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 26 

Suppl. Figure S1. Mouse exposure scheme. Mice were exposed to SPM for 3 consecutive days, after 27 
which mice were either sacrificed and their organs were harvested for further experiments, including 28 
fluorescence imaging, or they were subjected to rodent magnetic resonance imaging. Blood pressure was 29 
measured at the baseline and after the final exposure. Created with Biorender.com 30 

 31 
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 33 

Suppl. Figure S2. Particle size distribution. Representative distributions for all of the different SPM 34 
materials used for the experiment, presented as mass distributions. Original diagrams generated by the 35 
NanoSpectroPan particle detector. 36 

 37 
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ONLINE METHODS 39 

Non-invasive blood pressure measurement 40 

Blood pressure was measured using tail-cuff plethysmography with a blood pressure measurement 41 

instrument CODA (Kent Scientific, Torrington, CT) 1, 2. Before the measurement, mice were restrained 42 

inside a plastic tube and placed on a preheated plate (32 °C). After a 15-minute rest two cuffs (occlusion cuff 43 

and volume pressure recording cuff) were placed on the tail of each mouse. The instrument performs 10 44 

measurement iterations, and the mean is reported. Before the baseline blood pressure measurement was 45 

recorded, mice were trained without recording the results at least two times. The final experimental blood 46 

pressure (T1) value was recorded after the last exposure to PM.  47 

 48 

Isometric tension studies in isolated aortic rings 49 

Aortic ring segments from the thoracic part of the aorta, 4 mm in length, were cleaned from the perivascular 50 

adipose tissue and suspended from the force transducers in an organ bath 1, 2. The force exerted by the aortic 51 

rings was measured in the presence of varying concentrations of vasodilators acetylcholine (ACh) and 52 

nitroglycerine (GTN) after preconstruction with prostaglandin F2α (yielding approximately 80 % of the 53 

maximal tone induced by KCl bolus). Endothelial function was determined by the addition of endothelium-54 

dependent vasodilator, ACh in the range of 10-9 to 10-5.5 M. Endothelium-independent vasodilation was 55 

assessed by titrating the pre-constricted aortic rings with GTN in the range of 10-9 to 10-4.5 M. A constant 56 

temperature of 37 °C and flow of carbogen gas (95% oxygen, 5% CO2 v/v) was maintained in the organ 57 

chamber throughout the experiment. The cyclooxygenase inhibitor indomethacin (10 μM) was added to the 58 

buffer to prevent the production of prostaglandins and other vasoactive eicosanoids that might interfere with 59 

the measurement. 60 

 61 

Dihydroethidium fluorescence microtopography 62 

Aortic sections from the thoracic part, cortex pieces and lung pieces were embedded in optimal cutting 63 

temperature (OCT) compound (TissueTekTM, Sakura Finetek, Umkirch, Germany) and snap frozen in liquid 64 
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nitrogen 3, 4. The frozen blocks containing tissue pieces were cut on a cryo-microtome at -25 °C and 65 

thickness of 8 µm, transferred onto SuperFrost® (VWR International, Darmstadt, Germany) microscopy 66 

slides and stored at -80 °C. The tissue-containing slides were incubated with 1 µM dihydroethidium (DHE) 67 

for 30 minutes at 37 °C, washed twice with PBS, protected with a cover slide, and imaged under a 68 

fluorescence microscope (Axiovert 40CFL with Axiocam MRm, Zeiss, Germany). The excitation 69 

wavelength was set to 510 – 520 nm, and red fluorescence was recorded (emission: 580 – 610 nm). The 70 

fluorescence images were quantified as the mean pixel intensity obtained from the area of interest 71 

(endothelium and media for the aorta and whole image for lung and cortex) using ImageJ software. 72 

 73 

Western blot analysis 74 

Protein expression in tissues of interest was determined by a standard western blot analysis 1, 5. Protein 75 

samples were analyzed using specific primary antibodies against endothelial NO-synthase (eNOS, 1:1000, 76 

BD Bioscience #610297, USA ), endothelin-1 (ET-1, 1:1000, mouse monoclonal, SantaCruz #sc-517436, 77 

Dallas, USA), NADPH oxidase subunits gp91phox (NOX2, mouse monoclonal gp91phox, 1:500, BD 78 

Biosciences #611415, USA)), NOX1 (rabbit polyclonal, 1:500, Abcam #ab131088, Cambridge, MA, USA), 79 

p67phox (1:1000, BD Bioscience #610913, USA) and phosphorylated p47phox (Neutrophil Cytosolic 80 

Factor 1 (NCF-1), 1:000, AssayBiotech #A1161, Sunnyvale, CA), myristoylated alanine-rich protein kinase 81 

C substrate phosphorylated at Ser152/156 (P-MARCKS, 1:1000, Cell Signaling, Danvers, MA), cluster of 82 

differentiation 68 (CD68, 1:1000, Abcam #ab31630, Cambridge, MA, USA), Manganese superoxide 83 

dismutase (MnSOD (SOD-2), 1:1000, Millipore #06-984, Lake Placid, NY), protein kinase Cα1 (PKCα1, 84 

1:5000, BD Bioscience #610107, USA), monocyte chemoattractant protein 1 (MCP-1, 0.4 µg/mL, BioRad 85 

#AAM43, Feldkirchen, Germany), heme oxygenase 1 (HO-1, 1:250, Abcam #ab68477, Cambridge, MA, 86 

USA), dihydrofolate reductase (DHFR, 1:500, Novus Biologicals, Littleton, CO), and α-actinin or β-actin 87 

(1:2500 each, Sigma-Aldrich #A5044 and #A5060, St. Louis, MO) for normalization against loading and 88 

transfer. Horseradish-peroxidase conjugated anti-mouse or anti-rabbit were used as secondary antibodies 89 

(1:10000 each, Vector Lab. #PI-2000 (anti-mouse IgG) and #PI-1000 (anti-rabbit IgG), Burlingame, CA). 90 

Densitometric quantification of antibody-specific bands was performed with an ECL Chemostar Imager 91 

(Intas Science Imaging Instruments GmbH, Germany) and Gel-Pro Analyzer software. 92 
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 93 

LIMITATIONS OF THE STUDY 94 

During the study, we noticed several limitations regarding PM exposure studies in general and the current 95 

exposure protocol in particular. One of the major hurdles in assessing the effects of PM with different sizes 96 

is the concentration and size distribution. As most of the PM is not uniform in size but follows a certain 97 

distribution (e.g. Gaussian), it is quite challenging to achieve a precise exposure concentration (mass flow in 98 

µg/m3 or particle flow in N/m3). The difficulty arises because larger particles carry disproportionately more 99 

mass than small particles, and mass concentration is the usual way of defining PM concentration, making it 100 

highly dependent on the larger particles (mass distribution showed in Figure S2). The opposite is true for 101 

the number distribution, as smaller particles are more abundant for the same total mass. Whenever a size 102 

distribution of PM exists, it is expected that small PM will accompany PM of a larger average diameter and 103 

that large PM will significantly contribute to mass concentration, whereas the particle number is largely 104 

based on PM with a smaller average diameter. Therefore, it is difficult to draw conclusions about PM health 105 

effects based solely on average PM diameter, especially in light of different penetrating depths and organ 106 

distribution.  107 

In our experiments, the low amount of PM available through inhalation was insufficient to produce a clear 108 

contrast in the MRI experiments. The amount of PM that entered the mouse through inhalation, calculated to 109 

be approximately 40 – 120 µg/kg, was at least one order of magnitude lower than the lowest literature values 110 

for human contrast applications, where the lower limit is roughly 1000 µg/kg 6, 7. In addition, this 111 

approximated amount of PM is calculated for a whole 6-hour exposure session per day, and the clearance, 112 

which can vary greatly, was not taken into account 8. The larger amount of PM needed for an optimal MRI 113 

contrast would require an unrealistically high exposure concentration of more than 2000 µg/m3, leading to 114 

questionable exposure conditions regarding real-world scenarios. The only way this could be mitigated in 115 

the future is through longer exposure time, resulting in the potential accumulation of magnetic particles in 116 

the liver, heart, spleen, or brain, where it is taken up by the resident macrophages 9. However, there are high 117 

uncertainties due to not well-characterized clearance processes in healthy mice and differences in particle 118 

coating (silica vs. PEG vs. polystyrene), as some studies imply fast clearance in a matter of days 10, 11, and 119 

others have observed almost no clearance after as long as 28 days 12 or even 6 months 13.  120 
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We attributed the absence of the accumulation of fluorescent nano-sized SPM in the lung of exposed mice to 121 

their transmigration into the circulation. However, because exhaled particles were not measured in the 122 

present study, the lung's lack of a pronounced fluorescence signal could be due to the reported higher 123 

exhalation rate of nanoparticles 14. Despite this limitation and uncertainty, the assumption of transmigration 124 

of nano-sized SPM through the lung was further supported by the present observation of an accumulation of 125 

magnetic nanoparticles in the liver by trend. Also, the more pronounced effects of nano-sized SPM 126 

compared to microparticles on functional parameters, e.g. blood pressure increase, and oxidative stress 127 

parameters and markers of inflammation in remote organs such as the aorta, heart and brain point towards 128 

more efficient transmigration of nanoparticles through the lung. These assumptions are also in accordance 129 

with human data on the association of UFP exposure with cardiovascular but not respiratory disease risk 15-17 130 

and reported direct effects of nanoparticles on the brain of mice and humans 18-20. 131 

 132 
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