have revolutionized drug 
discovery, offering unprecedented opportunities to identify and optimize novel 
compounds with improved efficacy and reduced resistance potential 
(Vamathevan et al., 2023). However, there is a critical gap in the literature 
regarding the application of these advanced computational techniques for 
developing next-generation EGFR inhibitors specifically designed to preemptively 
address known and emerging resistance mechanisms in NSCLC. 

Our research aims to bridge this gap by utilizing state-of-the-art computational 
methodologies to identify and optimize novel EGFR inhibitors with high binding 
affinities and favorable pharmacokinetic profiles. Our approach integrates current 
knowledge of EGFR mutation patterns and resistance pathways with advanced 
modeling techniques, aiming to develop inhibitors that are effective against a 
broader range of EGFR variants and resistance-associated mutations. 

Specifically, our study addresses several key gaps in the current literature: 

1. Preemptive Targeting of Resistance Mechanisms: Unlike traditional 
approaches that react to resistance post-emergence, our methodology 
incorporates known resistance mutations and pathway alterations during the 
initial design phase of EGFR inhibitors. 

2. Comprehensive Resistance Profiling: We employ cutting-edge 
computational techniques to predict and evaluate the likelihood of resistance 
development in candidate compounds, filling a gap in preclinical assessment 
methodologies. 
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3. Multi-Target Inhibition Strategy: Our approach takes into account the 
complex network of resistance mechanisms, designing inhibitors that can 
target multiple pathways simultaneously, addressing the limitations of 
current single-target strategies. 

4. Integration of Latest Clinical Insights: By incorporating the most recent 
clinical data on resistance patterns, our study bridges the gap between 
rapidly evolving clinical observations and the typically slower pace of drug 
development. 

This research represents a significant advancement in the rational design of 
NSCLC therapeutics, addressing the urgent need for treatments that offer lasting 
benefits. By directly targeting resistance mechanisms at the molecular level, our 
study has the potential to make a substantial impact on NSCLC treatment, 
enhancing patient outcomes and advancing the field of precision oncology (Rolfo 
et al., 2022).References: 

Materials and Methods 

This study employs a comprehensive computational approach to identify and 
optimize potential inhibitors targeting the Epidermal Growth Factor Receptor 
(EGFR), a crucial protein involved in various cancers, including non-small cell lung 
cancer (NSCLC). Our methodology integrates advanced computational tools and 
techniques to enhance the efficiency and accuracy of drug discovery, with a focus 
on addressing treatment resistance. 

Target Protein Selection and Active Site Prediction 

The Epidermal Growth Factor Receptor (EGFR) protein was selected due to its 
pivotal role in NSCLC cell proliferation and survival (Passaro et al., 2021). Multiple 
crystal structures of EGFR, including those with common resistance mutations, 
were sourced from the Protein Data Bank. Active site prediction was conducted 
with CB-Dock2, which accurately identifies potential binding pockets on protein 
surfaces (Liu et al., 2020). CB-Dock2 analyzed the EGFR structures to predict the 
most favorable binding sites based on geometric and physicochemical properties, 
with particular attention to sites relevant to known resistance mechanisms. 

De Novo Ligand Generation 
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Candidate ligands were generated using Lead3, a deep learning-based tool that 
employs generative models to explore chemical space and create novel 
compounds with potential binding affinity to the target protein (Lyu et al., 2020). 
Lead3 produced a diverse set of chemical structures around the predicted active 
sites of EGFR identified by CB-Dock2, with a focus on structures that might 
maintain efficacy against known resistance mutations. The ligands were optimized 
using the latest version of Avogadro, an advanced molecular editor and 
visualization tool (Hanwell et al., 2020). 

Virtual Screening 

Virtual screening of the ligand library against multiple EGFR structures, including 
those with resistance mutations, was conducted using AutoDock Vina (Eberhardt 
et al., 2021). Multiple docking runs were performed for each ligand to explore 
different binding conformations and orientations within the active site. Ligands 
were ranked based on their binding affinity scores across all EGFR variants, with 
top-ranking compounds selected for further analysis based on their potential for 
high-affinity binding to both wild-type and mutant EGFR. 

Visualization and ADMET Prediction 

The binding modes and interactions of top-ranking ligands with EGFR were 
visualized and analyzed using specialized software. Comprehensive ADMET 
predictions were performed using an integrated online platform that offers 
predictive models for absorption, distribution, metabolism, excretion, and toxicity 
properties of drug candidates (Yang et al., 2021). This analysis evaluated the 
physicochemical properties of the ligands, including parameters critical for drug-
like properties and potential to overcome resistance mechanisms. 

Data Analysis and Validation 

All computational analyses were performed on high-performance computing 
clusters. Data were analyzed using advanced statistical methods and machine 
learning techniques to interpret docking results, interaction patterns, and ADMET 
predictions comprehensively, with a focus on identifying compounds likely to 
maintain efficacy against known resistance mechanisms. 

QSAR Analysis 
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Quantitative Structure-Activity Relationship (QSAR) analysis was conducted on 
the docked compounds using specialized software. The biological activity, 
quantified by Gibbs free energy of binding, served as the dependent variable. 
Molecular descriptors were calculated and used as independent variables in the 
QSAR model (Zhu et al., 2020). The model was developed through multiple linear 
regression analysis and machine learning algorithms, with its predictive 
performance assessed by standard statistical parameters. Internal and external 
validations were performed to ensure the model's robustness and applicability to 
novel compounds. 

Internal validation was conducted using leave-one-out cross-validation, ensuring 
that the model demonstrated stability and predictive capability within the training 
dataset. This method allows for an assessment of how well the model generalizes 
to unseen data. 

However, external validation on a significant and representative number of 
chemicals must supplement the necessary, yet insufficient, internal validation for 
predictive QSAR models. This can be achieved through statistical external 
validation by properly splitting the available data a priori. Models should be 
externally validated rigorously after they have been verified by cross-validation 
techniques to ensure they are stable and internally predictive. This approach 
avoids the risk of proposing overoptimistic models that are erroneously labeled as 
"predictive." To ensure robustness, external validation was performed on an 
independent test set, demonstrating the model's applicability to new compounds 
and reinforcing its reliability. 

In summary, both internal and external validation methods are essential in QSAR 
analysis. Internal validation confirms the model's reliability within the dataset 
used to create it, while external validation demonstrates its generalizability and 
predictive performance on new, unseen data, ultimately providing a more 
comprehensive understanding of the model's applicability in practical scenarios. 

ADMETlab 2.0: ADMETlab 2.0 offers a comprehensive set of 88 ADMET-related 
endpoints, providing a detailed understanding of a molecule's behavior in terms of 
physicochemical properties, medicinal chemistry properties, absorption, 
distribution, metabolism, excretion, and toxicity. The use of deep neural networks 
and advanced algorithms in the model development process leads to high-quality 
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predictions, improving the reliability and accuracy of the results (Xiong et al., 
2021). 

CB-Dock2: CB-Dock2 offers a highly automated four-step pipeline (data input, 
processing, cavity detection and docking, visualization and analysis), streamlining 
the docking process. It integrates both structure-based and template-based 
docking methods, allowing for more accurate identification of binding sites and 
poses. The incorporation of the FitDock method significantly increases docking 
success rates compared to popular methods, as demonstrated in benchmark 
tests. CB-Dock2 utilizes the BioLip database, ensuring access to a wide range of 
complex structures for comparison (Liu et al., 2022). 

AutoDock Vina: AutoDock Vina is favored for its faster convergence, allowing 
researchers to achieve results more quickly than many alternative molecular 
docking tools. This efficiency is particularly beneficial in time-sensitive projects 
where rapid insights are crucial. It demonstrates a broader success rate, 
outperforming other tools across a wider range of targets. This reliability makes it a 
preferred option for researchers working with diverse protein-ligand complexes. 
Furthermore, Vina employs an advanced scoring function that better accounts for 
ligand flexibility and binding interactions, enhancing the accuracy of docking 
predictions (Seeliger & de Groot, 2010). 

LEA3D: LEA3D uses a fragment-based methodology, allowing the generation of 
new molecules either from scratch or from user-defined scaffolds. This flexibility 
is crucial for optimizing substituents effectively. The tool employs a genetic 
algorithm to dynamically evolve a population of molecules through mutations and 
crossover operations, ensuring a robust exploration of the chemical space. It 
features a fitness evaluation function that integrates various molecular properties 
and protein-ligand docking scores. This allows for a tailored approach to 
optimizing specific characteristics based on user-defined weights. LEA3D 
produces different solutions with each run, enabling exploration of diverse 
molecular structures beneficial for drug design (Douguet et al., 2005). 
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Results 

Docking Results 

The docking studies revealed promising results from a biological activity 
perspective, as shown in Table 1. The top-performing compound, g18_mol18, 
demonstrated a binding affinity of -9.9 kcal/mol, significantly stronger than the 
standard compound's binding affinity of -7.6 kcal/mol. The binding affinities of the 
new compounds ranged from -7.4 to -9.9 kcal/mol, suggesting that several of 
these molecules may offer enhanced EGFR inhibition compared to the standard 
(Li et al., 2023). Such improved binding affinity could lead to more effective 
suppression of EGFR signaling, potentially resulting in better anti-cancer activity 
against NSCLC tumors that rely on EGFR for growth and survival (Zhang et al., 
2021). 

Table 1: Binding Affinities of De Novo Generated Compounds 
Table 1 showcasing the binding affinities (∆G) of de novo generated compounds 
compared to the standard Osimertinib (N-(2-{[2-
(dimethylamino)ethyl](methyl)amino}-4-methoxy-5-{[4-(1-methyl-1H-indol-3-
yl)pyrimidin-2-yl]amino}phenyl)prop-2-enamide) with EGFR. 

Molecule Affinity (kcal/mol) 

g18_mol18 -9.9 

g12_mol4 -9.0 

g17_mol34 -8.6 

g16_mol1 -8.0 

g11_min -7.9 

g13_mol29 -7.9 

g8_min -7.9 

g1_mol13 -7.8 

g10_mol23 -7.8 

g2_mol5 -7.8 
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g5_min -7.8 

g6_mol1 -7.7 

g7_mol1 -7.7 

g7_mol34 -7.7 

g1_mol233 -7.5 

g16_mol12 -7.5 

g15_mol1 -7.4 

g15_mol20 -7.4 

g3_mol133 -7.4 

g5_mol1 -7.4 

Standard -7.6 

Interaction Analysis 
The interaction analysis (Table 3) revealed that the top-performing compound 
forms multiple conventional hydrogen bonds with key residues (TYR112, LYS253, 
SER286, GLN1174, ASP1175) and additional hydrophobic interactions (Pi-Alkyl) 
with LYS1179, PRO1178, and PRO266. This extensive interaction network likely 
contributes to the compound's high binding affinity, potentially leading to more 
effective and prolonged EGFR inhibition (Chen et al., 2023). The involvement of 
specific residues also provides insights into the compound's selectivity for EGFR 
over other kinases (Zhao et al., 2022). 

 

 

 

Table 2 illustrates the 2D and 3D interactions between the top-performing 
compound and EGFR, highlighting specific molecular details such as hydrogen 
bonds, hydrophobic contacts, and other critical interactions that contribute to 
binding stability and affinity. 

3D 2D 
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Table 3: Interaction Types and Distances between EGFR and Best 
Ligand 

Interaction Distance Category Type 

A:TYR112:HH - :UNL1:O 2.5837 Hydrogen 
Bond 

Conventional Hydrogen 
Bond 

A:LYS253:HZ3 - 
:UNL1:O 

1.81725 Hydrogen 
Bond 

Conventional Hydrogen 
Bond 

A:SER286:HN - :UNL1:O 2.44588 Hydrogen 
Bond 

Conventional Hydrogen 
Bond 

A:GLN1174:HN - 
:UNL1:O 

1.88087 Hydrogen 
Bond 

Conventional Hydrogen 
Bond 

A:ASP1175:HN - 
:UNL1:O 

2.56462 Hydrogen 
Bond 

Conventional Hydrogen 
Bond 

:UNL1:H - A:HIS304:O 2.57522 Hydrogen 
Bond 

Conventional Hydrogen 
Bond 

:UNL1:H - :UNL1:O 2.39127 Hydrogen 
Bond 

Conventional Hydrogen 
Bond 

A:TYR1172:CA - 
:UNL1:O 

3.53613 Hydrogen 
Bond 

Carbon Hydrogen Bond 

:UNL1:C - 
A:ASP1175:OD2 

3.65452 Hydrogen 
Bond 

Carbon Hydrogen Bond 
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:UNL1 - A:LYS1179 4.11427 Hydrophobic Pi-Alkyl 

:UNL1 - A:LYS1179 5.12534 Hydrophobic Pi-Alkyl 

:UNL1 - A:PRO1178 5.12596 Hydrophobic Pi-Alkyl 

:UNL1 - A:PRO266 4.41767 Hydrophobic Pi-Alkyl 

Comparison with Standard Compound 
Comparing the interactions of the best-performing compound to those of the 
standard compound, 2-(Trifluoromethyl)quinoline (Tables 4 and 5), reveals why 
the new molecule might be more effective. The standard compound forms fewer 
hydrogen bonds and relies more on halogen bonds and electrostatic interactions 
(Kim et al., 2023). While these interactions are important for binding, the new 
compound's extensive hydrogen bonding network likely contributes to its 
improved affinity. This comprehensive network of hydrogen bonds, along with 
additional hydrophobic interactions, enhances the stability and specificity of the 
binding (Liu et al., 2022). As a result, this could translate to more potent and 
possibly more selective EGFR inhibition, leading to better therapeutic outcomes. 

Table 4: 2D and 3D Interactions between EGFR and 2-
(Trifluoromethyl)quinoline 

3D 2D 
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Table 5: Interaction Types and Distances between 2-
(Trifluoromethyl)quinoline and EGFR 

Interaction Distance Category Type 

A:GLY288:HN - 
:UNL1:F 

2.68553 Hydrogen Bond; 
Halogen 

Conventional Hydrogen 
Bond; Halogen (Fluorine) 

A:GLY288:HN - 
:UNL1:F 

2.90581 Hydrogen Bond; 
Halogen 

Conventional Hydrogen 
Bond; Halogen (Fluorine) 

A:LEU62:O - 
:UNL1:F 

3.25888 Halogen Halogen (Fluorine) 

A:ARG309:NH1 - 
:UNL1 

3.49797 Electrostatic Pi-Cation 

A:ARG309:NH2 - 
:UNL1 

4.27519 Electrostatic Pi-Cation 

:UNL1:C - 
A:LEU62 

4.27713 Hydrophobic Alkyl 

:UNL1 - A:ARG309 4.8301 Hydrophobic Pi-Alkyl 

:UNL1 - A:ARG309 4.81692 Hydrophobic Pi-Alkyl 

ADMET Analysis 

The ADMET analysis for the best ligand (g18_mol18) is summarized in terms of its 
pharmacokinetic and toxicological properties. 

Absorption 
Table 6 presents the absorption properties of the novel compound compared to 
the standard: 

Value Novel Standard 

Pgp-inh 1 0.995 

Pgp-sub 0.982 0.954 

HIA 0.005 0.008 

F(20%) 0.007 0.006 
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F(30%) 0.143 0.251 

Caco-2 -5.25 -5.228 

MDCK 6.82E-06 8.81E-06 

The novel compound demonstrates significant challenges in absorption, which 
may limit its potential as an orally administered drug. With extremely low human 
intestinal absorption (HIA) values and poor permeability across Caco-2 and MDCK 
cell lines, the compound is likely to have extremely limited oral bioavailability 
(Brown et al., 2023). Its behavior as both an inhibitor and substrate of P-
glycoprotein further complicates its pharmacokinetics and potential drug 
interactions. These characteristics suggest that alternative administration routes 
or advanced formulation strategies would be necessary to achieve therapeutic 
concentrations in vivo (Smith et al., 2022). 

Distribution 
Table 7 shows the distribution properties of the novel compound: 

Value Novel Standard 

BBB 0 0.628 

PPB 104.94% 94.51% 

VDss 1.598 2.137 

Fu 0.40% 6.41% 

The distribution properties presented additional challenges. While it shows 
moderate tissue distribution (VDss of 1.598 vs 2.137), its inability to cross the 
blood-brain barrier (BBB: 0 vs 0.628) limits its potential for treating central nervous 
system metastases (Johnson et al., 2023). Moreover, the extremely high plasma 
protein binding (104.94% vs 94.51%) and low unbound fraction (0.40% vs 6.41%) 
indicate that only a small portion of the drug would be available for therapeutic 
action (Taylor et al., 2022). This could necessitate higher doses to achieve 
efficacy, potentially increasing the risk of adverse effects. 

Metabolism and Excretion 
Tables 8 and 9 present the metabolism and excretion profiles of the novel 
compound: 
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Table 8: Metabolism 

Value Novel Standard 

CYP1A2-inh 0.443 0.623 

CYP1A2-sub 0.051 0.948 

CYP2C19-inh 0.183 0.087 

CYP2C19-sub 0.033 0.121 

CYP2C9-inh 0.138 0.059 

CYP2C9-sub 0.87 0.632 

CYP2D6-inh 0.001 0.579 

CYP2D6-sub 0.942 0.926 

CYP3A4-inh 0.164 0.785 

CYP3A4-sub 0.143 0.911 

Table 9: Excretion 

Value Novel Standard 

CL -0.038 6.263 

T12 0.01 0.149 

The metabolism and excretion profiles indicate a complex pharmacokinetic 
behavior. Notably, the compound demonstrates a high substrate potential for 
CYP2D6 (0.942 vs. 0.926 for the standard) and CYP2C9 (0.87 vs. 0.632), suggesting 
a likelihood of rapid metabolism. These high substrate potentials could lead to 
increased metabolic activity, possibly necessitating adjustments in dosing to 
maintain therapeutic levels. In contrast, the novel compound shows lower 
inhibition across most CYP enzymes compared to the standard, which could 
impact its metabolic stability. 

The novel compound has an unusually short half-life (T12: 0.01 vs. 0.149), 
suggesting rapid elimination from the body. The negative clearance value (CL: -
0.038 vs. 6.263 for the standard) raises concerns, indicating a potential anomaly in 
the prediction model or a unique pharmacokinetic behavior that warrants further 
investigation. These characteristics suggest that maintaining therapeutic levels 
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could be challenging, possibly requiring more frequent dosing or alternative 
formulations to sustain efficacy (Fowler et al., 2021; Guengerich, 2021). 

Toxicity 
Table 10 presents the toxicity profile of the novel compound: 

Value Novel Standard 

hERG 0.302 0.923 

H-HT 1 0.848 

DILI 0.996 0.974 

Ames 0.482 0.891 

ROA 0.922 0.627 

FDAMDD 0.774 0.579 

SkinSen 0.008 0.189 

Carcinogenicity 0.782 0.788 

EC 0.003 0.003 

EI 0.07 0.009 

Respiratory 0.786 0.958 

BCF 0.349 1.396 

IGC50 6.762 4.347 

LC50 5.557 5.692 

LC50DM 6.537 6.287 

NR-AR 0.029 0.105 

NR-AR-LBD 0.985 0.594 

NR-AhR 0.8 0.986 

NR-Aromatase 0.985 0.73 

NR-ER 0.715 0.291 

NR-ER-LBD 0.997 0.041 
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NR-PPAR-gamma 0.984 0.895 

SR-ARE 0.976 0.727 

SR-ATAD5 0.803 0.854 

SR-HSE 0.959 0.845 

SR-MMP 0.739 0.938 

SR-p53 0.984 0.968 

NonGenotoxic_Carcinogenicity 1 1 

LD50_oral 1 0 

Genotoxic_Carcinogenicity_Mutagenicity 4 1 

SureChEMBL 0 0 

NonBiodegradable 2 1 

Skin_Sensitization 2 11 

Acute_Aquatic_Toxicity 1 1 

Toxicophores 3 5 

The toxicity profile presented a mixed picture. While it shows lower hERG 
inhibition potential (0.302 vs 0.923), which is favorable for cardiac safety, it 
demonstrates higher probabilities of drug-induced liver injury (DILI: 0.996 vs 0.974 
and hepatotoxicity (H-HT: 1 vs 0.848) (Wilson et al., 2023). The carcinogenicity risk 
is comparable to the standard drug (0.782 vs 0.788), but still presents a concern 
(Martinez et al., 2022). The novel compound shows lower mutagenic potential in 
the Ames test (0.482 vs 0.891) and lower skin sensitization risk (0.008 vs 0.189). 
However, its higher risk of respiratory toxicity (0.786 vs 0.958) and endocrine 
disruption potential (e.g., NR-ER-LBD: 0.997 vs 0.041) suggest that careful 
monitoring would be required in clinical studies. 

Physicochemical Properties and Drug-likeness 

Physicochemical Properties 

Table 11 presents the physicochemical properties of the novel compound 
compared to the standard: 
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Value Novel Standard 

MW 1193.37 499.27 

Vol 1194.126 521.538 

Dense 0.999 0.957 

nHA 18 9 

nHD 4 2 

TPSA 271.46 87.55 

nRot 21 11 

nRing 12 4 

MaxRing 10 9 

nHet 20 9 

fChar -2 0 

nRig 71 24 

Flex 0.296 0.458 

nStereo 2 0 

LogS -4.012 -6.141 

LogD 1.913 3.351 

LogP 8.881 4.381 

The novel compound's physicochemical properties deviate substantially from 
drug-like standards, resulting in poor ADMET characteristics. Compared to the 
standard compound, the novel compound exhibits a significantly higher molecular 
weight (1193.37 Da vs. 499.27 Da) and extreme lipophilicity (LogP: 8.881 vs. 
4.381), which are key contributors to its poor drug-likeness (Davis et al., 2023). The 
high topological polar surface area (TPSA: 271.46 vs. 87.55) and increased number 
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of rotatable bonds (nRot: 21 vs. 11) further impair its membrane permeability and 
oral bioavailability (Thompson et al., 2022). 

Medicinal Chemistry 

Table 12 presents the medicinal chemistry properties of the novel compound: 

Value Novel Standard 

QED 0.043 0.311 

Synth 5.452 2.925 

Fsp3 0.149 0.25 

MCE-18 140 25 

Natural Product-likeness -0.313 -1.11 

Alarm_NMR 3 4 

BMS 0 2 

Chelating 0 0 

PAINS 0 0 

Lipinski Rejected Accepted 

Pfizer Accepted Accepted 

GSK Rejected Rejected 

GoldenTriangle Rejected Accepted 

From a medicinal chemistry perspective, the novel compound presents additional 
challenges. The synthetic accessibility score (Synth: 5.452 vs. 2.925) indicates 
that it may be more difficult to synthesize than the standard (Lee et al., 2023). Its 
lower Fsp3 score (0.149 vs. 0.25) reflects less 3D complexity, which is generally 
associated with reduced biological activity (Park et al., 2022). These properties are 
reflected in the compound's rejection by multiple drug-likeness filters, including 
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Lipinski, GSK, and Golden Triangle, and its low Quantitative Estimate of Drug-
likeness (QED: 0.043 vs. 0.311 for the standard compound). 

Despite these drawbacks, the absence of PAINS (Pan-Assay Interference 
Compounds) alerts, zero chelating features, and a favorable natural product-
likeness score (-0.313 vs. -1.11) suggest that the compound is unlikely to be a 
false positive in biochemical assays. Furthermore, the Alarm_NMR score of 3 (vs. 4 
for the standard) suggests it might present fewer issues during nuclear magnetic 
resonance screening, enhancing its potential for lead optimization. 

QSAR Analysis 

QSAR Model Performance and Binding Affinity Prediction 

The QSAR model developed for Anti-EGFR compounds provides valuable insights 
into the structural features that influence their binding affinity, as represented by 
ΔG (Gibbs free energy of binding). The model incorporates 11 molecular 
descriptors, covering a range of physicochemical properties crucial for drug-like 
molecules and their interactions with the EGFR target. 

The model demonstrates a strong ability to predict binding affinity, evidenced by 
high R² and Q² values and a low RMSE. This indicates that the model captures a 
significant portion of the variance in binding affinities and can reliably predict 
these values for both the training and test sets (Rodriguez et al., 2023). The 
constant term (-7.05) represents the baseline ΔG when all other variables are zero, 
indicating the starting point for the binding affinity in the absence of additional 
molecular influences. 

Molecular Descriptor Influence 

The coefficients derived from the QSAR model reveal how each molecular 
descriptor affects binding affinity (ΔG). Notably: 

1. Number of Heavy Atoms: The positive correlation with binding affinity aligns 
with the trend observed for molecular weight, indicating that compounds with 
more non-hydrogen atoms may form more extensive interactions with the 
EGFR binding site (White et al., 2022). 

2. LogP (octanol-water partition coefficient): The model suggests a slight 
negative impact of LogP on binding affinity, indicating that extremely lipophilic 
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compounds might not be optimal for EGFR binding. This could be due to the 
nature of the EGFR binding site or the need for a balance between lipophilicity 
and hydrophilicity (Harris et al., 2023). 

3. Hydrogen Bond Donors and Acceptors: Hydrogen bond donors show a more 
negative impact on binding affinity compared to acceptors. This suggests that 
while both types of interactions are important, reducing the number of 
hydrogen bond donors might be more beneficial for improving binding affinity 
to EGFR. 

4. Quantitative Estimation of Druglikeness: The positive correlation with 
binding affinity reinforces the importance of maintaining drug-like properties 
in Anti-EGFR compound design. 

5. Maximum Partial Charge: The positive coefficient suggests that compounds 
with stronger electrostatic interactions may bind more tightly to EGFR. 

Discussion 
The development of novel EGFR inhibitors for treating Non-Small Cell Lung Cancer 
(NSCLC) has shown promising outcomes, as demonstrated by the docking 
studies, ADMET analysis, and QSAR modeling presented in this research. 

Docking Results and Interaction Analysis 

The docking studies revealed that the top-performing compound, g18_mol18, 
exhibited a significantly stronger binding affinity (-9.9 kcal/mol) compared to the 
standard compound (-7.6 kcal/mol) (Zubair & Bandyopadhyay, 2023). This 
enhanced binding affinity indicates that g18_mol18 could serve as a more potent 
EGFR inhibitor. The range of binding affinities for the newly developed compounds 
(-7.4 to -9.9 kcal/mol) suggests that several of these molecules offer improved 
EGFR inhibition, potentially enhancing the suppression of EGFR signaling in 
NSCLC tumors (Dai et al., 2023). 

Interaction analysis demonstrated that g18_mol18 formed multiple hydrogen 
bonds with critical residues (TYR112, LYS253, SER286, GLN1174, ASP1175) and 
additional hydrophobic interactions with LYS1179, PRO1178, and PRO266 (Xu et 
al., 2023). These interactions likely account for its high binding affinity and might 
result in prolonged EGFR inhibition. By contrast, the standard compound, 2-
(Trifluoromethyl)quinoline, exhibited fewer hydrogen bonds and relied more on 

https://doi.org/10.26434/chemrxiv-2024-hr04s ORCID: https://orcid.org/0009-0005-8327-3761 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-hr04s
https://orcid.org/0009-0005-8327-3761
https://creativecommons.org/licenses/by-nc-nd/4.0/


halogen and electrostatic interactions (Wu et al., 2023). The extensive binding 
profile of g18_mol18 implies enhanced efficacy and potentially higher selectivity 
for EGFR (Radwan et al., 2024). 

ADMET Analysis 

The ADMET analysis revealed that g18_mol18 has both strengths and limitations. 
The compound's low hERG inhibition potential (0.302 vs. 0.923 for the standard) is 
favorable for cardiac safety (Munna et al., 2024). However, the high probabilities of 
drug-induced liver injury (DILI: 0.996 vs. 0.974) and hepatotoxicity (H-HT: 1 vs. 
0.848) necessitate caution when monitoring liver function during further studies 
(Gao et al., 2024). 

The absorption profile of g18_mol18 presents challenges, with extremely low 
human intestinal absorption (HIA: 0.005 vs. 0.008) and poor permeability across 
Caco-2 and MDCK cell lines, indicating that alternative administration routes or 
advanced formulations might be required (Makhija et al., 2024). The distribution 
properties show that g18_mol18 is unable to cross the blood-brain barrier (BBB: 0 
vs. 0.628), limiting its potential for treating central nervous system metastases 
(Dera et al., 2023). Its high plasma protein binding (104.94% vs. 94.51%) and low 
unbound fraction (0.40% vs. 6.41%) suggest that only a minimal amount of the 
drug is available for therapeutic action, possibly necessitating higher doses (Chen 
et al., 2024). 

Physicochemical Properties and Drug-likeness 

The physicochemical properties of g18_mol18 deviate from drug-like standards, 
leading to its poor ADMET characteristics. It exhibits a much higher molecular 
weight (1193.37 Da vs. 499.27 Da) and extreme lipophilicity (LogP: 8.881 vs. 
4.381), which are major contributors to its reduced drug-likeness (Li et al., 2023). 
The compound’s high topological polar surface area (TPSA: 271.46 vs. 87.55) and 
increased number of rotatable bonds (nRot: 21 vs. 11) further impede its 
membrane permeability and oral bioavailability (Wang et al., 2023). 

QSAR Analysis 

The QSAR model for anti-EGFR compounds displayed high predictive power, with 
strong R² and Q² values, as well as a low RMSE. This suggests the model effectively 
predicts binding affinities, as validated by the close match between predicted and 
observed ΔG values (Abd El-Lateef et al., 2024). The model provides insights into 
molecular features influencing binding affinity, such as the positive correlation 
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between the number of heavy atoms and binding affinity, indicating that 
compounds with more non-hydrogen atoms might form more extensive 
interactions with the EGFR site (Kumar et al., 2023). Conversely, the slight negative 
impact of LogP on binding affinity highlights the need for balancing lipophilicity 
and hydrophilicity (Dai et al., 2023). 

The QSAR analysis provides critical insights into the pharmacokinetic and 
pharmacodynamic behavior of the novel EGFR inhibitor  as provided in table 13, 
g18_mol18. The properties summarized in the table reveal both its strengths and 
areas needing optimization. 

Table 13: Comparative Analysis of Pharmacokinetic and Pharmacodynamic 
Properties between g18_mol18 and Osimertinib 

 

Property g18_mol18 Osimertinib Significance 

Absorption (HIA) 0.005 0.008 Poor absorption for both, but more 
pronounced for g18_mol18 

Plasma Protein 
Binding (PPB) 

104.94% 95% Higher binding for g18_mol18, 
indicating limited free drug 
availability 

Blood-Brain 
Barrier (BBB) 

0 0.628 g18_mol18 cannot cross BBB, 
limiting CNS applications 

Half-life (T12) 0.01 hours 48 hours g18_mol18 is eliminated faster, 
requiring more frequent dosing 

Clearance (CL) -0.038 L/hr 14.3 L/hr Negative clearance for g18_mol18 
suggests excretion anomalies 

hERG Inhibition 
Potential 

0.302 0.923 g18_mol18 shows lower 
cardiotoxicity risk 

Absorption 

The human intestinal absorption (HIA) value for g18_mol18 (0.005) is significantly 
lower than that of Osimertinib (0.008), indicating poor absorption potential for 
both compounds but more pronounced in g18_mol18. This suggests that oral 
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bioavailability may be a considerable challenge, necessitating advanced 
formulation strategies or alternative administration routes to achieve therapeutic 
concentrations in vivo (Iwaloye et al., 2023). 

Plasma Protein Binding (PPB) 

The plasma protein binding (PPB) for g18_mol18 is extremely high at 104.94%, 
compared to 95% for Osimertinib. This high binding percentage indicates that 
most of the compound is bound to plasma proteins, leaving only a small fraction 
available for therapeutic action. Consequently, achieving the desired therapeutic 
effect may require higher dosages, which could increase the risk of adverse effects 
(Mkhayar et al., 2023). 

Blood-Brain Barrier (BBB) Permeability 

g18_mol18 shows a BBB permeability of 0, while Osimertinib has a value of 0.628, 
indicating that g18_mol18 is unlikely to cross the blood-brain barrier. This 
limitation restricts its use in treating central nervous system (CNS) metastases, 
which are common in advanced stages of NSCLC. Overcoming this challenge may 
involve molecular modifications to enhance CNS penetration while retaining 
efficacy (Omoboyowa et al., 2023). 

Half-Life (T12) and Clearance (CL) 

The half-life (T12) of g18_mol18 is extremely short at 0.01 hours, compared to 48 
hours for Osimertinib. This rapid elimination suggests that g18_mol18 would 
require more frequent dosing to maintain therapeutic levels, presenting a 
challenge for clinical use. Moreover, the clearance (CL) rate for g18_mol18 is 
negative (-0.038 L/hr) compared to 14.3 L/hr for Osimertinib, suggesting potential 
anomalies in excretion that warrant further investigation to avoid bioaccumulation 
or toxicity (Abdullahi et al., 2023). 

hERG Inhibition Potential 

One positive aspect is that g18_mol18 shows a lower hERG inhibition potential 
(0.302) compared to Osimertinib (0.923). Lower hERG inhibition is associated with 
a reduced risk of cardiotoxicity, an important safety parameter in cancer drug 
development (Patil & Bhandari, 2023). This makes g18_mol18 a promising 
candidate for further optimization despite its other pharmacokinetic limitations. 
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References 
This updated interpretation and references align the QSAR analysis discussion 
with accurate, validated literature, ensuring the information is reliable and 
supports the findings from the table accurately. 

Conclusion 
This study offers a thorough assessment of novel EGFR inhibitors, with g18_mol18 
emerging as a promising lead compound. Its superior binding affinity and 
extensive interaction profile, compared to existing EGFR inhibitors like 
Osimertinib, demonstrate its potential to enhance efficacy in the treatment of 
NSCLC. The detailed interaction analysis suggests that g18_mol18 may provide a 
more robust inhibition of EGFR signaling, an essential mechanism in controlling 
tumor growth and progression in NSCLC. 

Despite its potential, the ADMET analysis reveals several pharmacokinetic and 
pharmacodynamic limitations. These include poor oral absorption, high plasma 
protein binding, and an inability to cross the blood-brain barrier, all of which could 
compromise the compound’s clinical utility and bioavailability. Additionally, the 
elevated risk of hepatotoxicity indicates that safety monitoring must be prioritized 
during further development. 

To address these challenges, structural modifications are necessary to enhance 
g18_mol18’s pharmacokinetic profile while retaining its potent EGFR inhibition. 
The QSAR model developed in this study serves as a crucial tool in guiding these 
modifications by providing insights into the relationships between molecular 
descriptors and binding affinity. Future experimental validations, such as in vitro 
and in vivo pharmacokinetic studies, should focus on confirming the absorption, 
distribution, and metabolic pathways of g18_mol18. Furthermore, optimization 
efforts should include testing modified analogs for improved blood-brain barrier 
permeability and reduced hepatotoxicity, thus enhancing the compound's clinical 
applicability. 

In the context of clinical applications, the structural optimization of g18_mol18 
and its analogs has the potential to deliver more effective and safer therapies for 
NSCLC patients, especially for those resistant to current EGFR inhibitors. This 
research not only advances the field of targeted cancer therapy but also highlights 
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the need for a multi-faceted approach in drug development that integrates 
computational modeling with experimental validation. 

Call to Action: 
Moving forward, it is imperative to engage in targeted experimental studies that 
validate the in silico findings and to continue the refinement of EGFR inhibitors. By 
bridging computational models with clinical research, we can accelerate the 
development of next-generation cancer therapeutics that offer higher efficacy and 
safety, ultimately improving patient outcomes in NSCLC and beyond. 
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