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ABSTRACT 

The design of drugs and nutraceutics that mimic microbial metabolites is an emerging 

drug modality in medicinal chemistry that attempts to modulate the myriad of 

interactions that these molecules establish with host and microbial proteins. 

Understanding how microbial metabolites interact with their target proteins is key to 

perform a rational design of metabolite mimetic molecules for therapeutic usage. In 

the present work we answer that question by analyzing the functional groups of these 

molecules, and the interactions they display in a set of more than 71 K protein-

metabolite interactions from the PDB. Significant differences in the functional group 

distributions, their chemical features, and their co-occurrences, are observed for 

distinct subsets of these molecules. The same is true for the distributions of interaction 

types. By correlating both datasets, we are able to explain the observed interaction 

patterns in terms of observed functional group patterns. These results will shed light 

on the rational design of novel metabolite mimetic molecules for therapeutic 

purposes.  
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INTRODUCTION 

The importance of the microbiome in human health is becoming increasingly relevant 

in recent years.1–4 The human body hosts trillions of microbial cells, especially in the 

gut, and many biological processes, including metabolism, infection, immunity, and 

even the nervous system, are influenced by the signaling systems established between 

the host cells and the cells in the microbiota.3,5–12 This bidirectional communication is 

exerted through small molecules (metabolites) that bind to proteins, thus triggering a 

biological response.13–29 This fact is being exploited to develop new drugs based on 

microbial metabolites (gut microbial “metabolite-mimetic” drugs), in widely different 

areas like cardiovascular diseases, Parkinson, Alzheimer disease, infectious diseases, 

and cancer, now with some compounds in clinical phases.30–37 These molecules are 

able to modulate altered metabolite-target interactions in disease states, in order to 

rebalance them.  The use of microbial metabolite mimetic molecules, besides allowing 

to identify novel drug chemotypes, would expand the target space in about two orders 

of magnitude, the size of the metabolome.31–34,38 

On the other hand, rational drug design is based on a deep knowledge of the 

interactions of small molecules with protein targets. In this regard, the concept of 

functional groups (FGs),39 that is, sets of connected atoms in the ligand with specific 

physicochemical and reactivity properties, is of great utility as it simplifies the analysis 

of protein-ligand interactions. Small molecules use their FGs to establish non-covalent 

interactions with proteins of different types: hydrogen bonds, hydrophobic, pi-pi, 
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cation-pi, etc. Data analysis of large quantities of experimental FG-protein interactions 

at atomic resolution is immensely useful for the rational design of drugs. Therefore, to 

rationally develop a new metabolite-mimetic drug, we first must know what 

interactions these molecules establish with host and bacterial proteins, and through 

what FGs. These interactions can putatively depend on constraints such as the 

localization, source, and chemical class of the compound. In turn, these interactions, 

together with molecular shape, define their target specificity.  

Our group is currently investigating microbial metabolites as a novel source of drugs 

and nutraceutics using Cheminformatics and Data Science approaches. In previous 

works, we have analyzed and modeled their physicochemical, structural, and 

biodistribution properties.40 We have also thoroughly studied the full set of published 

interactions of these molecules with human and bacterial proteins and provided 

thousands of validated predictions of new interactions using ligand-based virtual 

screening.41  

In this work, we aim to expand this research to analyze the FGs present in gut microbial 

metabolites, and the interactions these FGs display with human and gut microbial 

proteins in experimentally determined protein-metabolite complexes at atomic 

resolution. The patterns that we find here will shed light on the rational design of novel 

drugs and nutraceutics based on gut metabolites, which will be useful in medicinal 

chemistry efforts oriented to mimetizing microbial metabolites.  
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METHODS 

All data analysis was performed with Python 3.12.5, with RDKit 2024.03.5 as 

cheminformatic toolkit.42 The Bio.PDB module43 of Biopython 1.84 was used to 

manipulate protein-ligand structures programmatically. We used the same dataset of 

gut metabolites as in our previous works,40,41 that is, the subset of “detected and 

quantified” and “detected but not quantified” gut molecules in the Human 

Metabolome Database,44 plus some recent additions from the literature.13,14 This set of 

molecules, that comprises a total of 6663 molecules,  span three rather different 

compound sets: the “GutFL” set (abbreviated “GFL”), that includes all the metabolites 

(5451) of fatty acid-derived chemical classes, namely Glycerolipids, 

Glycerophospholipids, Fatty Acyls, and Sphingolipids;  the “Gut/Serum” set 

(abbreviated “G/S”), that includes 548 molecules detected in both gut and serum; and 

the “GutnoFL” set (abbreviated “GnFL”), of 664 compounds, that correspond to 

molecules only detected in gut but not fatty acid-derived. For comparison purposes, a 

set of 1421 drugs was used, corresponding to all small molecules in approved, not-

withdrawn, not illicit status, and orally administered, and present in the DrugBank;45 

most of them act systemically (1411), although a few are not absorbed and remain in 

the intestine where they act locally (11 molecules). All these molecules are assigned 

one chemical class derived from the ClassyFire algorithm.46 See our previous papers 

for a full description of the preparation of the molecules.40,41,47 

In order to generate the functional groups (FGs) we used a complete and accurate 

implementation of the Ertl algorithm48 in RDKit developed by our group. To analyze the 
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protein-ligand interactions we used the BINANA 2 Python module.49 BINANA 2 is a 

Python module that is designed to identify programmatically protein-ligand 

interactions of different types: close contacts (with protein atoms less than 4 Å 

distant), closest contacts (less than 2.5 Å), hydrophobics, hydrogen bonds, halogen 

bonds, pi-pi, cation-pi, salt bridges, and metal coordination. It requires that both the 

protein and the ligand be in PDBQT format, so for that aim we developed a pipeline to 

prepare these files. First, for each compound, all the protein-ligand complex structures 

present in the Protein Data Bank (PDB) were retrieved, based on its InChi string and 

using the PDB API.50,51 NMR structures were disregarded, as well as those where the 

ligand was covalently bound to the protein, and with proteins more than 2500 amino 

acids long. Only proteins from Homo sapiens and from a set of prokaryotic genera 

typical of metagenomic analyses were used, as in our previous work.40 In addition, only 

ligands with a fraction of buried solvent accessible surface > 0.2 compared to the free 

ligand were included in the analysis. Protein structures were fixed with PDBFixer,52,53 

protonated with Moleculekit at pH = 7.4,54 and finally Gasteiger charges and atom types 

were added with the prepare_receptor script of the ADFR suite55 in order to generate a 

protein PDBQT file. Similarly, the ligand structures were processed with the 

prepare_ligand script in the same suite.  

To map functional groups into interactions, a match was identified every time at least 

one of the atoms in a functional group was in the set of ligand atoms of the 

corresponding interaction in BINANA 2. To be able to do that match, it was previously 

necessary to set up and use a function in RDKit to “fix” the PDB molecule, as in many 
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cases the bonding patterns and valences had assignment errors, and the ligands in 

PDB have no hydrogens. The function generated a molecule with the same 

connectivity, bond types, and explicit / implicit hydrogens as the original molecule 

used in the analysis of FGs, but with the 3D structure of the PDB molecule in its carbons 

and heteroatoms. In addition, the function generated a mapping between the index of 

the different atoms with the two versions of the molecule (one obtained from an InChi 

string after standardization, and another obtained from the PDB file), to be able to 

identify intersections between FG atoms and BINANA 2 interactions.  

The following interaction types were considered: closest contacts, hydrophobics, 

hydrogen bonds, halogen bonds, pi-pi, cation-pi, salt bridges, and metal coordination. 

The “close interaction” type in BINANA 2 was not considered as nearly all binding 

atoms had it and therefore lacked any discrimination power among the compound 

sets. Interactions were aggregated by ligand to identify patterns in the interaction types 

of the different compound sets and functional groups. This aggregation was used to 

avoid the biasing of the distributions by the very differential presence of some of the 

ligands in the PDB structures.  

Statistical analysis of numeric distributions used Kruskal-Walli’s test to find 

significantly different distributions. When that was the case, a Conover-type post-hoc 

analysis (with Holm multiple test correction of p-values) was run to find significant 

pairs of distributions that could account for the significance of the omnibus test. In 

addition, the Common Language Effect Size (CLES) statistic56 between significant pairs 
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was computed to find which of the two distributions was shifted to higher values. The 

CLES estimates the probability that an instance randomly selected from one of the two 

distributions will be greater than an instance randomly selected from the other. 

Statistical tests were applied with a significance level of 0.05. 
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RESULTS 

In this work we aim to characterize, in a first phase, the FG distributions typical of gut 

microbial metabolites, as well as the commonalities and differences of these with 

those of oral drugs. As described in Methods, we use three different compound sets for 

microbial metabolites: G/S (molecules detected both in gut and in serum), GFL 

(molecules derived from fatty lipids, not able to cross the gut wall), and GnFL 

(molecules only detected in gut, but not derived from fatty lipids). The set of oral drugs 

(DB) is used for comparison purposes. Thus, commonalities and differences among 

these sets is also studied. To obtain the FGs, Ertl’s algorithm is applied, as it does not 

use a predefined set of FGs but instead is able to extract FGs from any arbitrary 

molecular structure. In the second phase, we pursue a comprehensive 

characterization of the interactions between these molecules and proteins through a 

systematic analysis of the experimental structures available in the PDB. Again, the 

identification of specific patterns in these molecules is done comparatively with oral 

drugs, and among the three metabolite chemical sets. Finally, the two sources of data, 

FGs and interactions, are correlated in order to explain the observed interaction 

patterns in the compound sets in terms of the interactions the different FG establish. 

These three aspects will be described in sequence in what follows.  

FG analysis 

Among all the four compound sets, a total of 294 unique FGs are identified. Figure 1 displays 

the distribution of the top 20 FGs in decreasing order of all the compound sets studied: DB, 
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G/S, GnFL, GFL. In addition, Table 1 shows different statistics obtained from these 

distributions.  
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Figure 1. Distribution (in decreasing order) of the top 20 FGs in the different compound sets 

analyzed in this work.  

 n 
% mols 
w/o FG 

# FGs 
(total) 

FG (total) 
/ mol 

# FG 
(bin) 

FG (bin) / 
mol 

# FG 
(un) 

FG (un) / 
mol 

DB 1421 0 7185 5.056 4913 3.457 253 0.178 

G/S 548 1.095 1885 3.44 1310 2.391 69 0.126 

GnFL 664 5.12 2058 3.099 1473 2.218 78 0.117 

GFL 5451 0 45291 8.309 14061 2.58 37 0.007 
Table 1. Count statistics of FGs in the different compound sets. n = number of molecules; % 

mols w/o FG = percentage of molecules lacking any FG; # FG (total) = total count of FG in all 

the molecules of the set; FG (total) / mol = the previous count normalized by the number of 

molecules in the set; # FG (bin) = binary count of FG in all the molecules in the set, i.e. only 

considering presence / absence of each FG; FG (bin) / mol = the previous count normalized 

by the number of molecules in the set; # FG (un) = count of unique FGs in the set; FG (un) / 

mol = the previous count normalized by the number of molecules in the set.  

It is possible to observe clear differences among the four compound sets. DB has the largest 

diversity of FGs, with the biggest number of unique FGs, 253, resulting in an average of 0.18 

unique FGs per molecule, the largest one. It has the second largest number of FGs per 

molecule (5.06 total, 3.46 if only binary presence / absence of each FG is counted within a 

molecule), and no molecule in this compound set lacks FGs. The distribution (Figure 1A) 

shows a slow and continuous decay, and the four most frequent FGs are the unsubstituted 

aromatic nitrogen ([Nar]), followed by ether ([R]O[R]), aliphatic hydroxyl (O[Cal]), and 

tertiary amine ([R]N([R])[R]). We also see some halogen-containing FGs among the top 20 

FGs. 
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On the other extreme of FG diversity, the GFL set has the lowest one: only 37 unique FGs. 

As a result, this set has only 0.01 unique FGs per molecule, the lowest average among all 

the sets. In this case, however, there is again no molecule without FGs, and interestingly 

this set displays the highest total number of FGs per molecule, 8.31, although it goes down 

to 2.58 if we use binary counts (now the second largest, after DB). In this case, the 

distribution shows two outstanding FGs, ester (O=C[R]O[R]) and alkene (C=C), and after 

these two, the FG counts drop dramatically. All these values reflect the structural 

homogeneity of this compound set, that results from the repetition of both the alkene and 

ester FGs in many of these molecules. In other words, these molecules display many 

although repeated FGs in their structure.  

In between these two extremes of diversity we have the FG counts of G/S and GnFL. Both 

sets have similar numbers of unique FGs, 69 and 78, respectively, resulting in nearly the 

same number of unique FGs per molecule, namely 0.13 and 0.12. Although the diversity is 

intermediate between those of DB and GFL, the decoration of these molecules with FGs is 

lower: 3.44 and 3.10 FGs per molecule using total counts, and 2.39 and 2.22 FGs per 

molecule using binary counts. In addition, we can see a small but not null percentage of 

molecules lacking FGs, 1.10 % and 5.12 %, respectively for G/S and GnFL. Both distributions 

show an intermediate decay between those of DB and GFL.  

In terms of the most frequent FGs, we see both commonalities and differences. The two 

compound sets have the carboxylic acid (O=C(O)[R]) as the most frequent FG. This is the 

sixth in DB. However, carboxylic acid is followed by aliphatic hydroxyl (O[Cal]) in the case of 
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G/S, but by the substituted amide (O=C([R])N([R])[R]) in the case of GnFL, which is the sixth 

in G/S. Moreover, the two FGs are followed by two aromatic ones (O[Car] and [Nar]) in G/S, 

but by the aliphatic ones N[Cal] and O[Cal] in GnFL. These similarities and differences are in 

agreement with the similarities and differences previously observed by us regarding 

physicochemical properties.40  

It is possible to look at additional features of these FGs and find clear patterns among the 

different sets. Table 2 lists the count statistics of FGs with aromatic atoms and with 

heteroatoms.  

 

Ar FGs (bin)  
/ mol 

# Ar FGs 
(un) 

Ar FGs (un) 
/ mol 

Het FGs (bin) 
/ mol 

# Het FGs 
(un) 

Het FGs 
(un) / mol 

DB 0.766 21 0.015 3.341 243 0.171 

G/S 0.551 6 0.011 2.321 66 0.12 

GnFL 0.255 7 0.011 2.081 74 0.111 

GFL 0.001 5 0.001 1.637 35 0.006 

Table 2. Count statistics of aromatic atom- and heteroatom-containing FGs in the different 

compound sets. Aromatic atom- and heteroatom-containing FGs generated as described in 

Materials and Methods. Ar FGs (bin) / mol = number of aromatic FGs (binary counts) by molecule; # 

Ar FGs (un) = number of unique aromatic FGs; Ar FGs (un) / mol = the previous count normalized by 

the number of molecules in the set; Het FGs (bin) / mol = number of heteroatom FGs (binary counts) 

by molecule; # Het FGs (un) = number of unique heteroatom FG; Het FGs (un) / mol = the previous 

count normalized by the number of molecules in the set. 

From there, it is possible to find that, both in terms of binary counts of FG per molecule, 

and unique FG per molecule, DB shows the most aromatic FGs and with the highest 

heteroatom content, while GFL has the least aromatic FGs and with the lowest heteroatom 
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content. In between are again G/S and GnFL, displaying similar but intermediate values in 

these two quantities. 

We can also look at the element composition of these FGs. Table 3 collects the number of 

functional groups per molecule (binary counts), plus the fraction of unique functional 

groups, for the following heteroatoms: oxygen, nitrogen, sulfur, phosphorus, and halogens, 

respectively.  

 

O FGs 
(bin) / 
mol 

Frac O 
FGs 
(un) 

N FGs 
(bin) / 
mol 

Frac N 
FGs 
(un) 

S FGs 
(bin) / 
mol 

Frac S 
FGs 
(un) 

P FGs 
(bin) / 
mol 

Frac P 
FGs 
(un) 

X FGs 
(bin) / 
mol 

Frac X 
FGs 
(un) 

DB 1.894 0.783 1.575 0.589 0.236 0.17 0.026 0.079 0.31 0.04 

G/S 1.776 0.725 0.73 0.406 0.082 0.159 0.022 0.043 0.013 0.029 

GnFL 1.56 0.654 0.827 0.359 0.083 0.218 0.021 0.038 0 0 

GFL 1.442 0.73 0.205 0.216 0.001 0.135 0.203 0.108 0 0 

Table 3. Count statistics of FGs containing O, N, S, P, or halogen atoms (X) by compound set. O FGs 

(bin) / mol = O-containing FGs (binary counts) per molecule; Frac O FGs (un) = fraction of unique FGs 

containing O; N FGs (bin) / mol = N-containing FGs (binary counts) per molecule; Frac N FGs (un) = 

fraction of unique FGs containing N; S FGs (bin) / mol = S-containing FGs (binary counts) per molecule; 

Frac S FGs (un) = fraction of unique FGs containing S; P FGs (bin) / mol = P-containing FGs (binary 

counts) per molecule; Frac P FGs (un) = fraction of unique FGs containing P;  X FGs (bin) / mol = 

Halogen-containing FGs (binary counts) per molecule; Frac X FGs (un) = fraction of unique FGs 

containing Halogen atoms. The counts are not excluding, i.e. it is possible to have FGs that belong to 

more than one of the FG type (having more than one different heteroatom, and with or without 

aromatic atoms).  

Some patterns emerge from these data that are worth mentioning. Regarding O- and N-

containing FGs, the DB set has both the largest binary counts per molecule, and fractions of 
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unique FGs among all the compound sets, while G/S and GnFL show lower values. In the 

case of S-containing FGs, DB has again by far the largest binary counts per molecule, but 

GnFL presents the largest fraction of unique FGs of this type. GFL, while displaying the 

lowest binary counts of O-, N-, and S-containing FGs per molecule among the four 

compound sets, has by far the largest counts per molecule and fractions of P-containing 

FGs, reflecting the presence of glycerophospholipids, sphingolipids, etc., in this compound 

set. Finally, as far as X-containing FGs are concerned, it is interesting to see their absence in 

both GnFL and GFL, intermediate values in G/S, and the highest values in DB. In general, we 

observe a rough trend where the binary counts per molecule of O-, N-, S-, and X-containing 

FGs show the decreasing order DB > G/S ≈ GnFL > GFL, but GFL has the highest values of P-

containing FGs.  

Finally, it is possible to analyze the co-occurrence distributions of these FGs. Figure 2 shows 

the co-occurrence matrices of the top 20 FGs for the four compound sets studied in this 

work.  
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Figure 2. Co-occurrence matrices of FGs for the four compound sets: (a) DB; (b) G/S; (c) GnFL; (d) 

GFL. A pair of FGs is said to co-occur in a molecule if one or more copies of each FG is present in the 

molecule. 

It is interesting to see cases where the same FG is correlated with different FGs depending 

on the compound set. For example, in both G/S and GnFL we observe the carboxylic acid FG 

to be highly correlated with both the primary alkyl amine and amide. However, in G/S, the 

carboxylic acid is mostly correlated with the aliphatic hydroxyl group, but this high 

correlation is not observed in GnFL. While the aromatic nitrogen [Nar] is mostly correlated 

in DB with the ether [R]O[R] and tertiary amine [R]N([R])[R], it is mostly correlated with the 
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phenolic hydroxyl O[Car] in G/S and the carboxylic acid FG in GnFL, etc. We can also see that 

the two FGs dominating the GFL set (the ester and alkene FGs) are highly correlated.  

It is possible to have an aggregated view of all these features by calculating the cosine 

similarity between the normalized distributions of FGs (using binarized counts) between 

each pair of compound sets. Table 3 shows the similarities, from which it can be concluded 

that G/S and GnFL display the largest similarity (0.91), followed by DB and G/S (0.71), and 

DB and GnFL (0.63). GFL is highly dissimilar to the other three compound sets (similarities 

of 0.24, 0.15, and 0.25 with DB, G/S, and GnFL, respectively).  

  Gut/Serum GutnoFL GutFL 
DrugBank 0.707 0.626 0.237 

Gut/Serum 
 

0.912 0.151 

GutnoFL 
  

0.252 
Table 4. Cosine similarities between pairs of compound sets, from the normalized distributions of 

binary counts of the 607 distinct FGs across all the sets.  

In summary, from these analyses a picture emerges that is in agreement with our previous 

analysis, that considered physicochemical and scaffold properties.40 On one extreme we see 

that the DB set comprises highly decorated drug-like molecules, with the largest diversity 

and counts per molecule of FGs (~5), especially those with aromatic, N,  and halogen atoms. 

These are molecules capable of crossing the gut wall, in agreement with the Lipinski’s57 and 

Veber’s58 rules that they follow (with a few exceptions of gut-acting drugs). On the opposite 

side are the GFL molecules, with the lowest diversity in FGs (although with very high FG 

counts per molecule, ~8), lowest counts of aromatic FGs, and highest counts of P-containing 

FGs. These molecules cannot cross the gut wall, as expected as they do not adhere to 
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Lipinski and Veber’s rules. Finally, between these extremes lie the G/S and GnFL sets, the 

former with a distribution of FGs closer to DB than the latter. These two sets have 

intermediate diversity and counts per molecule of FGs (~3), intermediate content of 

aromatic FGs, as well as intermediate N, S and X content. Combining  this intermediate “FG-

complexity” with their lower size and lipophilicity, and their higher fsp3 carbon content, we 

conclude that their structure is more akin to fragments. In these molecules abound 

carboxylic acids, aliphatic primary amines and alcohols, and amides, but they also display 

other diverse FGs. While the G/S set is assumed to be “gut-traverser”, like the DB that it 

resembles, the GnFL set is “gut-lingerer”, and in addition to the factors identified in our 

previous work that make them different (the former set has less rotatable bonds, more 

hydrogen-bond donors/acceptors, and more rings), here we find additional differences 

based on their FGs: G/S has almost twice the diversity of aromatic FGs per molecule, FGs 

with halogens, much lower amounts of amide FGs, and low carboxylic acid vs aliphatic 

hydroxyl correlation. In turn, GnFL has much higher fractions of amides, together with high 

carboxylic acid vs aliphatic hydroxyl correlations, among others. These additional patterns 

should be taken into account in order to design molecules to remain in the gut or 

alternatively to cross the gut wall.  

 Analysis of interactions with proteins 

A total of 22116 PDB structures with one or more of these compounds were retrieved and 

used for the analysis, which corresponded to a total of 691 non-covalently bound (“free”) 

ligands of our compounds, and a total of 71525 protein-ligand instance complexes. In 
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addition to not being covalently bound to the protein, we also imposed the ligand to be 

complete, and to have a fraction of solvent accessible surface buried in the protein > 0.2, so 

that we only considered metabolites significantly bound to the corresponding target. Table 

5 shows the distribution of compounds present in PDB complexes, as well as the fraction of 

the total compounds, for each of the four compound sets.  

  # compounds in PDB % In PDB 
 

DB 352 24.56  

G/S 194 34.40  

GnFL 76 11.31  

GFL 69 1.27  

Table 5. Number of compounds in PDB complexes (n in PDB) and its percentage over all compounds 

(% in PDB), for each compound set. 

From here we see that GFL is very underrepresented in the PDB, compared to the other 

compound sets. However, taking into consideration the structural homogeneity of these 

molecules, it is expected that the molecules here analyzed would provide representatively 

enough information for that compound set. In fact, the distributions by chemical classes of 

molecules in PDB complexes remained reasonably similar to the corresponding 

distributions of the full set of molecules in the compound set, in each of the four compound 

sets (data not shown). Therefore, we do not expect significant biases in our analyses of 

interactions in terms of chemical class composition of the compound sets. 

In our analysis of interactions with BINANA 2 we included the following interaction types: 

“closest”, “electrostatic energies”, “hydrophobics”, “hydrogen bonds”, “halogen bonds”, 

“pi-pi”, “cation-pi”, “salt-bridges”, and “metal coordinations”. We did not consider “close” 
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as it was present in all the molecules, irrespective of the compound set. Interactions were 

averaged by FGs and ligands, in order to avoid the biasing of the distributions by the very 

differential abundance of ligands in the dataset. Figure 3 displays the distributions of the 

different types of interactions for the four compound sets. Statistically significant 

differences in the distributions are observed for all the interaction types, judging from a 

Kruskal-Walli’s test p-value < 0.001 in all the cases. Additional post-hoc analyses, coupled 

with CLES calculations, allow us to find the differences between pairs of distributions that 

account for the significance of the omnibus test and, when that is the case, which of the 

distributions is shifted towards higher values (higher CLES). In Figure 3, the significant pairs 

of distributions are surrounded by a same-color box, with continuous border and up-

pointing arrow the distribution with higher CLES, and discontinuous border the distribution 

with lower CLES. We will only mention significant pairs giving CLES values bigger than 0.6 or 

less than 0.4. 
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Figure 3. Distributions of interaction counts for different interaction types and the four compound 

sets. Outliers have been omitted for clarity purposes. Distributions significantly different in post-hoc 

tests after multiple test correction, and with CLES > 0.6 or CLES < 0.4, are surrounded by boxes, 

continuous line with arrow significantly higher, discontinuous line significantly lower. 

From this analysis it is possible to see that GFL has a distribution of the closest type of 

interaction very significantly shifted to higher values when compared to DB, G/S, and GnFL. 

This reflects the high density of packing in the binding site of this type of elongated 

molecules, compared to other more globular compounds. GFL is also characterized by 

significantly higher CLES in the hydrophobics distribution (compared to G/S and GnFL), 
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reflecting the large hydrophobicity of these molecules. In turn, the DB set has significantly 

higher distributions of hydrophobic interactions (compared to G/S and GnFL) too, but also 

of halogen bonds (compared  to GFL), pi-pi interactions (compared to the rest of the sets), 

and cation-pi interactions (compared to GnFL and GFL). The other two metabolite sets, G/S 

and GnFL, display commonalties and differences, as usual. Both sets have significantly lower 

hydrophobic and pi-pi interaction distributions. However, the G/S set has significantly 

higher distributions of hydrogen bonds than DB and GFL, as well as cation-pi interactions 

(compared to GnFL and GFL, not to DB), salt bridges (compared to GnFL) and metal 

coordination (compared to GFL), while the GnFL is characterized by significantly higher 

electrostatic energies (less attractive) compared to G/S.  

It is therefore clear that the diverse types of molecules tend to establish significantly 

different types of interactions with proteins. These patterns can be used in the rational 

design of new bioactive molecules that mimic the different types of microbial metabolites, 

and thus their target preferences.40,41  

Association between interaction types and FGs in the compound sets 

Given the analysis of FGs described in the first results section, and the interaction 

distributions shown in the second section, we correlated both datasets to find which 

interactions were used by each FG and in each compound set. In this way, we aimed to 

rationalize the observed differences in interaction types in terms of differences of FG 

distributions and / or putative differences in the use of interaction types by the same FG in 

different compound sets. A FG was considered to use a interaction when at least one of the 
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FG atoms itself (not considering the “environment” carbon atoms) were part of the list of 

ligand atoms identified by BINANA 2 as taking part in the interaction. Electrostatic 

interactions were not included in this analysis since BINANA 2 does not provide the atom 

indexes of the atoms involved, only the atom types. For each FG and ligand, the presence / 

absence of interaction was averaged, to get a value between 0 and 1, i.e. the fraction of the 

FG having the interaction in that ligand. Then, for each FG and compound set, the fraction 

values of interaction for each FG were averaged to get a new value between 0 and 1. This 

process was done in order to avoid the statistics to be biased by the very differential 

abundance of the different ligands. The resulting fractions are shown as heatmaps in Figure 

4, for the four compound sets. 
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Figure 4. Fraction of interaction usage for each of the top 20 FG for the four compound sets 

(aggregated by ligand and compound set). Blank cells correspond to FGs missing in the PDB data.  

From these results, it is possible to assign and understand the way that the different Ertl 

FGs interact with proteins. For example, the [Nar] one, representing a non-substituted 

nitrogen in an aromatic ring, interacts preferentially through pi-pi interactions, although 

also, to a lower extent, through closest (contacts) and hydrogen bonds. In the same way, 
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the carboxylic acid O=C(O)[R] interacts through a mixture of closest, salt bridges, hydrogen 

bonds, and hydrophobic interactions. Both hydroxyl (O[Cal]) and phenol (O[Car]) FGs 

interact similarly, that is, through closest and hydrogen bond interactions, while 

unsubstituted aliphatic (N[Cal]) and aromatic (N[Car]) amines have differences: while the 

former make mainly use of salt bridges, hydrogen bonds, and closest, the latter use mainly 

hydrogen bonds, and closest. Metal coordination using FGs include phosphate 

(O=P(O)(O)O[R]), N-substituted sulphonamide (O=S(=O)([R])N([R])[R]), and O=[Car]. Among 

the top 20 FGs, only Cl[R] and F[R] in the DB compound set show halogen bond interactions. 

Focusing on the explanation of the patterns in Figure 3, the interaction-FG fractions here 

obtained provide a useful means to rationalize them, both in terms of high fractions, and 

FG abundance. For example, the high hydrophobicity in GFL can be ascribed mainly to the 

C=C and C=CC=C FGs in this compound set, while the high closest distribution is explained 

by the large amounts of O=(O)C[R] in these molecules. The G/S high hydrogen bonds are to 

be attributed to O=(O)C[R], the guanidine [R]N=C(N([R])[R])N([R])[R], and the aryl imine 

[R]N=[Car]; the high salt bridges to O=(O)C[R], the sulphonic acid O=S(=O)(O)O[R], and 

N[Cal], among others; and the high metal coordinations is spread across multiple FGs. 

Finally, the DB high hydrophobics can be understood as a result of C=C, O=C(O)[R], 

O=C([R])O[R] contributions, while the high pi-pi should be ascribed mainly to the [Nar] and 

[Sar] FGs in this set, and the high cation-pi interactions would result from the basic aliphatic 

amines N[Cal], [R]N[R], and [R]N([R])[R].   

https://doi.org/10.26434/chemrxiv-2024-q30x2 ORCID: https://orcid.org/0000-0002-8249-4547 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-q30x2
https://orcid.org/0000-0002-8249-4547
https://creativecommons.org/licenses/by-nc-nd/4.0/


In general, there seem to be no large differences in the interaction patters for the different 

FGs among the four compound sets. However, the proportions of the different interactions 

can vary to some extent among the different compound sets, and also in some cases a 

difference in the global usage of FGs is observed. For example, the aryl imine [R]N=[Car] has 

in G/S the following non-null fractions: 0.42 for closest, 0.83 for hydrogen bonds, and 0.01 

for metal coordinations, summing a total of 1.27. In turn, in DB the non-null fractions are 

0.011 for closest, and 0.44 for hydrogen bonds, summing a total of 0.45. Thus, it seems that, 

although the types of interactions used are similar, in the case of DB the usage of the FG for 

them is lower. This could reflect the differential co-occurrence of FGs across the compound 

sets, that would compete for the same protein FGs or create steric constraints in the ligand’s 

nearby FGs.  

In summary, we conclude that the distributions of FGs among the four compound sets, as 

well as their fractions of interaction usage, can explain the observed statistically different 

distributions of interactions. Thus, the compound set-specific distributions of FGs and FG-

FG correlations must be taken into account when designing drugs and nutraceutics 

mimicking the different microbial metabolites (G/S, GnFL, GFL), as they determine their 

respective interaction patterns. The full set of mapped FGs and BINANA 2 interactions is 

collected in Table S1 of Supporting Information.  
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DISCUSSION 

One of the key concepts used in drug design is that of FGs.39,59 These are sets of connected 

atoms in molecules with specific physicochemical and reactivity properties. They determine 

the types of weak interactions that small molecules establish with proteins, thus explaining, 

together with molecular shape, the specificity of ligand-protein binding. FGs in the ligand 

must match complementary FGs in the protein in order to form a stable protein-ligand 

complex. 

 In the past, much work has been devoted to analyze FG distributions and their evolution in 

drugs and natural products.48,60,61 The emerging field of microbial metabolite mimetic drug 

design thus requires to extend this work to microbial metabolites, in order to gain insights 

of the typical FGs in these molecules that could be used for the rational design of mimetic 

molecules. The present work accomplishes that task and identifies clear differential patterns 

among the three microbial metabolite sets: G/S, GnFL, GFL, and in addition differences with 

oral (mainly systemic) drugs. This is reflected in different most frequent FGs, the co-

occurrence of these FGs, and the types of FGs in terms of aromaticity and heteroatom 

content. Briefly, GFL shows the lowest FG diversity, highest counts of FG per molecule, and 

highest counts of P-containing FGs. G/S and GnFL, both having intermediate diversity, 

proportion of aromatic atoms and content of N, S, and X in their FGs, and having abundant 

carboxylic acids, aliphatic amines, alcohols, and amides, display differences such as: higher 

aromatic and halogen content in G/S, and different co-occurrence rates for several pairs of 

FGs.  
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In order to get further insight on how these molecules bind to their targets,  the interactions 

established between metabolites and proteins are analyzed here using a set of more than 

71 K experimental protein-metabolite complexes present in the PDB. From here, we find 

statistically different distributions for all the interaction types among the metabolite 

compound sets, and with the oral drug set too. Roughly, G/S stems for high hydrogen bonds, 

salt bridges, and metal coordination; GnFL shows high electrostatic energies; and GFL has 

high closest and hydrophobics.  

Moreover, the mapping of FG atoms to BINANA 2-detected interactions has been able to 

explain the interaction patterns in terms of FG distributions and their usage of diverse types 

of interactions. In general, the same FG establishes similar interaction patterns irrespective 

of the compound set. This can be expected given that the FG is a relatively isolated chemical 

entity that in principle displays specific physical properties and interaction propensities with 

protein FGs. However, there are some cases where a variation in the fractions of interaction 

usages is identified, as well as global differential usage levels of all the interaction types for 

the same FG among different compound sets. This could be explained in terms of 

differential FG co-occurrence, such as if the interaction pattern of one FG is modified by the 

diverse competition of other FGs for the same site in the protein and  / or diverse steric 

constraints originated by the co-occurring FGs.  

In the present work several novelties are worth mentioning: a) it is the first time that Ertl 

groups are analyzed in microbial metabolites; and b) it is the first time that their interactions 

with proteins are systematically analyzed. From the point of view of FG analysis, it is the 
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first time where co-occurrences of Ertl FGs are analyzed. This novel co-occurrence analysis 

has been able to unravel new patterns, such as a differential co-occurrence of the same 

pairs of highly abundant FGs in two compound sets (e.g. G/S vs GnFL). The application to 

other chemical sets is ongoing in our group. On the other hand, this is also the first time Ertl 

FGs are systematically mapped into molecular interactions with proteins, so that they are 

analyzed not only in terms of their presence in ligands, but also in terms of their interactions 

with proteins. Interesting patterns are thus detected like the variability in interaction usage 

in some cases described above, besides the generally conserved usage for the same FG 

across different compound sets.  

We expect that this work will illuminate the rational design of novel microbial metabolite 

mimetic drugs and nutraceutics. The patterns here found can guide the medicinal chemists 

in designing novel molecules based on the different metabolites’ compound sets. In 

addition, our group is working on novel generative AI models that tap from these data and 

methods.  
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DATA AND SOFTWARE AVAILABILITY STATEMENT 

Metabolite and drugs chemical structures, together with the corresponding metadata 

(ClassyFire hierarchy, etc.) were retrieved from the Human Metabolome Database 

(https://hmdb.ca/) and DrugBank (https://go.drugbank.com/), respectively. Protein-

ligand structures were retrieved from the Protein Data Bank (https://www.rcsb.org/) 

through its API. BINANA 2 was obtained from https://github.com/durrantlab/binana. 

Moleculekit module was installed in Conda through the acellera channel. PDBFixer, 

openbabel, and biopython modules were installed in Conda through the conda-forge 
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channel. The complete and accurate Ertl algorithm was implemented locally for RDKit 

and will be published elsewhere.  

SUPPORTING INFORMATION 

Supporting Information Table S1 is collected in file “Supporting Information.xlsx”. In 

addition, file “Supporting Information.pdf” contains captions for that table.   
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