Enhanced methanol production via selective hydrogen utilization during CO₂ hydrogenation over Co containing dual-atom doped oxide catalyst

Nazmul Hasan MD Dostagir,^a Carlo Robert Tomuschat,^{a,b} Atsushi Fukuoka,^a and Abhijit

Shrotri^a*

^{*a*} Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan

^b Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany

* Email: ashrotri@cat.hokudai.ac.jp, fukuoka@cat.hokudai.ac.jp

Abstract

Capturing hydrogen with CO₂ to produce methanol is becoming increasingly intriguing. Renewable H₂ is expensive and is currently produced in a limited amount. Therefore, selective utilization of H₂ towards methanol formation, which has been paid little attention to, is necessary without being wasted towards side product formation. Here, we show that using Co containing dual-atom doped oxide (Co-Zn-ZrO₂) catalyst H₂ utilization can be selectively directed towards methanol formation and at the same time, H₂ wastage can be minimized by suppressing competitive CO formation. Co-Zn-ZrO₂ produced methanol with space time yield of 1.5 g_{MeOH} h⁻¹ g_{cat}⁻¹, which is one of the highest ever reported under industrially relevant conditions. In this catalyst, Co was responsible for CO₂ activation and formate stabilization and made Zn free of formate poisoning, which helped in easy H₂ dissociation promoting formate hydrogenation to methanol. When Co was replaced with other metals (for example: Pd, Ni and Cu), H₂ utilization was promoted more towards CO formation than towards methanol formation decreasing methanol selectivity. This work represents the potential of Co containing dual-atom doped oxide catalyst for selectively utilizing H_2 for methanol formation while identifying the underlying factor for controlling H_2 utilization towards methanol or CO formation.

KEYWORD: CO₂ hydrogenation to methanol, selective H₂ utilization, selectivity control, formate pathway, doped oxide

Introduction

Hydrogen plays important roles in the energy sector and chemical synthesis despite not being an energy resource. It is almost not available naturally on earth and currently is mainly produced from non-renewable fossil fuels leading to an increase in CO₂ emission.¹ Renewable H₂ (for example: formed via water electrolysis, biomass reforming using renewable energy sources) is more expensive than non-renewable H₂.^{2,3} Therefore, H₂ needs to be stored and transported efficiently and safely. In this regard, methanol received much attention as a hydrogen carrier.^{4,5} H₂ is stored as methanol in a liquid form via CO₂ hydrogenation reaction (CO₂ + 3 H₂ \leftrightarrow CH₃OH + H₂O) and methanol can also be reacted to give the H₂ back forming a closed cycle. Therefore, during methanol production without being wasted for the formation of side products. Although CO₂ hydrogenation to methanol is a heavily investigated reaction, little attention has been paid to the selective utilization of hydrogen towards methanol formation.

One of the main problems in the way of utilizing H_2 efficiently towards methanol formation is the consumption of H_2 towards other side products mainly CO via reverse watergas shift (RWGS) reaction (CO₂ + H₂ \leftrightarrow CO + H₂O).⁴ Therefore, obtaining methanol with high productivity and selectivity and suppressing side product formation at the same time are highly important in order to selectively utilize H₂ for methanol formation. In this regard, oxides like In₂O₃, doped oxides (for example: M_aO_x -ZrO₂; $M_a = Zn$, Cd, Ga) are important candidates as catalysts for CO₂ hydrogenation to methanol reaction.^{6,7,8–11} They showed good selectivity of methanol albeit with poor methanol productivity because of their poor H₂ dissociation ability. Metal promoters were added to promote methanol productivity.^{12,13,22–27,14–21} However, methanol selectivity decreased although methanol productivity increased.^{14,15,17,18,22,26–30}

Oxygen vacancies present on the surface of the oxide catalysts act as the active site for CO₂ activation, H₂ activation and formate intermediate stabilization.³¹ However, strong adsorption of CO₂ and formate poison the active site by blocking it for H₂ dissociation leading to poor utilization of H₂ towards methanol production.^{32–35} Consequently, methanol selectivity and productivity decreased and selectivity of CO increased.^{36–38} Addition of metal promoters promotes H₂ dissociation ability.^{12,13,22–27,14–21} These extra dissociated hydrogen species are not controllable to be selectively utilized for methanol synthesis. Instead, they are used up for promoting RWGS reaction more than methanol formation.^{14,15,17,18,22,26–30} Thus, methanol selectivity decreased. Therefore, using a metal promoter for hydrogen dissociation is not a helpful way to utilize H₂ selectively for methanol formation.

In literature, little information is available on controlling H₂ consumption towards methanol formation selectively. Heterolytic dissociation of H₂ has been suggested as the promotional factor for methanol formation.³⁹ However, promotion of RWGS reaction despite heterolytic H₂ dissociation by promoter has also been suggested.^{14,40} Due to inability to detect the underlying factor for controlling H₂ utilization towards methanol formation, development of efficient catalyst capable of selectively utilizing H₂ for methanol formation becomes difficult.

Herein, we show that instead of directly promoting H₂ dissociation by adding metal promoters, creating a site that are responsible for CO₂ adsorption and formate intermediate stabilization and are different from that for H₂ dissociation can selectively utilize H₂ towards methanol formation and suppress H₂ wastage via side product formation. We have previously shown that the introduction of Co single atom in oxide structure creates oxygen deficient interfacial active sites for CO₂ adsorption and is helpful to mitigate the poisoning effect of CO₂ and formate on the H₂ dissociation element.^{41,42} In this piece of work, we prepared Co, Zn doped ZrO₂ (Co-Zn-ZrO₂) dual-atom doped oxide catalyst. We found that as compared to Zn-ZrO₂, Co-Zn-ZrO₂ increased H₂ consumption for methanol formation and suppressed H₂ consumption for RWGS reaction at the same time promoting both methanol selectivity and productivity. Co-Zn-ZrO₂ produced methanol with space time yield (STY_{MeOH}) of 1.5 g_{MeOH} h⁻ ¹ g_{cat} ⁻¹ under industrially relevant conditions, which is one of the highest STY_{MeOH} ever reported. Detailed analysis showed that in Co-Zn-ZrO₂, Co atoms created separate active sites and controlled CO₂ adsorption and formate stabilization and Zn sites being free of formate poisoning easily dissociated H₂ to hydrogenate the formate adsorbed on Co-Zr interfacial site selectively to methanol. At the same time, CO formation via formate decomposition was also suppressed. When Co was changed to other metals (for example: Cu, Pd and Ni), they promoted H₂ dissociation and created sites for side reaction wasting H₂ through RWGS reaction. As a result, methanol selectivity decreased. We found that the intrinsic activity of metal promoters for CO₂ hydrogenation is inversely proportional to the methanol selectivity in the dual-atom oxides. This work shows that catalysts designed based on the preferential adsorption of CO₂ and H₂ lead to the maximum use of H₂ for methanol formation and minimize H₂ wastage through side reactions.

Results and Discussion

Figure 1: (a) XRD of all dual-atom doped oxides and Zn-ZrO₂ with (b) the shift of the (101) reflection of t-ZrO₂. (c) HAADF-STEM image of Co-Zn-ZrO₂ showing the (110) plane of t-ZrO₂ and the corresponding d spacing. (d) HAADF-STEM image of Co-Zn-ZrO₂ with elemental mapping of (e) Co, (f) Zn and (g) Zr.

All catalysts with ZrO₂ as the bulk phase were prepared by coprecipitation of metal salts in ammonia solution followed by washing, drying and then calcination at 500 °C under air (see supporting information for detailed procedure). All doped oxide catalysts showed tetragonal ZrO₂ structure as observed in the X-ray diffraction (XRD) pattern (Figure 1a). No feature for individual oxide of dopants was observed. With increase in dopant concentration (shown in Figure S1), the 2θ value corresponding to the (101) plane of *t*-ZrO₂ shifted to higher value as compared to that of Zn-ZrO₂ (Figure 1b) because dopants have smaller ionic radii than that of Zr⁴⁺ ($r_{Zr^{4+}} = 0.84$ Å).⁴³ In the high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of Co-Zn-ZrO₂, only *t*-ZrO₂ phase was visible. (Figure 1c). Elemental mapping using energy dispersive X-ray (EDX) analysis (Figure 1d-g) showed homogeneous distribution of Co and Zn atoms.

Figure 2: (a) Comparison of catalytic activity between Zn-ZrO₂ and Co-Zn-ZrO₂. (b) Ratio of H₂ consumption between methanol and CO over different catalysts. (c) H₂ consumption towards methanol synthesis under variable H₂:CO₂ ratio. (d) H₂ consumption towards methanol and CO synthesis at H₂/CO₂ = 1. (e) Comparison of methanol selectivity over Zn-ZrO₂ and Co-Zn-ZrO₂ under variable H₂:CO₂ ratio. (f) Methanol productivity over Zn-ZrO₂ and Co-Zn-ZrO₂ under variable H₂:CO₂ ratio. (g) Activation energy of methanol formation over Zn-ZrO₂ and Co-Zn-ZrO₂. Order of methanol formation with respect to (h) H₂ (n_{H_2}) and (i) CO2 (n_{CO_2}). Rate of products were taken in mol g_{cat}⁻¹ h⁻¹. Effect of pressure (j), temperature at 5 MPa (k) and space velocity at 320 °C and 5 MPa (l) on methanol selectivity and productivity. Reaction condition: 300 °C, 3 MPa, 30,000 mL h⁻¹ g_{cat}⁻¹, H₂/CO₂ = 4 unless otherwise mentioned.

The performance of all catalysts in CO₂ hydrogenation reaction was evaluated in a stainless-steel fixed bed flow reactor (Figure S1). Undoped ZrO₂ showed (Table S2) negligible CO₂ conversion indicating that dopants were solely responsible for catalytic activity. First of all, we compared the catalytic activity of single atom doped Zn-ZrO₂ and dual atom doped *M*-Zn-ZrO₂ (M = Co, Pd, Ni and Cu) catalysts at 300 °C, 3 MPa, 30000 mL h^{-1} g_{cat}⁻¹, H₂:CO₂ = 4:1 (Figure 2a and Table S2). Methanol selectivity (*S*_{MeOH}) and

productivity over Zn-ZrO₂ were 76% and 0.25 g_{MeOH} h⁻¹ g_{cat}⁻¹ respectively. When a third element was introduced, STY_{MeOH} increased. However, S_{MeOH} increased only when Co was introduced. In the case of Co-Zn-ZrO₂, S_{MeOH} increased to 87% and methanol productivity increased to 0.36 g_{MeOH} h⁻¹ g_{cat}⁻¹. The S_{MeOH} and STY_{MeOH} of Co-Zn-ZrO₂ were much higher than that over single-atom analogues (Zn-ZrO2 and Co-ZrO2) and their physical mixture (Zn- $ZrO_2 + Co-ZrO_2$) (Figure S2a). Among them, Co-Zn-ZrO₂ showed the lowest space time yield of CO (STY_{CO}) (Figure S2b). Therefore, presence of Co in dual-atom doped oxide selectively promotes methanol formation while suppressed CO formation at the same time. All other dual atom M-Zn-ZrO₂ (M = Pd, Ni and Cu) oxide catalysts showed lower S_{MeOH} than Zn-ZrO₂. Along with the decrease in S_{MeOH}, introduction of Pd, Ni and Cu increased both STY_{CO} and S_{CO} (Table S2 and figure S3). These results are in line with reported literature.^{14,15,17,18,22,26,27} The effect of Co to increase both S_{MeOH} and STY_{MeOH} was further confirmed by carrying out reaction in a wide temperature range (260 - 360 °C) (Figure S4). At 260 °C, methanol selectivity over Zn-ZrO₂ was 80%, which was increased to 98% over Co-Zn-ZrO₂. The latter showed higher S_{MeOH} and STY_{MeOH} than Zn-ZrO₂ even at unfavorable temperature range for methanol synthesis (> 300 °C).

Next, to understand the usage of H_2 towards methanol and CO formation over different catalysts, we calculated the ratio between H_2 utilization towards methanol to that towards CO formation (H_2 (MeOH) : H_2 (CO)) (Figure 2b). For Zn-ZrO₂, the H_2 (MeOH) : H_2 (CO) ratio was 9.6. For Co-Zn-ZrO₂, the ratio increased to 18. Whereas, for other catalysts the ratio decreased as compared to that of Zn-ZrO₂. The ratio decreased the most for Cu-Zn-ZrO₂. This result shows that over Co-Zn-ZrO₂, H_2 was used selectively for methanol formation and H_2 wastage towards CO was suppressed. On the other hand, presence of Pd, Ni and Cu, although increased methanol productivity, increased wastage of H_2 to a much higher degree due to promotion of CO formation. To understand the consumption of H_2 over Co-Zn-

ZrO₂ in more detail, we compared the H₂ consumption over Co-Zn-ZrO₂ and Zn-ZrO₂ under varying H₂:CO₂ ratio (Figure 2c). When H₂:CO₂ ratio was changed from 4:1 to 1:1, the H₂ consumption towards methanol synthesis decreased by 6% over Co-Zn-ZrO₂. In comparison, over Zn-ZrO₂, H₂ consumption towards methanol synthesis decreased by 60%. At H₂:CO₂ ratio of 1:1, while the H₂ consumption towards CO formation was similar, H₂ consumption towards methanol formation for Co-Zn-ZrO₂ was 3 times higher than that for Zn-ZrO₂ (Figure 2d). As a result of the better H₂ utilization towards methanol formation over Co-Zn- ZrO_2 as compared to Zn-ZrO₂, the former showed much higher S_{MeOH} (Figure 2e) and STY_{MeOH} (Figure 2f) as compared to the latter even in H₂ lean conditions (H₂/CO₂ < 3, less than the stoichiometric requirement). To better understand the ability of $Co-Zn-ZrO_2$ to produce methanol selectively even under low H₂ partial pressure, we calculated the activation energy (E_a) for methanol formation over Co-Zn-ZrO₂ and Zn-ZrO₂ (Figure 2g). E_a for methanol formation over Zn-ZrO₂ was 110 kJ mol⁻¹. Over Co-Zn-ZrO₂, it was reduced to 68 kJ mol⁻¹. For Zn-ZrO₂, the order of methanol formation with respect to H₂ ($n_{\rm H_2}$) was 1.8 (Figure 2h) and that with respect to CO_2 (n_{CO_2}) was -0.9 (Figure 2i). In comparison, over the Co-Zn-ZrO₂ catalyst the $n_{\rm H_2}$ and $n_{\rm CO_2}$ were 0.25 and -0.13, respectively. Higher negative value of n_{CO_2} for Zn-ZrO₂ indicates that adsorption of CO₂ on the active site of Zn-ZrO₂ inhibited methanol formation. These results are in line with reported literature⁴⁴ and it has been shown that methanol selectivity reduces over oxide catalysts because the adsorption of intermediates and H₂ dissociation occur on the same site.^{36,38} Higher positive value of $n_{\rm H_2}$ for Zn-ZrO₂ indicates that higher partial pressure of H₂ is needed for methanol formation. On the contrary, over Co-Zn-ZrO₂, values of $n_{\rm H_2}$ and $n_{\rm CO_2}$ close to zero suggest less dependency on both H₂ and CO₂ partial pressure. These different $n_{\rm H_2}$ and $n_{\rm CO_2}$ over Co-Zn-ZrO₂ indicate that the sites for CO₂ activation and H₂ dissociation are different in Co-Zn-ZrO₂.⁴²

After confirming the directional property of Co in H₂ utilization towards methanol synthesis, catalytic performance of Co-Zn-ZrO₂ were optimized by varying reaction parameters. Increasing pressure has a positive effect on methanol productivity (Figure 2j). With increasing pressure from 3 MPa to 5 MPa at 300 °C and 30,000 mL h⁻¹ g_{cat}⁻¹, STY_{MeOH} increased from 0.36 g_{MeOH} h⁻¹ g_{cat}⁻¹ to 0.43 g_{MeOH} h⁻¹ g_{cat}⁻¹. Increasing reaction temperature from 300 °C to 320 °C at 5 MPa increased STY_{MeOH} from 0.43 g_{MeOH} h⁻¹ g_{cat}⁻¹ to 0.75 g_{MeOH} h⁻¹ ¹ g_{cat}⁻¹ (Figure 2k). S_{MeOH} remained similar. Changing space velocity had a positive effect on both S_{MeOH} and STY_{MeOH} until 120,000 mL h⁻¹ g_{cat}⁻¹, beyond which both decreased (Figure 21). Increasing space velocity from 30,000 mL h⁻¹ g_{cat}⁻¹ to 120,000 mL h⁻¹ g_{cat}⁻¹ at 5 MPa and 320 °C increased STY_{MeOH} from 0.75 g_{MeOH} h⁻¹ g_{cat} ⁻¹ to 1.5 g_{MeOH} h⁻¹ g_{cat} ⁻¹, which is one of the highest STY_{MeOH} reported so far under industrially relevant conditions (Table S3). The Co-Zn-ZrO₂ catalysts showed robustness against change in reaction conditions and showed stability during a 100 h long catalytic test (Figure S5a). XRD analysis of the used catalyst after 100 h showed no change (Figure S5b) and XPS analysis confirmed that Co²⁺, Zn²⁺ and Zr⁴⁺ did not change oxidation state after the reaction (Figure S5c-e). Elemental mapping analysis confirmed no agglomeration of Co or Zn species showing high dispersion (Figure S5f-i).

H₂ dissociation ability

Figure 3: (a) Mass intensity of HD in H₂-D₂ isotope exchange experiment over all catalysts. (b) Relative oxygen defect content calculated from O 1S XPS, (c) CO₂ TPD spectra and (d) amount of CO₂ chemisorbed over all the dual-atom doped oxides in comparison to Zn-ZrO₂.

There are two direct ways to influence methanol selectivity and productivity. One is to influence H₂ dissociation while the other is to influence CO₂ adsorption and formate intermediate stabilization. Therefore, first we checked whether Co increased the H₂ dissociation ability to improve H₂ utilization towards methanol synthesis. To do so, we compared the ability of HD formation of all catalysts in H₂-D₂ isotope exchange experiment (Figure 3a). In this experiment, H₂ and D₂ dissociated over the surface of catalysts and formed HD. If HD formation starts at lower temperature over one catalyst, it indicates that the catalyst has high H₂ dissociation ability as compared to other catalysts. The onset temperature for HD formation over Zn-ZrO₂ was around 125 °C, which was similar to that over Co-Zn-ZrO₂. As compared to Zn-ZrO₂ and Co-Zn-ZrO₂, the onset temperature for HD formation was lower over Cu-Zn-ZrO₂ (95 °C), Ni-Zn-ZrO₂ (95 °C) and Pd-Zn-ZrO₂ (50 °C). This indicates that the introduction of Co did not increase the H₂ dissociation ability. Unlike Co, introduction of Pd, Ni and Cu increased H₂ dissociation ability. The ability of Co to utilize H₂ selectively for methanol synthesis despite its inability to promote H₂ dissociation as compared to other metals indicates that Co must take part directly in CO₂ adsorption and formate intermediate stabilization and influences H₂ dissociation and its utilization indirectly.

CO₂ activation ability

To understand the CO₂ activation ability, first we analyzed the presence of oxygen vacancy over different catalysts because oxygen vacancy present on the oxide surface serves as the active site for CO₂ activation.⁴¹ The density of defective oxygen species was measured by the O 1s XPS analysis (Figure S6). The relative amount of O_{defect} was 16% for Zn-ZrO₂ (Figure 3b). Incorporation of a dopant (Co, Pd, Ni, Cu) did not increase the Odefect. Next, in the CO₂ temperature programmed desorption (CO₂ TPD) analysis of pre-adsorbed CO₂, two desorption features were observed (Figure 4c). The low temperature feature (100-250 °C) indicates the desorption of physisorbed and weakly adsorbed CO₂ species whereas the high temperature feature (250-500 °C) indicates the desorption of chemisorbed CO₂ species, which is the main reactive species for methanol formation. Among all the catalysts, Co-Zn-ZrO₂ increased CO₂ chemisorption (72 µmol g⁻¹) as compared to Zn-ZrO₂ (44 µmol g⁻¹) (Figure 4d). In comparison, Pd-Zn-ZrO₂, Ni-Zn-ZrO₂ and Cu-Zn-ZrO₂ showed similar CO₂ chemisorption (41, 47 and 44 µmol g⁻¹) to Zn-ZrO₂. For Co-Zn-ZrO₂, increased CO₂ chemisorption despite having similar density of oxygen defect to Zn-ZrO₂ indicates that Co changes the chemical environment around the oxygen vacancy so that the CO₂ is strongly chemisorbed. This is in line with our previous report where introduction of Co^{2+} single atom in ZrO₂ created oxygen vacancy around Co atoms, which were responsible for CO₂ chemisorption at Co-V_o-Zr (V_o = oxygen vacancy) interfacial site.⁴¹ Therefore, presence of Co in the dual-atom doped oxide structure controls CO_2 activation.

Site for formate adsorption

Figure 4: (a) Comparison of IR peak positions of formate species stabilized over Zn-ZrO₂, Co-Zn-ZrO₂ and Cu-Zn-ZrO₂ under steady state during in situ DRIFTS experiment (reaction condition: 300 °C, 0.1 MPa, $H_2/CO_2 = 4$). (b) Mass intensity of m/z = 28 during HCOOH TPD experiments over the three doped catalysts.

Over oxide catalysts, formate is the key intermediate for CO_2 hydrogenation to methanol as well as $CO.^{7,36,41,45}$ In order to understand the formate stabilization site over different catalysts, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis was carried out at 300 °C, 0.1 MPa, H₂:CO₂ = 4 (Figure S7). Bidentate

formate bonded with two Zr atoms is the most stable formate configuration in undoped ZrO_2 .^{10,46,47} In comparison to undoped ZrO_2 , formate peak positions were shifted in the presence of doped oxides (Figure S8). This indicates that in the doped oxides formate is stabilized at M-Zr (M = dopant) interface. We compared Zn-ZrO₂, Co-Zn-ZrO₂ and Cu-Zn-ZrO₂ (Cu-Zn-ZrO₂ being the most CO selective was chosen among the other three dual-atom doped oxides) (Figure 4a). The formate peak positions over Co-Zn-ZrO₂ were similar to Co-ZrO₂ and shifted from that over Zn-ZrO₂ (Figure S8 and 5a). This indicates that the formate stabilization site over Co-Zn-ZrO₂ was Co-Zr interfacial site (Figure S9). This was in line with reported literature that Co-Zr interface stabilizes formate species.^{41,42} When Co was changed to Cu, formate peak positions over Cu-Zn-ZrO₂ were similar to that over Zn-ZrO₂.

For further confirmation, we performed temperature programmed decomposition of adsorbed formic acid (HCOOH TPD) over catalysts surface (Figure 4b). Decomposition of adsorbed formic acid over Co-Zn-ZrO₂ resulted in CO formation with a peak centered at 340 °C while the decomposition profile for both Zn-ZrO₂ and Cu-Zn-ZrO₂ showed CO formation at lower temperature (300 °C). These results confirm that Co site in Co-Zn-ZrO₂ was responsible for CO₂ adsorption and stabilization of formate. Over Co-Zn-ZrO₂, formate became more stabilized as compared to that over Zn-ZrO₂ and Cu-Zn-ZrO₂. Better stabilization of formate might be the reason behind suppression of CO formation via formate stabilization. On the other hand, when Cu was used, it did not take part in formate stabilization. Therefore, promotion of RWGS reaction over Cu-Zn-ZrO₂ may be a result of excessive CO₂ hydrogenation to CO over Cu site itself.

Selective utilization of H₂ towards methanol formation: Co-Zn cooperation

Figure 5: Normalized intensity of (a) formate and (b) methoxy species during in situ DRIFTS analysis of Zn-ZrO₂, Co-Zn-ZrO₂ and Cu-Zn-ZrO₂. Reaction condition: 300 °C, 0.1 MPa, H₂ : CO₂ = 4. In situ DRIFTS analysis for the production of (c) methoxy and (d) CO under different temperatures. Reaction condition: T °C, 0.1 MPa, H₂ : CO₂ = 4.

To realize the selective utilization of H₂ towards methanol formation resulting enhanced methanol selectivity and productivity, we studied in situ DRIFTS analysis. For methanol formation over oxide surface, the reaction pathway follows successive hydrogenation of formate to methoxy species adsorbed on the surface followed by desorption of methoxy as methanol.⁴⁵ Time resolved evolution of adsorbed species was measured by in situ DRIFTS under CO₂ hydrogenation condition (Figure 5a, b). Complete DRIFTS spectra for all catalysts and detailed peak assignment are shown in Figure S10-S12 and Table S4. At the start of the reaction, formate species appeared rapidly along with carbonate over all doped catalysts

indicating formate formation was easy over all three catalysts. Methoxy species first appeared on the surface of Co-Zn-ZrO2 followed by Cu-Zn-ZrO2 and Zn-ZrO2 indicating the high activity of Co-Zn-ZrO₂ towards methanol synthesis. After formate and methoxy reached the steady state under CO₂ and H₂ atmosphere, CO₂ flow was stopped to monitor the consumption of formate and methoxy species. Formate was consumed faster over Co-Zn-ZrO₂ than over Zn-ZrO₂. The rate of disappearance of methoxy over Co-Zn-ZrO₂ was also faster than that over Zn-ZrO₂. These results indicate that, formate adsorbed over the Co-Zr interface was more reactive. In addition, the desorption of methoxy species adsorbed over Co-Zn-ZrO₂ surface was also facile. Slow consumption of formate over Zn-ZrO₂ indicates that H₂ dissociation over Zn atoms in presence of formate is difficult. Moreover, methoxy was not observed in Co-ZrO₂ catalyst during in situ DRIFTS analysis (Figure S13) indicating that only Co single atom cannot dissociate H₂ in presence of formate. Therefore, it is evident that in Co-Zn-ZrO₂, hydrogen was dissociated over Zn atoms to promote the hydrogenation of formate species adsorbed on Co-Zr interface to produce methanol. It is worth mentioning that in Co-Zn-ZrO₂, Zn being free of CO₂ and formate (as Co controls CO₂ activation and formate stabilization) dissociates H₂ easily promoting formate hydrogenation to methanol. This cooperative effect was further confirmed by temperature dependent in-situ DRIFTS study (Figure 5c, d). Peak for adsorbed methoxy species appeared at a lower temperature over Co-Zn-ZrO₂ than over Zn-ZrO₂. On the other hand, Co-Zn-ZrO₂ produced CO formation at higher temperature as compared to Zn-ZrO₂ and showed much lower CO formation than Zn-ZrO₂. Hence, it is evident that dissociated hydrogen species over Zn sites were mainly consumed for methoxy formation and H₂ wastage via RWGS reaction was also suppressed.

When Co was replaced to Cu, the rate of consumptions for formate and methoxy species over Cu-Zn-ZrO₂ were in between that over Co-Zn-ZrO₂ and Zn-ZrO₂, which is in line with the STY_{MeOH} exerted by them (Figure 5a, b). In the temperature dependent in situ DRIFTS

study (Figure 5c), methoxy formation over Cu-Zn-ZrO₂ started at higher temperature as compared to Co-Zn-ZrO₂. Rather Cu-Zn-ZrO₂ started CO formation at much lower temperature (Figure 5d). CO peak intensity for Cu-Zn-ZrO₂ was much more intense than that over Zn-ZrO₂ and Co-Zn-ZrO₂. Considering the same formate stabilization site for both Zn-ZrO₂ and Cu-Zn-ZrO₂ (as shown by HCOOH TPD experiment), slower formate consumption rate for Cu-Zn-ZrO₂ than that Co-Zn-ZrO₂ (in line with *STY*_{MeOH}) and high H₂ dissociating ability for Cu-Zn-ZrO₂ (as shown in the study of H₂ dissociation ability), it can be said that Cu itself creates a new active site for the promotion of RWGS in Cu-Zn-ZrO₂ catalyst. In literature it has also been reported that dopant single atom can create its own CO₂ hydrogenation site to promote side reaction in methanol synthesis.⁴⁰ Therefore, in order to effectively utilizing H₂ for methanol formation, use of Co to create CO₂ activation and formation stabilization site is more important than the use of a metal promoter (for example Cu, Ni, Pd) that promotes H₂ dissociation.

Mechanism

Figure 6: Mechanism of methanol formation over Co-Zn-ZrO₂ catalyst.

Based on the above results we propose the following mechanism for CO₂ hydrogenation to methanol over Co-Zn-ZrO₂ catalyst through cooperative effect of the Co and Zn (Figure 6).

Doping of Co²⁺ generates creates oxygen vacant site for adsorption of CO₂. First H₂ dissociation might happen on either Co or Zn atoms for hydrogenation of adsorbed CO₂, although the presence of Zn promotes hydrogenation of adsorbed CO₂ to formate. Following formate formation, the ability of Co to dissociate H₂ and hydrogenate formate is hindered. Instead, H₂ dissociated over adjacent Zn atoms facilitates hydrogenation of formate to methoxy species and promotes the desorption of methoxy species as methanol. Because the stability of formate is increased and formate gets selectively hydrogenated to methoxy by the cooperation of Co and Zn atoms, the chance of CO formation via formate decomposition was low. Furthermore, because Co controls CO₂ adsorption, the possibility of CO formation over Zn site also became low due to lack of available CO₂. Thus, the presence of Co on one hand promoted methanol formation and on the other hand suppressed CO formation. As a result, hydrogen dissociated over Zn atoms was selectively utilized for methanol formation. Consequently, both the S_{MeOH} and STY_{MeOH} were increased. Being free of poisonous effect of CO₂ and formate, Zn atoms assisted in H₂ dissociation and hydrogenation of adsorbed intermediates to methanol more freely. Consequently, higher S_{MeOH} can be obtained even at low H₂ partial pressure. Thus, the introduction of Co in the oxide structure directed the utilization of H₂ selectively towards methanol formation. If Co was changed to another metal (Pd, Ni, Cu), which can only promote H₂ dissociation ability, the chance of side product formation over that metal increased due to intrinsic CO₂ hydrogenation ability of that metal.

Figure 7: Correlation between specific CO₂ consumption activity of metal dopants and product selectivity over dual-atom doped oxide catalysts.

To test this theory, we calculated intrinsic CO₂ consumption rate for Co, Pd, Ni and Cu and related it with the S_{MeOH} and S_{CO} of the corresponding dual-atom doped oxides. For calculating intrinsic CO₂ consumption rate over a metal, we calculated the dopant metal specific CO₂ consumption rate of the corresponding single-atom doped oxide. Because undoped ZrO₂ is inactive in CO₂ hydrogenation, the activity of single-atom doped oxides can be attributed to the intrinsic activity of the corresponding doped metals. Figure 7 shows the result. Among Co, Ni, Pd and Cu, Co has the lowest intrinsic activity in CO₂ consumption and the corresponding Co-Zn-ZrO₂ showed the highest S_{MeOH} and the lowest S_{CO} . With increasing the specific activity of metals, the S_{MeOH} of the corresponding dual-atom doped oxide oxide decreased. Therefore, to effectively steer H₂ utilization towards methanol synthesis, focusing on intermediate stabilization and their effective conversion to methanol is more important than focusing on uncontrollable promotion in H₂ dissociation. The latter would rather waste H₂ by utilizing it towards CO formation and would decrease S_{MeOH} .

Discussion

In order to effectively capture and store H_2 as methanol, oxide catalysts are important as they produce methanol with good selectivity although H_2 utilization remained poor due to low methanol productivity because of poor H_2 dissociation ability. Metal promoters were used to promote H₂ dissociation, but they promote competing RWGS reaction more than methanol formation. Herein, we prepared Co-Zn-ZrO₂ dual-atom doped oxide which selectively promoted H₂ utilization for methanol formation and at the same time suppressed H₂ utilization for CO formation thus, promoting both methanol selectivity and productivity. Detailed analysis found that introduction of Co controls CO₂ adsorption and formate stabilization by creating oxygen vacant sites near itself. Thus, Zn became free of CO₂ and formate poisoning and dissociated H₂ easily and promoted formate hydrogenation to methanol. When other metals having high H₂ dissociation ability (for example: Pd, Cu, Ni) were used instead of Co, they promoted H₂ dissociation and promoted RWGS more than methanol formation. As a result, although methanol productivity increased, methanol selectivity decreased. This study showed that tuning of CO₂ and formate adsorption site is a better approach than promoting H₂ dissociation in order to selectively promote H₂ utilization for methanol synthesis. We belief that this work will inspire to take into account the efficient utilization of H₂ in hydrogenation reactions.

Supporting Information

Acknowledgement

This work was supported by JSPS Grant-in-Aid for Scientific Research (C) KAKENHI JP22K04821 and research fund from The Japan Petroleum Institute. This work was also supported by Iketani Science and Technology Foundation. A part of this work was supported by "Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)" of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Grant Number JPMXP122HK0089 (Hokkaido University).

References

- (1) Lubitz, W.; Tumas, W. Hydrogen: An Overview. Chem. Rev. 2007, 107, 3900–3903.
- Hassan, Q.; Abdulateef, A. M.; Hafedh, S. A.; Al-samari, A.; Abdulateef, J.; Sameen,
 A. Z.; Salman, H. M.; Al-Jiboory, A. K.; Wieteska, S.; Jaszczur, M. Renewable
 Energy-to-Green Hydrogen: A Review of Main Resources Routes, Processes and
 Evaluation. *Int. J. Hydrogen Energy*. 2023, 48, 17383–17408.
- (3) Turner, J.; Sverdrup, G.; Mann, M. K.; Maness, P. C.; Kroposki, B.; Ghirardi, M.;
 Evans, R. J.; Blake, D. Renewable Hydrogen Production. *Int. J. Energy Res.* 2008, 32 (5), 379–407.
- (4) Frei, M. S.; Mondelli, C.; Short, M. I. M.; Pérez-Ramírez, J. Methanol as a Hydrogen Carrier: Kinetic and Thermodynamic Drivers for Its CO₂-Based Synthesis and Reforming over Heterogeneous Catalysts. *ChemSusChem* **2020**, *13* (23), 6330–6337.
- (5) Niermann, M.; Drünert, S.; Kaltschmitt, M.; Bonhoff, K. Liquid Organic Hydrogen Carriers (LOHCs)-Techno-Economic Analysis of LOHCs in a Defined Process Chain. *Energy Environ. Sci.* 2019, 12 (1), 290–307.
- Martin, O.; Martín, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla-Ferré, D.; Pérez-Ramírez, J. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO₂ Hydrogenation. *Angew. Chemie Int. Ed.* 2016, 55 (21), 6261–6265.
- Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. CO₂
 Hydrogenation to Methanol over In₂O₃-Based Catalysts: From Mechanism to Catalyst
 Development. ACS Catal. 2021, 11 (3), 1406–1423.
- (8) Feng, W. H.; Yu, M. M.; Wang, L. J.; Miao, Y. T.; Shakouri, M.; Ran, J.; Hu, Y.; Li,
 Z.; Huang, R.; Lu, Y. L.; Gao, D.; Wu, J. F. Insights into Bimetallic Oxide Synergy

during Carbon Dioxide Hydrogenation to Methanol and Dimethyl Ether over GaZrO_x Oxide Catalysts. *ACS Catal.* **2021**, *11* (8), 4704–4711.

- (9) Tada, S.; Ochiai, N.; Kinoshita, H.; Yoshida, M.; Shimada, N.; Joutsuka, T.; Nishijima, M.; Honma, T.; Yamauchi, N.; Kobayashi, Y.; Iyoki, K. Active Sites on Zn_xZr_{1-x}O_{2-x} Solid Solution Catalysts for CO₂-to-Methanol Hydrogenation. *ACS Catal.* 2022, *12*, 7748–7759.
- Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A Highly Selective and Stable ZnO-ZrO₂ Solid Solution Catalyst for CO₂ Hydrogenation to Methanol. *Sci. Adv.* 2017, *3* (10).
- Wang, J.; Tang, C.; Li, G.; Han, Z.; Li, Z.; Liu, H.; Cheng, F.; Li, C. High-Performance MaZrO_x (Ma = Cd, Ga) Solid-Solution Catalysts for CO₂ Hydrogenation to Methanol. *ACS Catal.* 2019, 9 (11), 10253–10259.
- (12) Frei, M. S.; Mondelli, C.; García-Muelas, R.; Kley, K. S.; Puértolas, B.; López, N.;
 Safonova, O. V.; Stewart, J. A.; Curulla Ferré, D.; Pérez-Ramírez, J. Atomic-Scale
 Engineering of Indium Oxide Promotion by Palladium for Methanol Production via
 CO₂ Hydrogenation. *Nat. Commun.* 2019, *10* (1), 1–11.
- (13) Pinheiro Araújo, T.; Mondelli, C.; Agrachev, M.; Zou, T.; Willi, P. O.; Engel, K. M.;
 Grass, R. N.; Stark, W. J.; Safonova, O. V.; Jeschke, G.; Mitchell, S.; Pérez-Ramírez, J.
 Flame-Made Ternary Pd-In₂O₃-ZrO₂ Catalyst with Enhanced Oxygen Vacancy
 Generation for CO₂ Hydrogenation to Methanol. *Nat. Commun.* 2022, *13* (1), 1–12.
- (14) Lee, K.; Anjum, U.; Araújo, T. P.; Mondelli, C.; He, Q.; Furukawa, S.; Pérez-Ramírez, J.; Kozlov, S. M.; Yan, N. Atomic Pd-Promoted ZnZrO_x Solid Solution Catalyst for CO₂ Hydrogenation to Methanol. *Appl. Catal. B Environ.* 2022, *304*, 120994.

- (15) Lee, K.; Mendes, P. C. D.; Jeon, H.; Song, Y.; Dickieson, M. P.; Anjum, U.; Chen, L.;
 Yang, T. C.; Yang, C. M.; Choi, M.; Kozlov, S. M.; Yan, N. Engineering Nanoscale H
 Supply Chain to Accelerate Methanol Synthesis on ZnZrO_x. *Nat. Commun.* 2023, *14*(1), 819.
- (16) Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C. J. A Highly Active Pt/In₂O₃ catalyst for CO₂ hydrogenation to Methanol with Enhanced Stability. *Green Chem.* 2020, 22 (15), 5059–5066.
- (17) Xu, D.; Hong, X.; Liu, G. Highly Dispersed Metal Doping to ZnZr Oxide Catalyst for CO₂ Hydrogenation to Methanol: Insight into Hydrogen Spillover. J. Catal. 2021, 393, 207–214.
- (18) Dostagir, N. H. M.; Thompson, C.; Kobayashi, H.; Karim, A. M.; Fukuoka, A.; Shrotri,
 A. Rh Promoted In₂O₃ as a Highly Active Catalyst for CO₂ Hydrogenation to
 Methanol. *Catal. Sci. Technol.* 2020, *10* (24), 8196–8202.
- Li, M. M.; Zou, H.; Zheng, J.; Wu, T.; Chan, T.; Soo, Y.; Wu, X.; Gong, X.; Chen, T.; Roy, K.; Held, G.; Tsang, S. C. E. Methanol Synthesis at a Wide Range of H₂/CO₂ Ratios over a Rh-In Bimetallic Catalyst. *Angew. Chemie* 2020, *132* (37), 16173–16180.
- (20) Rui, N.; Wang, X.; Deng, K.; Moncada, J.; Rosales, R.; Zhang, F.; Xu, W.; Waluyo, I.; Hunt, A.; Stavitski, E.; Senanayake, S. D.; Liu, P.; Rodriguez, J. A. Atomic Structural Origin of the High Methanol Selectivity over In₂O₃-Metal Interfaces: Metal-Support Interactions and the Formation of a InO_x Overlayer in Ru/In₂O₃ Catalysts during CO₂ Hydrogenation. *ACS Catal.* 2023, *13*, 3187–3200.
- (21) Shen, C.; Sun, K.; Zou, R.; Wu, Q.; Mei, D.; Liu, C. J. CO₂ Hydrogenation to Methanol on Indium Oxide-Supported Rhenium Catalysts: The Effects of Size. ACS Catal. 2022, 12 (20), 12658–12669.

- (22) Frei, M. S.; Mondelli, C.; García-Muelas, R.; Morales-Vidal, J.; Philipp, M.; Safonova,
 O. V.; López, N.; Stewart, J. A.; Ferré, D. C.; Pérez-Ramírez, J. Nanostructure of Nickel-Promoted Indium Oxide Catalysts Drives Selectivity in CO₂ Hydrogenation. *Nat. Commun.* 2021, *12* (1), 1–9.
- (23) Song, L.; Wang, H.; Wang, S.; Qu, Z. Dual-Site Activation of H₂ over Cu/ZnAl₂O₄
 Boosting CO₂ Hydrogenation to Methanol. *Appl. Catal. B Environ.* 2023, *322*, 122137.
- Bavykina, A.; Yarulina, I.; Al Abdulghani, A. J.; Gevers, L.; Hedhili, M. N.; Miao, X.;
 Galilea, A. R.; Pustovarenko, A.; Dikhtiarenko, A.; Cadiau, A.; Aguilar-Tapia, A.;
 Hazemann, J.-L.; Kozlov, S. M.; Oud-Chikh, S.; Cavallo, L.; Gascon, J. Turning a
 Methanation Co Catalyst into an In–Co Methanol Producer. *ACS Catal.* 2019, *9* (8), 6910–6918.
- (25) Li, L.; Yang, B.; Gao, B.; Wang, Y.; Zhang, L.; Ishihara, T.; Qi, W.; Guo, L. CO₂ Hydrogenation Selectivity Shift over In-Co Binary Oxides Catalysts: Catalytic Mechanism and Structure-Property Relationship. *Chinese J. Catal.* 2022, 43 (3), 862– 876.
- (26) Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosinov, N.; Filot, I. A. W.; Rabeah, J.;
 Brückner, A.; Hensen, E. J. M. Ni-In Synergy in CO₂ Hydrogenation to Methanol. *ACS Catal.* 2021, *11* (18), 11371–11384.
- (27) Han, X.; Xiao, T.; Li, M.; Hao, Z.; Chen, J.; Pan, Y.; Zi, X.; Zhang, H.; Xi, S.; Wai, H.
 M.; Kawi, S.; Ma, X. Synergetic Interaction between Single-Atom Cu and Ga₂O₃
 Enhances CO₂ Hydrogenation to Methanol over CuGaZrO_x. ACS Catal. 2023, 13 (20), 13679–13690.
- (28) Jia, X.; Sun, K.; Wang, J.; Shen, C.; Liu, C. jun. Selective Hydrogenation of CO₂ to Methanol over Ni/In₂O₃ Catalyst. *J. Energy Chem.* **2020**, *50*, 409–415.

- Wang, J.; Sun, K.; Jia, X.; Liu, C. jun. CO₂ Hydrogenation to Methanol over Rh/In₂O₃
 Catalyst. *Catal. Today* 2021, 365, 341–347.
- (30) Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. jun. CO₂ Hydrogenation to Methanol over Pd/In₂O₃: Effects of Pd and Oxygen Vacancy. *Appl. Catal. B Environ.* 2017, 218, 488–497.
- (31) Ye, J.; Liu, C.; Mei, D.; Ge, Q. Active Oxygen Vacancy Site for Methanol Synthesis from CO₂ Hydrogenation on In₂O₃ (110): A DFT Study. *ACS Catal.* 2013, *3* (6), 1296–1306.
- (32) Kattel, S.; Yan, B.; Yang, Y.; Chen, J. G.; Liu, P. Optimizing Binding Energies of Key Intermediates for CO₂ Hydrogenation to Methanol over Oxide-Supported Copper. J. Am. Chem. Soc. 2016, 138 (38), 12440–12450.
- (33) Jung, K. D.; Bell, A. T. Role of Hydrogen Spillover in Methanol Synthesis over Cu/ZrO₂. J. Catal. 2000, 193 (2), 207–223.
- (34) Tang, C.; Tang, S.; Sha, F.; Han, Z.; Feng, Z.; Wang, J.; Li, C. Insights into the Selectivity Determinant and Rate-Determining Step of CO₂ Hydrogenation to Methanol. J. Phys. Chem. C 2022, 126 (25), 10399–10407.
- (35) Polierer, S.; Jelic, J.; Pitter, S.; Studt, F. On the Reactivity of the Cu/ZrO₂ System for the Hydrogenation of CO₂ to Methanol: A Density Functional Theory Study. *J. Phys. Chem. C* 2019, *123* (44), 26904–26911.
- (36) Chen, T. Y.; Cao, C.; Chen, T. B.; Ding, X.; Huang, H.; Shen, L.; Cao, X.; Zhu, M.;
 Xu, J.; Gao, J.; Han, Y. F. Unraveling Highly Tunable Selectivity in CO₂
 Hydrogenation over Bimetallic In-Zr Oxide Catalysts. *ACS Catal.* 2019, 9 (9), 8785–8797.

- (37) Fang, H.; Zhao, G.; Cheng, D.; Liu, J.; Lan, D.; Jiang, Q.; Liu, X.; Ge, J.; Xu, Z.; Xu,
 H. MOF-Derived Bimetallic Core–Shell Catalyst HZSM-5@ZrO₂–In₂O₃: High CO₂
 Conversion in Reverse Water Gas Shift Reaction. *Mater. Chem. Front.* 2022.
- (38) Šot, P.; Noh, G.; Weber, I. C.; Pratsinis, S. E.; Copéret, C. The Influence of ZnO–ZrO₂
 Interface in Hydrogenation of CO₂ to CH₃OH. *Helv. Chim. Acta* 2022, *105* (3), e202200007.
- (39) Han, Z.; Tang, C.; Wang, J.; Li, L.; Li, C. Atomically Dispersed Ptⁿ⁺ Species as Highly Active Sites in Pt/In₂O₃ Catalysts for Methanol Synthesis from CO₂ Hydrogenation. *J. Catal.* 2021, 394, 236–244.
- (40) Cannizzaro, F.; Hensen, E. J. M.; Filot, I. A. W. The Promoting Role of Ni on In₂O₃ for CO₂ Hydrogenation to Methanol. *ACS Catal.* 2023, *13*, 1875–1892.
- (41) Dostagir, N. H. M.; Rattanawan, R.; Gao, M.; Ota, J.; Hasegawa, J. Y.; Asakura, K.;
 Fukouka, A.; Shrotri, A. Co Single Atoms in ZrO₂ with Inherent Oxygen Vacancies for Selective Hydrogenation of CO₂ to CO. *ACS Catal.* 2021, *11* (15), 9450–9461.
- (42) Dostagir, N. H. M.; Tomuschat, C. R.; Oshiro, K.; Gao, M.; Hasegawa, J. Y.; Fukuoka,
 A.; Shrotri, A. Mitigating the Poisoning Effect of Formate during CO₂ Hydrogenation
 to Methanol over Co-Containing Dual-Atom Oxide Catalysts. *JACS Au* 2024, *50*, 27.
- (43) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallogr. Sect. A* 1976, *32* (5), 751–767.
- (44) Yang, C.; Pei, C.; Luo, R.; Liu, S.; Wang, Y.; Wang, Z.; Zhao, Z. J.; Gong, J. Strong Electronic Oxide-Support Interaction over In₂O₃/ZrO₂ for Highly Selective CO₂ Hydrogenation to Methanol. *J. Am. Chem. Soc.* 2020, *142* (46), 19523–19531.

- (45) Feng, Z.; Tang, C.; Zhang, P.; Li, K.; Li, G.; Wang, J.; Feng, Z.; Li, C. Asymmetric Sites on the ZnZrO_x Catalyst for Promoting Formate Formation and Transformation in CO₂ Hydrogenation. *J. Am. Chem. Soc.* **2023**.
- (46) Pokrovski, K.; Jung, K. T.; Bell, A. T. Investigation of CO and CO₂ Adsorption on Tetragonal and Monoclinic Zirconia. *Langmuir* 2001, *17* (14), 4297–4303.
- (47) Korhonen, S. T.; Calatayud, M.; Outi I Krause, A. Structure and Stability of Formates and Carbonates on Monoclinic Zirconia: A Combined Study by Density Functional Theory and Infrared Spectroscopy. J. Phys. Chem. C 2008, 112 (41), 16096–16102.