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ABSTRACT   

Stable proton configurations in solid-state materials are a prerequisite for the theoretical 

microscopic investigation of solid-state proton-conductive materials. However, a large number of 

initial atomistic configurations should be considered to find stable proton configurations, and 

relaxation calculations using the density functional theory approach are required for each initial 

configuration. Consequently, the determination of stable configurations is a difficult and time-

consuming task. Furthermore, when the size of the simulation cells or the number of doped atoms 

increases, the number of initial configurations leads to a combinatorial explosion, rendering the 

computation infeasible. In this study, black-box optimization was combined with an Ising machine 

and density functional calculations to perform an efficient search for stable proton configurations. 

Scandium-doped barium zirconate, a typical high-proton conductive oxide, was selected as the 

model system. The Ising machine was able to rapidly select the initial atomistic configuration, 

ultimately leading to stable proton configurations after subsequent relaxation calculations. This 

optimization strategy should be able to solve various issues related to configuration optimization 

in solid-state materials, thereby promoting novel scientific discoveries. 
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INTRODUCTION 

Protonic ceramic fuel cells (PCFCs) are expected to exhibit high power generation efficiencies. 

As previously reported, doping is a key process in achieving high proton conductivities in PCFC 

oxide electrolytes.1–6 More specifically, doping with low-valence elements creates oxygen 

vacancies that maintain electrical neutrality, and these vacancies can subsequently be filled with 

hydroxy groups to introduce protons into the system. Previously, the relationship between the 

conductivity and the doping level has been studied experimentally.7,8 However, to understand the 

mechanism of proton conductivity from a microscopic viewpoint, atomistic simulations based on 

molecular dynamics are essential,9,10 and stable atomistic configurations are required to commence 

these simulations. At present, determination of the stable atomistic configurations of doped atoms 

and protons is a difficult and time-consuming task since the initial configurations of the doping 

atoms and protons can change depending on the size of the simulation cell and the number of 

doped atoms. In addition, relaxation calculations using the density functional theory (DFT) 

approach are required for each initial configuration, thereby rendering it impossible to perform 

relaxation calculations for all possible initial configurations and to find stable structures using such 

approaches. 

Using machine learning to optimize atomistic configurations, Ju et al.11 demonstrated that the 

configurations of silicon and germanium atoms in a lattice could be rapidly explored by means of 

Bayesian optimization to maximize or minimize phonon transport. Bayesian optimization is a 

method for optimizing black-box functions,12 and is characterized by the use of a Gaussian process 

as a surrogate model.13,14 Following the work of Ju et al., many structure search problems aimed 

at atomistic configurations have been solved using Bayesian optimization.15–19 However, Bayesian 

optimization has a problem in that when the number of candidates causes a combinatorial 
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explosion, the time required for the selection of promising candidates increases exponentially 

because acquisition function calculations are required for all candidates. To overcome this 

limitation, Kitai et al. proposed a black-box optimization (BBO) algorithm using a quantum 

annealer known as the factorization machines with quantum annealing (FMQA) algorithm.20 In 

the FMQA algorithm, the factorization machine (FM)21 model is adopted as a surrogate model. 

Because the FM model is expressed by the Ising model, the lower-energy states of the FM can be 

effectively obtained using quantum annealers and Ising machines.22 Indeed, this algorithm has 

been widely used to solve BBO problems in materials science and chemistry.23–30 For example, 

the FMQA algorithm was adopted to optimize the atomic configurations of the magnesium and 

germanium ions in a magnetic tunnel junction structure,31 and its efficiency was confirmed for 

small problems. Furthermore, its application in crystal structure prediction has also been 

considered.32,33 

In this study, the FMQA algorithm combined with the Vienna Ab Initio Simulation Package 

(VASP) is employed to effectively search for stable proton configurations in PCFCs (Figure 1). 

In each optimization cycle, the FM model is trained to predict the total energy after the relaxation 

calculation from the initial proton configuration. By solving the FM model using an Ising machine, 

an initial proton configuration that leads to stable proton configurations after the relaxation 

calculation is suggested. For the suggested configuration, the total energy is calculated by 

relaxation calculations using VASP, and the amount of training data for the FM model is increased. 

Subsequently, in each cycle, a relaxation calculation must be performed using VASP to acquire 

the total energy with the required calculation accuracy. The optimization task is therefore to 

determine the stable proton configurations using as few cycles as possible. For the purpose of this 

study, scandium-doped barium zirconate,34 which is a representative electrolyte candidate for 
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PCFCs, is employed as a model system to perform the stable proton configuration searches by 

combining FMQA and VASP. In addition, a graphics processing unit-based Ising machine is used 

to solve the FM model.  

 

Figure 1 Optimization cycle for the BBO based on use of the FMQA algorithm and VASP to 

obtain a stable proton configuration. The atomistic configurations were drawn using VESTA.35 
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METHODS 

Target material 

As a model system for proton configuration optimization, scandium-doped barium zirconate was 

employed according to the crystal structure shown in Figure 2(a). The mother compound was the 

BaZrO3 perovskite, and fast proton conduction has previously been observed in its doped 

materials,4,5,36 wherein a high proton conductivity was achieved by substituting zirconium with 

scandium.34 Under these conditions, oxygen vacancies are generated, and hydroxy groups can be 

introduced into the system in the presence of water vapor to compensate for these vacancies. In 

the current study, eight initial proton positions are considered at each oxygen atom, as determined 

by DFT structural optimizations for several configurations, including those of the protons. Each 

proton position was directed to the second nearest oxygen atom to form a hydrogen bond (see 

Figure 2(b)). Thus, these proton positions can be used as the initial proton configurations for the 

relaxation calculations. A 2 × 2 × 2 supercell model was adopted to search for a stable 

configuration. Based on the number of scandium ions (𝑥) in the supercell, the composition of the 

model was expressed as Ba8Zr8−xScxO24Hx, corresponding to the condition that all oxygen 

vacancies are compensated for by hydroxy groups; therefore, the number of introduced protons is 

the same as the number of scandium ions. When the doped positions of the scandium ions are fixed, 

the number of proton configurations is 24Cx × 8x, without considering symmetry. Thus, when the 

value of 𝑥 increases, many proton configurations must be considered. Of course, when symmetry 

is considered, the number of independent initial proton configurations is reduced; however, a 

combinatorial explosion of the initial configurations occurs when larger systems are considered. 

https://doi.org/10.26434/chemrxiv-2024-cfkj4 ORCID: https://orcid.org/0000-0002-0349-358X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-cfkj4
https://orcid.org/0000-0002-0349-358X
https://creativecommons.org/licenses/by/4.0/


 7 

 

Figure 2. (a) Atomistic structure of the scandium-doped barium zirconate. (b) Eight stable proton 

positions. The atomistic configurations were drawn using VESTA.35 

 

Structural relaxation based on DFT calculations 

Based on one of the initial proton configurations, structural relaxation calculations were performed 

using VASP.37–39 To effectively obtain accurate stable configurations, multiple-step structure 

relaxation is often performed.40,41 Thus, for this study, three total energies were used as metrics to 

determine a stable configuration. The first is the total energy of the initial proton configuration 

without the relaxation calculation, which is expressed as 𝐸! and is known as the no-relaxation total 

energy. The second is the total energy with normal accuracy in the structural relaxation (𝐸"), and 

the third is the highly accurate total energy after structural relaxation (𝐸#). The detailed setup of 

the VASP calculations employed for multiple-step structural relaxation to obtain the total energy 

is summarized in Supplementary Note A. 
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Optimization of the proton configuration using the FMQA algorithm 

In quantum annealers and Ising machines, only 0/1 variables can be used; thus, it is necessary to 

encode atomistic configurations into a bit string composed of 0/1 variables. Oxygen ions can take 

the form of protonated (i.e., hydroxy) or non-protonated species. For protonated oxygen ions, a 

proton is placed at any one of eight possible positions in the initial state for structural relaxation 

(Figure 2(b)). Thus, nine bits were used to express the position of a proton at each oxygen atom 

site, and a one-hot constraint was considered to ensure that no more than two protons were attached 

to the same oxygen. In total, the proton configuration can be expressed as 24 × 9 = 216 bits, while 

the bit string can be expressed as 𝐪 = {𝑞$%}$&",…,#),%&",…,* where 𝑞$% = 0 or 1. The indices 𝑛 and 

𝑖 represent the indices of the oxygen ions and their proton positions, respectively. For the proton 

position, 𝑖 = 1,… ,8 refers to the positions shown in Figure 2(b), while 𝑖 = 9 indicates the absence 

of a proton. The optimization cycle employed to obtain a stable proton configuration (i.e., the 

lowest total energy) using the FMQA algorithm therefore involved four key steps. Firstly, 𝑀 

proton configurations were generated as the initial training dataset from 24Cx × 8x configurations, 

which were used as the initial configurations for structural relaxation. Relaxation calculations were 

performed using VASP and the total energies were obtained. These data were used as the training 

data for the FM model, as shown in Figure 1. In step 2, the FM model was used as a surrogate 

model to predict the total energy from the initial proton configuration and was trained when bit 

string 𝐪 was input. The values of the total energy predicted by the FM are as follows: 

𝐸(𝐪) = 33𝑤$%∗ 𝑞$%
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where the hyperparameter of 𝐾	is fixed at a default value of 8.21 The trained parameters are denoted 

𝑤$%∗  and 𝑣$%,∗ . In the third step, the FM is solved by the Ising machine under the following 

constraints: 

3𝑞$* = 24 − 𝑥
#)

$&"

, (2) 

3𝑞$% = 1,
*

%&"

∀𝑛. (3) 

The former constraint determines the number of hydrogen atoms, whereas the latter ensures that 

at most, one hydrogen atom is attached to one oxygen atom. For the purpose of this study, Fixstars 

Amplify AE42 was used as the Ising machine. A single solution for bit string 𝐪∗ that minimizes the 

FM model defined by Eq. (1) was selected using the Fixstars Amplify AE. If the selected 𝐪∗ was 

already included in the training data, then the bit string was randomly generated under the 

constraints of Eqs. (2) and (3). Finally, in step four, DFT relaxation calculations were conducted 

using the initial proton configuration expressed by the selected 𝐪∗ , and the total energy was 

obtained. The number of training data points was increased to 𝑀 + 1. Steps 2–4 were subsequently 

repeated as desired. 

The optimization task was defined as finding a superior initial state for structural relaxation, 

denoted by bit string 𝐪 , which will lead to the minimum total energy after the relaxation 

calculations, using as few cycles as possible. Note that in the initial configurations of 24Cx × 8x, 

multiple configurations can be considered to have the same symmetry. Thus, from a symmetry 

consideration, in a case where the configuration suggested by 𝐪∗ in the third step had already been 
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investigated in the previous cycles, the calculated total energy would have been used without the 

relaxation calculation, thereby reducing the computation time. However, for the ease of 

implementation, symmetry was not considered in the current study. 
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RESULTS AND DISCUSSION 

Optimization performance for stable proton configurations 

Initially, the optimization performance of the system was investigated using a fixed scandium ion 

configuration. A case was considered in which the number of scandium ions was two, i.e., 𝑥 = 2. 

In this case, by considering the symmetry, three possible configurations exist for the scandium 

ions for a 2 × 2 × 2 supercell. By assigning each zirconium ion position in BaZrO3 with a number 

between 1 and 8 (see Figure 3(a)), the scandium ion configurations were denoted as Sc@(1,2) 

(Figure 2(a)), Sc@(1,6), and Sc@(1,8), respectively. For each case, the number of possible proton 

configurations as the initial states for the relaxation calculations was defined as 24Cx × 8x = 17,664, 

without considering symmetry. For all configurations, DFT relaxation calculations were 

performed in advance using a Fugaku supercomputer, and the total energies of 𝐸!, 𝐸", and 𝐸# were 

obtained with different accuracies. Thus, for 𝑥 = 2, the optimal solutions for the stable proton 

configurations were known for the various relaxation steps, and these solutions were used to 

estimate the efficiency of the FMQA algorithm in finding stable proton configurations. In addition, 

during each optimization cycle, the total energy of the selected proton configuration can be 

accessed from the previously calculated total energies. Consequently, it is not necessary to perform 

an additional DFT calculation to estimate the efficiency. 

To verify the BBO performance using the FMQA algorithm for exploring stable proton 

configurations, optimization was performed for cases where the total energies of 𝐸!, 𝐸", and 𝐸# 

were targeted. The number of initial training data points was fixed at 𝑀 = 10, and optimization 

runs were performed until the optimal solution was obtained. Ten runs were performed 

independently by changing the initial training data selections, and Figure 3(b) shows box plots of 
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the number of cycles required to obtain the most stable proton configuration for Sc@(1,2). Here, 

the most stable configurations are defined as those with total energies ranging from the lowest total 

energy up to 0.005 eV. For comparison, five random samplings were conducted, starting from each 

initial training dataset used in the FMQA optimizations; thus, 50 runs were performed. Figure S1 

summarizes the results for obtained Sc@(1,6) and Sc@(1,8), wherein the most stable proton 

configurations were identified within 150 BBO cycles using the FMQA algorithm. Consequently, 

it was found that the FMQA outperformed the random sampling approach. Notably, when random 

sampling is employed, the number of cycles required to find stable proton configurations for 𝐸! is 

larger than those required for 𝐸" and 𝐸#. This can be attributed to the fact that the number of most 

stable configurations for 𝐸! is smaller than those for 𝐸" and 𝐸#. Furthermore, Figures 3(c) and 3(d) 

show the relationships among 𝐸!, 𝐸", and 𝐸# for the same initial proton configurations. It can be 

seen that the order between 𝐸! and 𝐸# is largely interchanged when the values of 𝐸# are small, 

indicating that find stable proton configurations using 𝐸!, i.e., without the use of a relaxation 

calculation, are not the true stable proton configurations using 𝐸# . However, the order is 

comparable between 𝐸"  and 𝐸# , indicating that optimization using 𝐸"  is sufficient for finding 

stable proton configurations in the present problem setting. 
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Figure 3. (a) Eight zirconium ion positions in BaZrO3 and the configuration of the two scandium 

ions in the Sc@(1,2) structure. (b) Number of cycles required to obtain the most stable proton 

configurations from the FMQA algorithm and random sampling using the total energies 𝐸! (no 

relaxation), 𝐸" (relaxation calculation with normal accuracy), and 𝐸# (relaxation calculation with 

high accuracy) for the Sc@(1,2) structure. The horizontal line in the box represents the median 

value (50th percentile data), while the top and bottom areas represent the 75th and 25th percentiles, 

respectively. The points denote the outliers, while the error bars represent the maximum and 

minimum values without outliers. (c) Relationship between 𝐸! and 𝐸# for the same initial state. 

(d) Relationship between 𝐸" and 𝐸#for the same initial state. The atomistic configurations were 

drawn using VESTA.35 
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Subsequently, to examine the optimization performance for more complex problems, the case of 

𝑥 = 5  was considered, and the results are shown in Figure 4. In this case, three possible 

configurations of scandium ions exist, which were denoted as Sc@(3,4,6,7,8) (Figure 4(a)), 

Sc@(1,3,4,6,8), and Sc@(1,2,4,6,7). When the scandium ion configuration was fixed, the number 

of initial candidate structures for the relaxation calculations was 24C5 × 85 = 1,392,771,072 without 

considering symmetry, and so it was not possible to calculate the total energies of all configurations. 

Consequently, the number of iteration cycles of the BBO runs was fixed at 200, including the 

generation of ten initial training datasets. Three independent runs were performed by altering the 

initial training data selections. Figures 4(a), 4(b), and 4(c) show the minimum total energies over 

the various cycles for Sc@(3,4,6,7,8) when 𝐸!, 𝐸", and 𝐸# were targeted for optimization. In all 

cases, use of the FMQA approach generated more stable structures over fewer cycles compared to 

those required for random sampling. For the stable configurations determined by FMQA 

optimizations using 𝐸! and 𝐸", configurations were changed by performing further relaxations. 

More specifically, starting from the top five configurations with small 𝐸! and 𝐸" values for each 

independent FMQA optimization run, further relaxation calculations were performed, which have 

the same accuracy as those performed using 𝐸#. The total energies obtained by the highly accurate 

relaxation calculations are summarized in Figure 4 (d). As a result, it was confirmed that stable 

configurations with a value equivalent to the total energy obtained from the FMQA optimizations 

performed using 𝐸# could be obtained from the optimizations using 𝐸".  This implies that by 

performing FMQA optimization using 𝐸", followed by further relaxation for a small number of 

stable configurations, the computation time can be reduced to obtain stable proton configurations. 
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However, as observed for 𝑥 = 2, the discovery of stable configurations was also meaningless 

using 𝐸!. 

Figure S2 summarizes the results obtained for Sc@(1,3,4,6,8) and Sc@(1,2,4,6,7) when the 

FMQA optimization was performed using 𝐸". Further relaxation calculations were also performed 

on the identified proton configurations, and the total energies obtained with the same accuracy as 

that of 𝐸#were compared. Consequently, the Sc@(3,4,6,7,8) structure was defined as possessing 

the lowest total energy. 

 

Figure 4. Minimum total energies depending on the number of iteration cycles when (a) 𝐸!, (b) 

𝐸", and (c) 𝐸# were targeted as the total energies for Sc@(3,4,6,7,8). Three independent runs were 

performed using the FMQA and by random sampling. The means and deviations are indicated by 

lines and shaded areas. The inset of (a) shows the configuration the scandium ions in 

Sc@(3,4,6,7,8). (d) Histogram of the total energies with the high accuracies (𝐸#), as determined 
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by performing further relaxation calculations based on the configurations found by FMQA 

optimization using 𝐸!  and 𝐸" . The total energy of the proton configuration found by FMQA 

optimization using 𝐸# is also plotted. The atomistic configurations were drawn using VESTA.35 

 

 

Discussion regarding the stable proton configurations 

When the number of Sc ions (i.e., 𝑥) is equal to seven or eight, only one configuration exists 

wherein the scandium ions can be substituted for symmetry. However, the number of initial proton 

configurations for the relaxation calculation drastically increases under these conditions, reaching 

1011 and 1012 for 𝑥 = 7 and 8, respectively, without symmetry. In these cases, owing to the large 

number of candidates, conventional BBO methods such as Bayesian optimization cannot be 

performed. Thus, stable proton configuration searches were performed by FMQA optimization 

using 𝐸". More specifically, three independent FMQA optimizations were carried out, and further 

relaxation calculations were performed for the top 15 configurations. The results of the 

optimization cycle using 𝐸"  are shown in Figures S2(c) and S2(d), and the most stable 

configurations are summarized in Figure 5, wherein the numbers of scandium ions (𝑥) are 2, 5, 7, 

and 8. 
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Figure 5. The most stable proton configurations found for (a) 2, (b) 5, (c) 7, and (d) 8, scandium 

ions. When 𝑥 = 2, the optimal configuration is shown. The red triangles indicate pairs of hydrogen 

bonds. Barium ions are omitted for clarity. The atomistic configurations were drawn using 

VESTA.35 

 

From the obtained configurations, it was possible to discuss the characteristics of the stable proton 

configurations. Firstly, in many cases, hydrogen atoms attach to the oxygen sites between the 

scandium ions, forming Sc–O–Sc species. This indicates that the position of hydrogen is more 

stable on the oxygen atom of Sc–O–Sc than on Sc–O–Zr or Zr–O–Zr. This stabilization of protons 

near the scandium ions was consistent with the results of previous ab initio calculations43,44,36 and 

nuclear magnetic resonance experiments.45 Subsequently, hydrogen bond pairs appear, as denoted 
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by the red triangles in Figure 5. Figure 6 compares the most stable configuration containing a pair 

of hydrogen bonds and a metastable configuration containing two independent hydrogen bonds 

when 𝑥 = 2. The lengths of the hydrogen bonds were calculated to be 1.89 and 1.81 Å in the most 

stable case, which are longer than those calculated for the metastable case, i.e., 1.73 and 1.67 Å. 

These results indicate that the metastable state has a lower energy (i.e., it is more stable) if the 

length of the hydrogen bonds is considered. In contrast, lattice deformation was found to increase 

the total energy, and in the most stable state, the lattice deformation was reduced by the formation 

of a pair of hydrogen bonds. This property of forming a hydrogen bond pair in a stable proton 

configuration was observed even when the number of scandium ions was increased (see Figure 5). 

The contributions of lattice deformation and the formation of a pair of hydrogen bonds for total 

energy depend on simulation conditions. Future work will therefore examine whether the 

characteristics of the stable structures observed in this study are universal for simulation conditions 

using the FMQA algorithm. 

 

 

Figure 6. Hydrogen bonds in the (a) most stable and (b) metastable configurations when 𝑥 = 2. 

The atomistic configurations were drawn using VESTA.35 
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Simultaneous optimization of the doping and proton configurations 

It is also possible to optimize the doping configuration of scandium ions simultaneously with the 

proton configuration. The doping configuration should also be treated as a bit string, and so the 

bits for the scandium/zirconium sites were prepared as 1 for scandium ions and 0 for zirconium 

ions. In the 2 × 2 × 2 supercell model, eight bits were used to represent the doping configuration, 

which was defined by {𝑞0}0&",…,1. In other words, when simultaneously considering the doping and 

proton configurations, in addition to the 216-bit, {𝑞$%}$&",…,#),%&",…,* was also employed for doping. 

Therefore, a 224-bit FM was utilized as a surrogate model to predict the total energy. When solving 

the trained FM with the Ising machine, in addition to the constraints defined in Eqs. (2) and (3), 

the following constraint is required: 

3𝑞0 = 𝑥.
1

0&"

 (4) 

However, in the present study, symmetry was observed in the doping positions. For example, for 

𝑥 = 2, one scandium ion can be fixed at index 1, and the remaining scandium ions can be placed 

at one of the three sites (i.e., 2, 6, or 8) indicated in Fig. 3(a). Therefore, instead of using Eq. (4), 

the following constraints can be used to narrow the search space, wherein only three bits are 

considered (i.e., 𝑞#, 𝑞2, and 𝑞1): 

𝑞" = 1, (5) 
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3 𝑞0
0&#,2,1

= 1. (6) 

In the case where 𝑥 = 2, the doping and proton configurations were simultaneously optimized by 

BBO using FMQA, and the results are presented in Figure 7 for searching with the total energies 

𝐸! , 𝐸" , and 𝐸# . The results of random sampling are also shown for comparison, and the 

optimization performance of FMQA was observed to outperform that of random sampling. 

 

Figure 7. Number of cycles required when the most stable proton configuration was identified by 

FMQA optimization and random sampling using the total energies 𝐸!  (no relaxation), 𝐸" 

(relaxation calculation with normal accuracy), and 𝐸# (relaxation calculation with high accuracy) 

for optimization of the doped scandium ion and proton configurations. 
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CONCLUSIONS 

In this study, black-box optimization (BBO) calculations were performed to determine stable 

proton configurations using the factorization machines with quantum annealing (FMQA) 

algorithm combined with the Vienna Ab Initio Simulation Package (VASP). A graphics processing 

unit-based Ising machine was used to select a promising initial state for the relaxation calculations. 

As a model system for proton conductors, scandium-doped barium zirconate was used, wherein 

the number of scandium ions (𝑥) was set as 2, 5, 7, or 8 in the 2 × 2 × 2 supercell model. For 𝑥 =

2, the number of possible proton configurations was 52,992, and so it was possible to calculate the 

total energies for all cases using VASP, and the most stable configuration was identified. In this 

case, the optimization performance of FMQA algorithm always outperformed that of random 

sampling for finding the most stable configurations. Subsequently, using the FMQA algorithm, 

the proton configurations were optimized for 𝑥  = 5, 7, and 8, wherein the numbers of initial 

configurations were in the order of 109, 1011, and 1012, respectively. Notably, such vast number of 

possible configurations are difficult to treat using conventional BBO methods, such as Bayesian 

optimization, because of the computation times required. Moreover, the optimization results 

identified the formation of hydrogen bond pairs in the stable proton configurations, regardless of 

the number of scandium ions. Notably, simultaneous optimization of the doped scandium ions and 

proton configurations was achieved. It is therefore expected that this optimization strategy based 

on a combination of Ising machines and density functional theory calculations will be able to solve 

various issues related to configuration optimization in solid-state materials, and promote novel 

scientific discoveries. 
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