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Abstract

We explore how walls can be introduced into chemically-specific dissipative particle

dynamics (DPD) models such that the surface energies can be chosen to obtain a

desired contact angle on a given substrate, for example for an oil/water interface. We

certify the methodology for determining the surface energy, which can be positive or

negative, such that the Young equation is automatically satisfied. We validate the

approach against direct numerical simulation of cylindrical droplets of dodecane in

water on the surface, and test it against an experimental model of a water droplet in

dodecane on a surface-adsorbed monolayer on silica.

1 Introduction

Recent developments in dissipative particle dynamics (DPD) allow for the treatment of

complex fluids and solutions of surfactants and polymers with chemical specificity, using

a coarse-graining or fragmentation strategy in which the DPD ‘beads’ represent chemical
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groups comprising typically 1–3 three ‘heavy’ atoms (carbon, oxygen, nitrogen, etc), with

the exception of water which is treated supramolecularly (for details, see below). Although

the ‘force fields’ (i. e. the non-bonded pairwise soft repulsions) are parametrised only against

liquid phase density data and logP values,1 these models have proven remarkably capable at

capturing for instance the behaviour of surfactants, reproducing inter alia micelle formation

and the critical micelle concentrations for nonionic and ionic surfactants,2 the properties of

surfactant mixtures,3 and the phase behaviour of surfactants,4 in a variety of industrially-

relevant surfactant systems. With additional fine-tuning of the bonded interactions, the

models are even capable of capturing the freezing transition (‘waxing’) of long-chain alka-

nes.5,6 These developments build capabilities in the area of computer-aided formulation, and

contribute an essential element to support the industry-wide move away from petrochemicals

towards sustainably-sourced, ecologically and climate-friendly raw materials, and confronting

what is a huge challenge for the multi-billion dollar surfactants business.

Most of the literature in this field is largely focused on the properties of bulk (liquid)

materials, with less emphasis based on building substrate models, despite the latter’s perhaps

equal importance in numerous practical applications such as in laundry detergency, home

and personal care products, emulsion and foam stability, and industrial separation processes.

Indeed, even the basic question of how to parametrise substrates in chemically-specific DPD

models has received scant attention to date. Whilst a few studies exist exploring the role of

structure and patterns,7 and heterogeneity,8,9 studies which look to build chemically specific

surface models (in DPD) do not yet appear in the literature. Here, we start to lay some

foundations in this area by providing the basic building blocks for achieving some degree of

specificity.

The focus of the present study is on the contact angle θ that the interface between two

phases (‘1’ and ‘2’) forms at the three-phase contact line on a solid substrate (‘s’) which is

locally flat (Fig. 1).∗ Given the interfacial tension between the two phases of interest, γ12,

∗The application of molecular simulations in estimating contact angles has recently been reviewed by
Jiang and Patel 10
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and the surface energies of the two phases against the substrate, γs1 and γs2, the contact

angle satisfies the Young equation,11,12

γs1 = γs2 + γ12 cos θ . (1)

There are various ways to derive this result (for example, see Appendix), but at its simplest

one can view it as a static force balance as indicated in Fig. 1b.

For the contact angle to be finite (i. e. 0 < θ < 180°), one must have |γs1 − γs2| < γ12.

An alternative way to view this is to consider the de Gennes spreading parameter,12,13

S ≡ γs1 − γs2 − γ12 . (2)

With this definition, the Young equation can be written

S = γ12(cos θ − 1) . (3)

If we consider phase ‘2’ to be a droplet, as shown in Fig. 1a, this makes it clear that there

are three domains of behaviour,

S > 0 cos θ = 1 complete wetting droplet spreads out,

−2γ12 ≤ S ≤ 0 | cos θ| ≤ 1 partial wetting finite contact angle,

S < −2γ12 cos θ = −1 complete dewetting droplet detaches.

The spreading parameter S is therefore a measure of the wettability of the substrate by the

indicated phases.

Under conditions of partial wetting the contact angle θ is directly accessible to experi-

ment. As such, it is directly relatable to many of the above-mentioned practical applications:

for example laundry detergents are designed to promote a high contact angle or even com-

plete detachment for an oil droplet on a surface, facilitating disproportionation and roll-up;14
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(a) (b)

Figure 1: Example of a contact angle (a), and the geometry of the Young equation (b).

antifoams depend on the partial wettability of hydrophobic particles to cause film breakage;15

in a Pickering emulsion, particles with a judiciously chosen contact angle sit on the inter-

face and stabilise oil droplets;16 and in mineral flotation, differential wettability is used to

separate the valuable ore from the unwanted ‘gangue’ components.17

For coarse-grained particle-based simulation methodologies such as our chemically-specific

DPD models, there are two approaches to modelling walls. The first is simply to extend the

particle-based paradigm to represent a wall as an array of DPD beads which are either

‘frozen’, or tethered to fixed sites.7,9 In this, one can take advantage of the bead-bead inter-

actions already derived within a standard parametrisation strategy, but on the other hand

the determination of the surface energies may be delicate. Additionally, there is the need

to choose the density and arrangement of the beads, and parametrise the tethering force if

the beads are not frozen. Such an approach could however be suitable for materials which

are chemically patterned or have nanoscale roughness. An alternative approach, which is

the focus here, is to model the surface as a smooth, featureless substrate. This approach is

suitable for atomistically or molecularly smooth materials, such as glass (silica), many plas-

tics (for example, polythene, polypropylene, polyester), minerals (calcite, hydroxyapatite,

etc), organic crystals such as sugars (sucrose), and perhaps even ice. Within this approach,

which pertains to many situations of direct practical relevance, the parametrisation problem

becomes simply one of designating the wall forces for each bead type in the bulk. Moreover,

determination of the surface energies is very straightforward as we shall see.

Whichever wall model is adopted, our central thesis is that it should recover the macro-
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scopic contact angle(s) for droplets of given liquids on the substrates of interest, and at

the same time it should minimally perturb the liquid structure on length scales beyond the

immediate vicinity of the wall. The reasoning behind the first requirement is that in the ab-

sence of directly measured surface energies, contact angles stand in for the wettability of the

substrate. For example, in saying that a surface is hydrophilic or hydrophobic one is really

making a statement about the contact angle of a droplet of water on that surface (whilst

the present work does not cover vapor-liquid interfaces, the methods we develop should be

equally applicable). For the second requirement, we note that if a coarse-grained DPD water

bead represents several actual water molecules, structure on the bead length scale induced

by the wall (e. g. oscillations in the bead density) should be minimised. This latter require-

ment involves an inevitable trade off in being able to set surface energies arbitrarily, but

as a design criterion it can be used to narrow the choice of wall interaction potentials as

described below, and take advantage of a built-in degree of freedom since in determining

contact angles it is only the difference in surface energies, γs1 − γs2, that is relevant for the

Young equation and the de Gennes spreading parameter.12

In this article we outline the chemically-specific DPD model that we use as a basis, and

describe the wall model that we use. We then introduce the methodology for calculating the

surface energies from our DPD simulations such that the Young equation is automatically

satisfied. Next, we validate this against direct numerical simulations of oil droplets on sur-

faces, using dodecane in water at 25℃ as our model. Finally, we consider the complementary

case of a water droplet in oil, and show that our methodology can reproduce the case of a

water droplet in dodecane on a surface-adsorbed monolayer on silica.
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2 Chemically-specific DPD

2.1 Model Building

We adopt the DPD parameters from Anderson et al. 1 Here, each DPD bead represents a

chemical group comprising n = 1–3 ‘heavy atoms’ (e. g. carbon, oxygen), except for wa-

ter, which is treated super-molecularly, with the DPD water bead representing two water

molecules (2H2O). Dodecane (C12H26) is represented as a 7-mer, CH3−(CH2CH2)5−CH3,

consisting of CH2CH2 and terminal CH3 beads. Note that under atmospheric pressure do-

decane has a melting point of about −10℃, so it is liquid under the conditions of the

simulations.

The non-bonded interactions (i. e. the DPD conservative force) are defined by standard

DPD pairwise soft repulsions of the form,18,19

Uij(rij) =

{ 1
2
Aij(1− rij/Rij)

2 (0 < rij < Rij) ,

0 (rij ≥ Rij) ,
(4)

where Aij and Rij are the repulsion amplitude and range, and rij = |r⃗j− r⃗i| is the separation

between beads i and j located at r⃗i and r⃗j respectively. The repulsion amplitude for water

beads is set to Aij = 25, and likewise by convention Rij = 1 for water beads, in units of rc,

the fundamental unit of length in our model.

We establish the latter by mapping our bead model of pure water at a bead density

ρr3c = 3 to real water using Avogadro’s constant NA, the molar mass of a water bead

M(2H2O) ≈ 36 gmol−1 (noting there are two water molecules per bead), and the mass

density of water ϱw ≈ 1000 g L−1. From this we infer that

NAr
3
c =

ρr3c M(2H2O)

ϱw
≈ 0.108 Lmol−1 , (5)

and hence rc ≈ 0.564 nm. Note that with Eq. (5) we can convert a bead density in DPD
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Table 1: DPD repulsion amplitudes and cut-off distances for the three bead types used in
this work obtained from Anderson et al. 1

bead i bead j Aij Rij

2H2O 2H2O 25.0 1.0000
2H2O CH2CH2 45.0 1.0370
2H2O CH3 45.0 0.9775
CH2CH2 CH2CH2 22.0 1.0740
CH2CH2 CH3 23.0 1.0145
CH3 CH3 24.0 0.9550

units to a real density by multiplying by M(bead)/NAr
3
c , where M(bead) is the molar mass.

The remaining bead parameters are given in Table 1, and are tuned to reproduce the

experimental liquid phase densities and water-octanol partition coefficients (logP values)

for a range of small molecules. The cut-off distance for the dissipative and random forces

required in the DPD method was assigned equal to the maximum cut-off distance in the

system (i. e. supremum ({Rij}) = 1.0740) and the dissipative friction amplitude was set at

4.5.

For the bonded interactions, a simple harmonic potential UB
ij = 1

2
kb(r − r0)

2 is used

between connected DPD beads, with r0 equal to 0.29 and 0.39 for CH3−CH2CH2 and

CH2CH2−CH2CH2 respectively, and a single bond constant kb = 150 (DPD units) adopted

throughout. To stiffen the molecules we introduce bond rigidity by including a harmonic

angular potential between pairs of bonds. We adopt the three-body angular potential used

by Smit and collaborators,20,21 namely UA
ijk = 1

2
ka(θ − θ0)

2 where θ is the angle between

adjoining bonds and we adopt θ0 = 180° and ka = 5 (DPD units) for all angles.

2.2 Wall model

We now turn to the specification of the wall model. As mentioned in the introduction, in

our approach we treat this as a smooth, featureless substrate which interacts with the DPD
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beads through bead-specific wall potentials. For instance, consider a wall located at the

z = 0 plane. We suppose generally there is a hard reflecting barrier at z = 0, so that DPD

particles cannot penetrate to z < 0. This is implemented in the simulation using specular

(mirror-like) reflection (rather than bounce-back reflections). For z > 0 we augment this

with a soft, short-range potential of the form,22

Us,i(zi) =

{ 1
2
As,i(1− zi)

2 (0 < zi < 1) ,

0 (zi ≥ 1) ,
(6)

where zi is the height of the i-th particle above the hard reflecting boundary at z = 0. We

set the wall potential to have the same functional form for all bead types, but differentiate

these from each other by bead-specific repulsion amplitudes As,i , intended to capture the

surface chemistry. For simplicity we set the range here equal to unity (in units of rc) for all

bead types though one could envisage this being used as an additional fine-tuning parameter.

We anticipate that the exact functional form of the wall potential is unimportant as long

as it remains soft and short-ranged, so we have chosen something for numerical convenience

which is similar to the pair interactions in Eq. (4).

Again for simplicity, in the present study we do not distinguish between the two alkane

bead types, so we only consider wall repulsion amplitudes As,dod where ‘dod’ (for dodecane)

represents both CH3 and CH2CH2 beads, and As,wat where ‘wat’ refers to the water beads.

These repulsion amplitudes were varied from zero to 50 in steps of 10 (in a matrix) to observe

the effect of the interaction strength upon the structure and surface energies for each of the

two liquids, water and dodecane.
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2.3 Simulation conditions

2.3.1 General simulation conditions

All simulations were run using the dl meso simulation package (version 2.8),23 at a reduced

temperature of T = 1.0 (which is equivalent to 25℃ according to the underlying parame-

terization). A time step of 0.02 (DPD units) was used through out. For NPT simulations

a Langevin-piston barostat was used, with p = 23.7 in reduced units to correspond to the

pressure in our bead model of pure water at a reduced density ρr3c = 3.

We note that since kBT/r
3
c = RT/NAr

3
c ≈ 2.3 × 107 Pa at T = 298K, in real units

the operating pressure 23.7 kBT/r
3
c ≈ 0.54GPa . This is much larger than atmospheric

pressure (100 kPa). We accept this, noting that unlike typical real liquids, there is no cohesive

contribution to the interparticle forces in DPD to reduce the ‘overpressure’.

We have found that at P = 23.7 the reduced density of pure DPD dodecane is ρr3c ≈ 3.27.

Since in this DPD model dodecane is a 7-mer, the mean molar mass of a dodecane bead

is M(C12H26)/7 ≈ 24.3 gmol−1. Utilising Eq. (5), this corresponds to a real mass density

3.27 × 24.3/0.108 ≈ 740 g L−1, which is within 1.5% of the true value of 750 g L−1. This is

expected since the DPD parameters are tuned to reproduce liquid phase densities.

2.3.2 Liquid-liquid interface

Each system utilised an initial simulation cell of size Lx×Ly ×Lz = 10×10×200. This size

was settled upon after performing calculations for a series of different box sizes to ensure

finite size effects are ruled out. Further information regarding these effects can be found in

the Supporting Information. For the dodecane–water system, the initial simulation setup

was constructed such that each of the two components were placed in either half of the

simulation cell. Periodic boundary conditions were adopted in all three dimensions. In this

case, the oil–water system comprises two interfaces, one at z ≈ Lz/2 and one at z ≈ 0. In the

final result, whilst equal in number of beads, water and dodecane occupy slightly different
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volumes due to their different densities. All simulations to determine the interfacial tension

values were performed initially under a NPT ensemble at starting reduced density of ρ = 3.0.

Subsequently, NVT simulations were completed (at the equilibrium simulation box lengths

from NPT calculations) to ensure agreement in results. Both ensembles produced results in

agreement within the reported error of each other.

For comparison and to provide a benchmark, additional molecular dynamics (MD) sim-

ulations were performed at a temperature of 300K using the TIP4P/2005 water model,24

and dodecane obtained using the optimised L-OPLS parameters of Siu et al. 25 A system

containing 1600 dodecane and 20 500 water molecules (corresponding to a final box size of

Lx = Ly = 8.5 nm and Lz = 17.1 nm) was initially run for 5 ns (using a time step equal to

0.001 ps) under the anisotropic NPzT ensemble, in which the Lx and Ly dimensions are fixed

and Lz fluctuates to reach the pressure of 1 bar, using the Parrinello-Rahman barostat and

Nosé-Hoover thermostat. The system was further run at NVT conditions for 20 ns and the

final 10 ns were used for data collection.

2.3.3 Liquid-surface interface

For the liquid–surface systems molecules comprising the liquid were placed randomly in a

simulation cell equivalent in size to the dodecane–water system, defined above. The same

simulation protocol as above was used except that the semi-periodic boundary conditions

were employed in the xy dimensions and substrate walls are placed at z = 0 and z = Lz.

The properties of the upper wall are identical to the lower wall, with suitable reflection and

translation.

2.3.4 Droplet on surface

To study the explicit droplets, we performed NVT simulations containing the same surface

as described above, parallel to the xy plane. The initial configuration consisted of dodecane

molecules within a rectangular parallelepiped region at the reduced dodecane bead density
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of ρ = 3.27 in DPD units, located on the surface at z = 0, centred in x and extending along

the y axis. The rest of the simulation box is filled by DPD water beads at a reduced density

ρ = 3. The visualisation of an initial configuration is presented in Fig. 2a. The distance

between the walls Lz is large enough to avoid interactions between dodecane molecules and

the upper surface. We select interaction parameters As,α to produce a variety of contact

angles in the explicit systems. The simulations are equilibrated for 5 × 105 time steps to

allow the dodecane region adopt a cylindrical shape (see Fig. 2a, right-hand panel). Once

equilibrium is reached, production simulations of 106 time steps are performed and every 103

time steps the configuration is saved to a trajectory file for analysis.

z       y

        
        x

(a) Explicit droplet simulation setting

Rcell

xCoM

Δx

Δ

z

z
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xx+x-

(b) Identifying droplet boundary
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(c) circle arc fitting
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(d) extrapolation to R → ∞

Figure 2: Stages required to measure cos θsim in explicit droplet simulations. Here we show
(a) the initial and final simulation configuration, were water beads are represented as a
transparent surface for clarity, (b) a schematic representation of the algorithm to obtain the
discrete droplet profile in the xz plane, (c) the circle-arc profile from systems of different box
sizes using As,dod = As,wat = 50, and (d) a demonstration of the interface position δh effect
on the extrapolation to infinite droplet radius using the same data in (c).

For every surface model, we study four simulation boxes to produce droplets of different
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Table 2: Details of simulation boxes for the explicit droplet simulations of dodecane droplets
water. The box size (Lx, Ly, Lz), and size of the dodecane regions (lx, ly, lz), are given in
DPD units. The final columns report the number of dodecane molecules (DPD 7-mers), the
number of DPD water beads, and the total number of DPD beads.

Box ID (Lx, Ly, Lz) (lx, ly, lz) Ndod Nwat Ntot

Box1 (50, 20, 25) (8, 25, 8) 907 69 164 75 513
Box2 (50, 20, 25) (11, 25, 11) 1679 64 197 75 950
Box3 (100, 30, 30) (14, 30, 14) 3115 249 958 271 763
Box4 (100, 30, 30) (17, 30, 17) 4512 240 970 272 554

diameters. In Table 2, we give size and composition details: total dimensions (Lx, Ly, Lz),

the size of the initial dodecane region (lx, ly, lz), the number of dodecane molecules Ndod

(DPD 7-mers), the number of DPD water beads Nwat = NH2O
/2, and the total number of

DPD beads in every box Ntot = 7Ndod +Nwat.

From the balance between viscous dissipation and surface tension, the time for the droplet

to reach its final shape can be estimated as ηR/γ where η is the fluid viscosity, γ is the

interfacial tension, and R is the droplet diameter.13 Since we expect η and γ to be O(1) in

DPD units, and R is at most several tens of rc (Table 2), this time scale is perhaps 10–100

DPD time units, or not more than 103–104 DPD time steps. Hence the equilibration time of

5× 105 time steps should be ample to allow the droplet to reach its final cylindrical shape.

This is in accord with our observations.

2.4 Measurement

2.4.1 Liquid-liquid interfacial tension determination

The approach to calculating the liquid-liquid interfacial tension is well established,26 and uses

the volume- and time-averaged diagonal components of the pressure tensor, ⟨Pxx⟩, ⟨Pyy⟩, and

⟨Pzz⟩, as

γ12 =
Lz

2

(
⟨Pzz⟩ −

1

2
(⟨Pxx⟩+ ⟨Pyy⟩)

)
. (7)

12

https://doi.org/10.26434/chemrxiv-2024-dkl3b ORCID: https://orcid.org/0000-0002-4320-8472 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-dkl3b
https://orcid.org/0000-0002-4320-8472
https://creativecommons.org/licenses/by/4.0/


Here Lz is the length of the simulation box in the direction perpendicular to the liquid-

liquid interface, assumed to be the z-direction and the outer factor ‘2’ derives from the

fact that in periodic boundary conditions there are two interfaces. In a bulk region all

three components of the pressure tensor become equal to each other and equal to the bulk

pressure, Pxx = Pyy = Pzz = p. A non-zero value for γ12 (which must be positive) results

from the fact that Pxx = Pyy (assuming in-plane isotropy) deviates negatively from Pzz = p in

the interfacial region, where the constancy of the latter derives from mechanical equilibrium.

Typically, the negative deviation in the lateral components of the pressure tensor corresponds

to a ‘dip’ in the density profiles in the interface, with fewer particles, reduced lateral forces

and reduced lateral momentum transport in this region.

2.4.2 Liquid-substrate surface energy determination

In contrast, determination of the surface energy for a fluid against a wall can be fraught with

difficulties due to the presence of internal stresses in the solid substrate. To overcome these,

Leroy and coworkers devised a ‘phantom wall’ method to compute the surface energy.27–29

By incrementally ‘lifting’ the phantom wall off the real substrate, one can compute the

difference in surface energy between the real wall and the phantom wall by thermodynamic

integration. This is augmented by a direct calculation of the phantom wall surface energy

once the real wall is sufficiently distant to avoid perturbing the fluid.

In our model the introduction of a phantom wall and the thermodynamic integration

step are unnecessary since the wall is structureless, there are no internal stresses, and the

wall forces are always normal to the surface. As a result, we can show that Eq. (7) can also

be used for the wall surface energies, provided an augmented definition ⟨P ′
zz⟩ is used which

includes the wall forces. The details are given in the Appendix.

Importantly, the surface energy thus computed can be positive or negative. The reason is

that there does not have to be a diminishment in Pxx = Pzz at the wall. In fact, the particle

density profile can show an excess, for example for a pure hard wall without any additional
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Figure 3: Surface energies in mNm−1 for dodecane and water using different surface-fluid
interactions (circles), together with fits to third-degree polynomials (dashed lines).

repulsive force. In such a situation particles pile up in the vicinity of the wall because a

part of the transverse repulsions between particles are missing, as a consequence of particles

being excluded from the z < 0 and z > Lz regions.

During the simulation we measure the pressure tensor every 50 timesteps, obtained as

output of dl meso, and incorporating the contribution of the wall forces as described in the

Appendix. This is the default position in dl meso 2.8 onwards but not for earlier versions

of the package.

2.4.3 Droplet contact angle

To obtain the contact angles from an explicit droplet, we perform the following steps. First,

we identify the droplet boundary following the schematic representation in Fig. 2b. We start

by locating the droplet centre of mass (CoM) onto the xy plane. The local density of a

cylindrical cell centred at the CoM is stored as a reference value ρref = ρ(xCoM, zCoM), using

a cell radius of Rcell = 1.5. The local dodecane densities are calculated by moving the centre

of the sampling cell on a grid with ∆x = ∆z = 0.2, starting from the base of the droplet (by

the surface) to the droplet’s apex. The discrete profile boundary at height zi is determined

as the position of the first cell to the left (x−(zi)) and right (x+(zi)) from xCoM which satisfies
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Table 3: Substrate surface energies, in mNm−1, for various wall interaction strengths. α
represents any bead species in water and dodecane. Results correspond to valuse obtained
for a cell of size Lx × Ly × Lz = 10× 10× 200. The figure in brackets is an estimate of the
error in the final digit.

As,α γs,dod γs,wat

0 −77.1(5) −64.7(4)
10 38.5(5) 28.5(4)
20 102.8(5) 89.8(4)
30 132.8(5) 123.1(4)
40 147.9(5) 143.3(4)
50 158.9(5) 156.4(4)

ρ(xk, zi)/ρref < 0.5.

With the droplet boundaries defined, a circular arc can be fitted around the perimeter.

The profile points close to the top of the drop present larger error bars due to the density

fluctuations in that region (Fig. 2), hence, we discard some of those profile points with the

criterion of using only data with less than 10% of relative error. For the remaining data, we

use the algorithm presented in Thomas and Chan 30 based on the Landau method to obtain

the radius R and centre (xc, zc) of the circle arc.

The contact angle θsim(R) is obtained from

xc + δh = R cos θsim(R) (8)

where δh is the interface position. Finally, for every set of parameters, we exploit the linear

dependence of R in Eq. (8) to extrapolate out to R → ∞ and obtain θsim ≡ θsim(R → ∞). We

present a test of the sensitivity to δh in Fig. 2d using the systems with As,wat ≡ As,dod = 50.

We observe that, while the individual cos(θsim) values are affected by the δh selection, the

dependence is lost in the macroscopic droplet extrapolation, R → ∞. This is compatible

with the observations in Zhang et al. 31 , where comprehensive discussion on the topic is

presented. The final analysis of all simulation sets is performed using δh = 2 in DPD units.
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3 Results and Discussion

3.1 Interfacial tension and surface energies

In this section we use DPD simulations to determine the interfacial tension and surface

energies that are required in the Young equation, Eq. (1), using the volume-average pressure

tensor components in Eq. (7) as detailed above. We convert the results from DPD units to

real units by multiplying by the factor kBT/r
2
c = rc×RT/NAr

3
c ≈ 12.9mNm−1, on the basis

of Eq. (5) and assuming T = 298K.

From simulations of the dodecane/water system (without walls) we calculate the dode-

cane/water interfacial tension to be γwat,dod = 27.3 ± 0.4mNm−1. Despite the large back-

ground ‘overpressure’ (Sec. 2.3.1), this is comparable to, but somewhat lower than the ex-

perimentally reported 51–52mNm−1 range that is typical for this system.32,33 We attribute

the mismatch between our simulated results and experimental data to a rather thick liquid-

liquid interfacial region (solid lines in Fig. 4a), which is a consequence of the soft potentials

typically employed in DPD.

A number of DPD studies report models where the interfacial tension for oil–water sys-

tems closer to experimental data. In these works, both oil and water are often represented

as single beads and the repulsion amplitude describing the interaction between the two sol-

vents is then set to a large value, e. g. Awat,oil ≈ 100 in order to reproduce the experimental

interfacial tension.34–36 Using a larger value for Aij has the effect of sharpening up the tran-

sition in the liquid density at the interface. We can reproduce this effect in our model by

increasing the repulsion amplitude between water and dodecane beads (both types) from

Awat,dod = 45 (solid lines in Fig. 4a) to 100 (dashed lines in Fig. 4a). With this increased

repulsion amplitude we find γwat,dod = 54.5 ± 0.3mNm−1, which is adjusted to be close to

experiment. Such large changes in the oil-water interaction parameters would render our

model useless in its ability to reproduce partition coefficients and liquid phase densities for
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(a) water–dodecane (b) water–surface (c) dodecane–surface

Figure 4: Liquid bead number concentration profiles perpendicular to the interface, water
phase giving way to dodecane phase in (a) and with surface placed at lower z boundary
in the case of (b,c). For (a) we show the water-dodecane interface for three scenarios; (i)
resulting from the original DPD parameters (solid lines); (ii) resulting from an increase in
the water-dodecane repulsion parameter (from 45 to 100, denoted by an ∗ in the legend);
(iii) resulting from MD simulations. For details of the simulations carried out, please refer
to the main text. For (b) and (c) we show the concentration profile for each liquid with the
surface at varying Aij values.

which the model was originally parameterised though. To explore this still a little further, we

compare these results from the two DPD models with an MD simulation of a dodecane-water

interface (dotted lines in Fig. 4a). The resultant MD value of the water-dodecane interfacial

tension was γwat,dod = 56± 3mNm−1. We observe (Fig. 4a) that in the MD simulation the

interface width is even narrower than the artificially sharpened DPD model.

Now we turn to the substrate surface energies, using simulations of either pure water

or pure dodecane, confined between parallel walls as described in Sec. 2.4.1. Table 3 and

Fig. 3 show how the surface energies for water and dodecane varies with the surface repulsion

amplitude As,α (where α is either dodecane or water). For both liquids, the value of γs,α

increases strongly as expected. In the case where the interaction between the surface and

the liquids are set to zero, the recorded surface energies are large and negative (γs,wat =

−64.7mNm−1 and γs,dod = −77.1mNm−1). Figs. 4b and 4c present the density profiles

of the water and dodecane liquids at the surface with increasing As,α. For both liquids

significant ordering results with dodecane being more strongly affected than water. Ordering

in the case of water persists for ≈ 2 DPD distance units and for dodecane this is increased

to ≈ 3 units. Surface induced ordering is minimized for both liquids at As,α ≈ 20.
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Table 4: Comparison of contact angles obtained via the Young equation and explicit droplet
simulations. The figure in brackets is an estimate of the error in the final digit.

As,wat As,dod θ [°] (Young) θ [°] (droplet)

10 10 111(4) 108(3)
30 30 111(3) 105(3)
30 40 155(2) 141(5)
40 30 67(3) 64(2)
40 40 100(2) 99(3)
40 50 125(3) 122(4)
50 40 72(2) 72(2)
50 50 95(2) 94(3)

3.2 Validation of contact angle prediction

We now validate our approach by comparing the contact angles predicted by the Young

equation with measurements of the contact angles from our explicit droplet simulations. For

the latter, examples of the cos θsim(R) values and linear extrapolations are presented in Fig. 5

for selected cases. We include snapshots of the largest droplet in equilibrium for every case

and omit the error bars, which are smaller than the symbols.

Table 4 shows the comparison between the contact angles predicted from the Young

equation using the water/dodecane interfacial tension γwat,dod = 27.3 ± 0.4mNm−1 (i. e.

using our original parameter set in Table 1) plus the surface energies reported in Table 3, and

the contact angles extrapolated from explicit droplet simulations by the described method,

for a variety of As,α combinations. A good agreement is found with a relative error under

4%. In Fig. 6, we show a scatter plot of the data.

To extend the tests to other surface-fluid interactions, we fit the discrete values of γs,α

(in real units of mNm−1) as a function of As,α to third-order polynomials,

γs,dod = −76.9 + 14.6As,dod − 0.333A2
s,dod + 0.00272A3

s,dod , (9a)

γs,wat = −64.8 + 11.4As,wat − 0.218A2
s,wat + 0.00156A3

s,wat . (9b)
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Figure 5: cos θsim(R) values obtained from explicit droplet simulations of different sizes.
The dashed lines represent the linear extrapolation to the macroscopic radius, R−1 → 0.
Inserted in the plot, a visualisation of the largest system is shown for every pair of wall-fluid
interactions.
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Figure 6: Contact angles measured in droplet simulations (vertical axis) plotted against the
values predicted by the Young equation (horizontal axis).

The coefficient of determination was R2 = 0.9999 in both cases, since the dependence is

rather smooth and these fits are quite accurate as shown in Fig. 3. The coefficients in these

expressions differ because dodecane in our DPD model is a molecular fluid at a different

density, and with different bead interactions, than the DPD water model.

These fits allow us to represent the contact angles from the Young equation as a surface,

see Fig. 7b. Using the discrete γs,wat values, 2D projections of the contact angle as a contin-

uous function of As,dod are shown in Fig. 7b, dashed lines. We employ this plot as a guide

to select (As,wat, As,dod) combinations and simulate explicit droplet systems. The resulting

contact angles correspond to the solid symbols in Fig. 7b. We observe a good agreement

finding an average relative error of 5% when comparing both approaches.

Combinations of (As,wat, As,dod) that produced contact angles under 30◦ were challenging

to simulate since the explicit droplets tend to spread out, in particular, for the smaller

system sizes. Other combinations generated detached droplets that we did not analyse. To

understand these behaviours, we return to the de Gennes spreading parameter defined in

Eq. (2). Here, we use the smoothed versions of surface energies in Eqs. (9) to calculate S
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Figure 7: Contact angles obtained from the Young equation. (a) Surface representation
using smooth values of γs,wat and γs,dod, and (b) 2D representation using the smooth γs,dod
in the Young equation (dashed lines) and comparing it to explicit droplet simulations (filled
circles).

as a function of (As,wat, As,dod), noting that for this purpose γwat,dod = 27.3 ± 0.4mNm−1

is a constant dictated by the coarse-grained water-plus-dodecane model. Fig. 8 shows the

behaviour of the droplet on the surface as predicted by S. Corresponding to the classification

scheme in the introduction, three regimes are observed. In the lower right region, S > 0

and the droplet spreads out. In the upper left region, S < −2γwat,dod corresponds to droplet

detachment. In the middle region, where −2γwat,dod < S < 0, partial wetting is observed,

with the droplet sitting on the surface with a finite contact angle as indicated by the color

scale. The boundary between the droplet spreading regime and finite contact angle regime

corresponds to the boundary we have seen in the simulations.

These behaviours follow common sense, since increasing As,α increases the surface energy

of the corresponding phase. Thus, generally, the surface tends to favour the phase with the

smaller value of As,α. Finally, we note that the map in Fig. 8 is asymmetric for the same

reason that the polynomial fit coefficients in Eqs. (9) are different: in our model water and

dodecane are different liquids with different densities and different bead interactions.
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3.3 Application: tuning the hydrophobicity of model surfaces

In this section, we employ the Young equation to parametrise surfaces with different degrees

of hydrophobicity. As a benchmark, we use experimental contact angles of water droplets in

dodecane in silica surfaces obtained by Andersson et al. 37 In these experiments, silica wafers

are modified with self-assembled monolayers (SAMs) of different compositions, affecting the

wettability. Here, we take three combinations of –OH and –CH3 coverages (see first and

second columns in Table 6) and propose a simple continuous wall model for each.

We begin with Eq. (1), where the droplet is now made of water and the surrounding liquid

dodecane. The two phase simulations required to obtain the interfacial tension for the Young

equation are the same cases presented in Sec. 3.1. In analogy to the previous section, we use

the discrete γs,dod values and the smooth version of γs,wat, Eq. (9b), to plot the contact angles

from the Young equation as a continuous function of As,wat, Fig. 9a. To generate continuous

wall models with effective interactions, we follow the steps represented in the same figure:

A) select and fix As,dod = 30, leaving As,wat to reflect the hydrophilic or hydrophobic effect

introduced by the surface modifications; B) locate the experimental contact angles in the

curve and C) find the corresponding As,wat value. The effective surface-water interactions
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Figure 9: (a) Contact angles from the Young equation for a DPD water droplet in dodecane,
the arrows indicate the steps followed in the surface parameterisation. (b) Snapshots of
explicit droplet simulations using model surfaces with different hydrophobicity degrees.
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Table 5: Details of simulation boxes for the explicit droplet simulations of water droplets in
dodecane. For column details see Table 2.

Box ID (Lx, Ly, Lz) (lx, ly, lz) Ndod Nwat Ntot

Box1 (78, 26, 32.5) (13, 26, 13) 28 648 13 183 213 719
Box2 (90, 30, 37.5) (15, 30, 15) 44 010 20 251 328 321
Box3 (102, 34, 42.5) (17, 34, 17) 64 065 29 479 477 934
Box4 (114, 38, 47.5) (19, 38, 19) 89 441 41 155 667 242

Table 6: Experimental contact angles from Andersson et al.,37 and simulated values in this
work, for SAMs of different quality. The figure in brackets is an estimate of the error in the
final digit.

SAM composition Exp. θ [°] As,wat Simul. θ [°]

72% −OH 28% −CH3 51 27 56 (2)
48% −OH 52% −CH3 95 35 97 (2)
22% −OH 78% −CH3 139 48 142 (5)

for the cases selected are given in the third column of Table 6.

Finally, we confirm that the surface parametrisation reproduces the target contact angles

using explicit droplet simulations. A complete list of the simulated systems is give in Table 5

and the analysis method is applied as described in Sec. 2.4.3. The droplets are shown in

Fig. 9b and the measured contact angle values are presented in the last column of Table 6.

The results are in good agreement with the experimental values (where the average standard

deviation is 6°), with a relative error under 5%.

4 Conclusions

In this work, we set out to develop the basis for the development of chemically specific surface

interactions for dissipative particle dynamics simulation. We compared explicit droplet sim-

ulations with independent computations of the contact angle from the Young equation, using

separate measurements of the interfacial tension and surface energies, finding good agree-

ment. We then demonstrated how our model can be used to parametrise a SAM-covered

silica surface to obtain a given contact angle for a water droplet in dodecane sitting on the
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surface. Fig. 9a is the key result here, since it shows how to choose the wall interaction

parameters to obtain a specified contact angle in this particular system, but obviously the

method can be applied to other systems. Our results show that surfaces can be easily and

rapidly parametrised via the surface energies, which are computable with a relatively trivial

extension of the pressure tensor method for computing the interfacial tension between liq-

uids. Realistic surfaces can be modelled by tuning the interactions between DPD beads and

the wall, using experimental contact angles as a benchmark, without having to undertake

expensive explicit droplet simulations for calibration. We have focussed on flat, structureless

surfaces but in principle the methods can be extended to structured surfaces, although the

computation of the surface energies becomes complicated if one has to implement a ‘phantom

wall’ and lift it off the surface, in a thermodynamic integration step.27–29

We now outline a number of avenues for future work. To continue in the above direction,

we have started to explore how density functional theory (DFT) may be used to compute

the surface energies and density profiles within our wall models, which would obviate the

need to undertake any simulations at all. One interesting result of this is that with a simple

mean-field DFT, one can devise a wall potential for which the water model (as a fluid of DPD

water beads at a specified density) is predicted to be completely structureless away from the

wall, or in other words have a flat density profile. We further find that the required wall

potential can be interpreted as corresponding to a ‘DPD continuum’ made from DPD water

beads at the bulk water bead density, in the z < 0 half space. This provides a theoretical

justification for the approach of Goicochea and Alarcón, who first developed this concept.38

Additionally, not investigated in the present work, one can ask how the individual molec-

ular groups are distributed in the vicinity of the wall. For example, one might expect that

for the pure oil, the terminal −CH3 beads in our dodecane model could be preferentially

located at the wall, on purely entropic grounds.39 Microscopically, the local structure can

be controlled to some extent by adjusting the individual DPD bead wall interactions. In the

present work, for simplicity we did not distinguish between the two hydrocarbon bead types
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in this respect, but in future works these could be fine-tuned to reproduce the molecular

density profiles in greater detail.

Finally, our studies could be extended to include the kinetics of wetting, spreading, and

detachment. The fluids in our DPD models have well-defined viscosities, and so in principle

one ought to be able to investigate these dynamical aspects with the current models. In

our flat, structureless wall model though, the wall potential gives rise to forces on the DPD

beads which are normal to the surface, and thus there are no lateral forces. As it stands

therefore, there is nothing to stop the bulk DPD fluid from sliding freely over the wall, which

would appear to be completely frictionless. To remove this ‘feature’, one could introduce

lateral wall friction forces along the lines of the interparticle dissipative forces between DPD

particles, with a corresponding fluctuating wall force to satisfy the fluctuation-dissipation

theorem.40 With this, one can hope to be able to control and adjust the hydrodynamic

slip length at the wall, without perturbing the equilibrium structural features such as the

surface energies and the contact angle. The movement of the contact line in such models

would additionally need to be characterised, and related to the mesoscopic physics of the

real system that the model was attempting to emulate.41
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Appendix: force balance considerations

In this Appendix we establish an operational definition of the surface energy at a wall such

that the Young equation for a droplet on a surface is automatically satisfied, then confirm

the validity of Eq. (7) in the main text, specifying how the wall forces should be incorporated
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into the appropriate component of the pressure tensor.

Consider a cylindrical droplet sitting on the lower surface of a simulation box, between two

confining walls, as shown in Fig. 10. Let the droplet have height H and the contact angle be

θ, and consider two planes AA′ and BB′ extending across the simulation box as indicated in

Fig. 10a, with the latter intersecting the droplet at its maximum height. The force across AA′

will be p1Lz−2γs1 and similarly the force across BB′ will be p2H+p1(Lz−H)−γs2−γ12−γs1,

where p1 and p2 are the pressures outside and inside the droplet, the corresponding surface

energies are γs1 and γs2, and the interfacial tension is γ12. We suppose that the scale is

macroscopic, so that the interfaces are infinitely thin on the length scale of the droplet.

Assuming force balance we therefore have p1Lz − 2γs1 = p2H + p1(Lz −H)− γs2 − γ12 − γs1.

We note that the pressure inside the droplet exceeds the external pressure by an amount

given by the Laplace equation, so that p2 − p1 = γ12/R, where R is the radius of the

droplet. The above force balance then simplifies to γs1 = γs2+γ12(1−H/R). It follows from

elementary Euclidean geometry that if the droplet profile is considered as an arc of a circle,

the half-angle subtended by the ‘footprint’ of the droplet on the surface at the centre of this

circle is equal to the contact angle as indicated in Fig. 10b.42 This implies H = R(1− cos θ),

and so we recover the Young equation as given in Eq. (1) in the main text.

The implication is that the total force transmitted across a plane like AA′ can be used

to make an operational definition of the surface energy γz such that the Young equation

is satisfied, at least macroscopically. The plane should extend far enough above and below

the simulation box to encompass all the forces present. For our purposes, since there are

no forces outside the hard reflecting boundaries we need only consider the force transmitted

across the segment contained between these boundaries.

Now remove the droplet and consider a simulation box containing pure fluid bounded

by walls top and bottom, as in the left hand part of Fig. 10a. In this situation we could

place the AA′ plane anywhere in the simulation box and we should end up with the same

transmitted force, so that we can conclude the force transmitted across such a plane can
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A'

A

B'

B (a)                                  (b)

Figure 10: A cylindrical droplet on a surface: (a) the force across AA′ must match the force
across BB′ ; (b) the geometry of the droplet.

be written as Lz⟨Pxx⟩, where ⟨Pxx⟩ is the volume-average component of the pressure tensor

in the direction parallel to the surface. This now furnishes us with a precise definition of

the surface energy, namely 2γs = Lz(p − ⟨Pxx⟩), noting there are two walls at the top and

bottom of the control volume (Fig. 10a). Since the fluid is isotropic and ⟨Pxx⟩ = ⟨Pyy⟩, one

can also write this as 2γs = Lz(p− (⟨Pxx⟩+ ⟨Pyy⟩)/2).

This definition assumes that we know the bulk pressure but in practice we want to

avoid having to measure this separately or rely on the barostat. A careful analysis of the

force balance normal to the substrate allows us to do exactly this. The starting point is

the macroscopic hydrostatic equation, ∂Pzz/∂z − f ext
z = 0, where f ext

z is the external force

density exerted by the walls on the fluid. In microscopic terms, this force density is f ext
z =∑

i F
ext
i,z δ(r⃗ − r⃗i) = (1/A)

∑
i F

ext
i,z δ(z − zi), where F ext

i,z is the external force exerted by the

wall on the i-th particle, and we exploit the fact that on average f ext
z should be independent

of position in the lateral direction to replace it by an area average, with A = LxLy.

Let us integrate the hydrostatic pressure equation, from some point z = L in the bulk

where Pzz → p, towards the surface at z = 0. We obtain in this way p = Pzz(z)+
∫ L

z
dz f ext

z .

Injecting the microscopic expression for the force density into this obtains

p = Pzz(z) +
1

A

∑
i

F ext
i,z Θ(zi − z)Θ(L− zi) , (10)

where the Θ-functions ensure that only particles with z < zi < L are counted. We integrate
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once more in the z-direction, using the fact that
∫ L

0
dzΘ(zi − z) = zi if zi < L, to obtain

p =
1

L

∫ L

0

dz Pzz +
1

AL

∑
i

F ext
i,z ziΘ(L− zi) . (11)

As mentioned, the height L in here should be large enough to warrant the assumption that

one is in the bulk (where, in fact, F ext
i,z = 0 anyway), but not so large as to reach the upper

confining wall. However, we can make the exact same argument for this upper confining

wall, and combining the expressions yields

p = ⟨Pzz⟩+
1

V

∑
i,lower

F ext
i,z zi +

1

V

∑
i,upper

F ext
i,z (Lz − zi) , (12)

noting that the limited range of the wall force obviates the need to retain Θ-functions. Here

⟨Pzz⟩ is the volume-average component of the conventionally-defined pressure tensor in the

z-direction normal to the surface. Treated as an expression for p, this can now be injected

into the above definition of the surface energy to obtain the final result

γs =
Lz

2

(
⟨P ′

zz⟩ −
1

2
(⟨Pxx⟩+ ⟨Pyy⟩)

)
, (13)

where, to be explicit,

⟨Pxx⟩ =
〈 1

V

∑
i>j

Fij,x(xj − xi)
〉
, ⟨Pyy⟩ =

〈 1

V

∑
i>j

Fij,y(yj − yi)
〉
,

⟨P ′
zz⟩ =

〈 1

V

∑
i>j

Fij,z(zj − zi)
〉
+
〈 1

V

∑
i,lower

F ext
i,z zi

〉
+
〈 1

V

∑
i,upper

F ext
i,z (Lz − zi)

〉
.

(14)

In these F⃗ij is the force between the i-th and j-th particles so that the first terms are the

conventional virial pressure tensor components. Additionally, ⟨· · ·⟩ can be taken to be an

ensemble average as well as the indicated volume average. Apart from the formal inclusion

of the external forces into P ′
zz, this is identical to Eq. (7) in the main text and justifies its

use for the surface energy at the wall.
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The theory leading to these final results in Eqs. (13) and (14) rests on the assumptions

that there are no particles outside the hard walls, and that the external forces exerted by

the walls are only in the z-direction normal to the walls. Without these, such as would be

the case where the walls are represented by frozen or tethered particles, the problem would

have to be revisited.

Note that the kinetic contributions can be omitted from the pressure tensor components

in Eq. (14). This is justified because the kinetic part of the pressure tensor is isotropic even in

an inhomogeneous fluid (the momenta of the particles remain decoupled in the Hamiltonian

even if the particles are acted on by an external force). This is also the case for the usual

expression for the surface tension of a liquid-liquid interface.
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(25) Siu, S. W. I.; Pluhackova, K.; Böckmann, R. A. Optimization of the OPLS-AA force

field for long hydrocarbons. J. Chem. Theory Comput. 2012, 8, 1459–1470.

(26) Kirkwood, J. G.; Buff, F. P. The statistical mechanical theory of surface tension. J.

Chem. Phys. 1949, 17, 338–343.

32

https://doi.org/10.26434/chemrxiv-2024-dkl3b ORCID: https://orcid.org/0000-0002-4320-8472 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-dkl3b
https://orcid.org/0000-0002-4320-8472
https://creativecommons.org/licenses/by/4.0/


(27) Leroy, F.; dos Santos, D. J. V. A.; Müller-Plathe, F. Interfacial excess free energies of

solid–liquid interfaces by molecular dynamics simulation and thermodynamic integra-

tion. Macromol. Rapid Comm. 2009, 30, 864–870.

(28) Leroy, F.; Müller-Plathe, F. Solid-liquid surface free energy of Lennard-Jones liquid on

smooth and rough surfaces computed by molecular dynamics using the phantom-wall

method. J. Chem. Phys. 2010, 133, 044110.

(29) Jiang, H.; Müller-Plathe, F.; Panagiotopoulos, A. Z. Contact angles from Young’s

equation in molecular dynamics simulations. J. Chem. Phys. 2017, 147, 084708.

(30) Thomas, S. M.; Chan, Y. T. A simple approach for the estimation of circular arc center

and its radius. Comput. Vision Graph. 1989, 45, 362–370.

(31) Zhang, J.; Wang, P.; Borg, M. K.; Reese, J. M.; Wen, D. A critical assessment of the line

tension determined by the modified Young’s equation. Phys. Fluids 2018, 30, 082003.
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