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ABSTRACT (244 words) 

Particulate matter (PM) air pollution presents a major environmental and public health challenge 

because of its non-uniform size distribution and chemical composition. Air quality regulations 

generally categorize particulate matter (PM) size into PM10, PM2.5, and ultrafine particles (UFPs) 

with aerodynamic diameters < 10, 2.5, and 0.1 µm, respectively. We examined the differential 

impact of particle size per se on selected organ systems using a custom whole-body mouse 

exposure system using synthetic PM (SPM). The micrometer-sized SPM accumulated in the 

lungs as the primary entry organ, while ultrafine SPM showed less accumulation, implying a 

transition into circulation. Micro SPM-exposed mice exhibited inflammation and NADPH 

oxidase-derived oxidative stress in the lungs. Ultrafine SPM-exposed mice did not show 

oxidative stress in the lungs but rather at the brain, heart, and vasculature levels. Endothelial 

dysfunction and blood pressure increase were more pronounced in ultrafine SPM exposed mice, 

supported by increased endothelin-1 and decreased endothelial nitric oxide synthase expression, 

enhancing constriction and reducing vasodilation. To derive a preliminary estimate of the 

cardiovascular disease burden of UFPs in humans, we used new high-resolution exposure data at 

a global scale, and applied hazard ratios from an epidemiological cohort study. We derived a 

UFP-associated incidence of 419 (95% CI 78–712) thousand cardiovascular disease cases per 

year in the European Union and 5.6 (95% CI 1.1–9.3) million globally. This work provides novel 

insights into the different toxicological profiles of inhaled ultrafine particles and public health 

consequences of exposure, guiding future studies.  

 

KEYWORDS: Particulate matter; size-dependent effects; oxidative stress; inflammation; UFP 

model; cardiovascular disease. 
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GRAPHICAL ABSTRACT 
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INTRODUCTION 

Air pollution is a major contributor to non-communicable diseases 1. The Global Burden of 

Disease study ranks air pollution among the leading risk factors for mortality and disability-

adjusted life years (DALYs) 2, with annual excess mortality estimates ranging from 8.7 million 3 

to 10.2 million 4. Particulate matter (PM), a significant component of air pollution, is particularly 

harmful 5. PM includes all solid and liquid particles in the air 6, 7 and varies in sources, structure, 

composition, and size. PM's composition depends on its origin (naturally or anthropogenic) and 

environmental interactions 8, 9. PM is commonly classified by diameter: PM10 (<10 µm), PM2.5 

(<2.5 µm), and ultra-fine particles (UFP, <0.1 µm) 10, with most health studies and regulations 

focusing on the mass concentrations of PM10 and PM2.5 
11. Research done during the last two 

decades revealed the difference in toxicity between PM10 and PM2.5, as the larger particles do not 

penetrate as deeply into the respiratory tract and are more easily eliminated 12-14. It is important to 

remember that PM10, on its own, still presents a significant risk factor for many diseases 15, 

probably also due to loading with environmental toxins. The health differences between UFP and 

PM2.5 remain understudied, and only a few cohort studies have been reported. This is mainly 

because UFP were, until recently, not routinely measured in air pollution networks. 

Ambient PM typically has a mineral or carbon core and carries chemicals like inorganic salts, 

organic compounds, transition and heavy metals, and endotoxins 8, 16, 17. However, measuring PM 

size and number concentrations is more straightforward and less expensive than composition 

differentiation, especially for particles in the PM2.5 and PM10 size ranges 18. Accordingly, PM2.5 

and PM10 mass concentrations (in µg/m3) are widely adopted parameters in health studies and 

regulations, while UFP mass concentrations are less commonly measured and used 19, 20. Smaller 

particles tend to be more harmful than larger particles, and research often focuses on PM2.5 over 

PM10 
10, 21. UFPs are considered especially detrimental, likely due to their ability to penetrate the 

air-blood barrier 22, 23. While UFPs often dominate ambient particle size distributions by number, 

they only comprise a small fraction of PM2.5 mass 24. Thus, using PM2.5 or PM10 mass 

concentrations as a predictor for health endpoints not only disregards the composition of particles 

but also the differential toxicity of particle sizes within PM. While smaller particles contribute 

comparatively little to mass concentrations, they may be disproportionately more harmful. While 

previous large clinical studies often excluded UFP health effects since reliable quantification of 
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nanoparticles represented a challenge, recent technological innovations and more affordable 

devices now enable UFP measurement more broadly. 

A study from China showed that only particles smaller than 1 µm (PM1) are positively associated 

with cardiovascular morbidity 25. Another study from China demonstrated a positive association 

between PM in the size range of 0.25 – 0.5 µm and cardiovascular mortality while observing no 

significant association with mortality from respiratory diseases 26. A study in Erfurt, Germany, 

found a similarly higher risk for cardiovascular mortality from UFP compared to respiratory 

mortality 27. The results of these two studies support the transmigration of nano-sized particles 

through the lung and direct damage to remote organs. A recent study in Copenhagen, Denmark, 

established that hospital admissions for cardiovascular and respiratory diseases positively 

correlated with an increase in UFP concentrations 28. Interestingly, after adjustment for PM2.5 all 

associations with respiratory diseases decreased, while associations with cardiovascular disease 

increased, pointing to a direct effect of UFP, but not of larger PM, on the cardiovascular system. 

Data from a Dutch cohort corroborate the findings of cardiovascular disease association with 

UFP rather than coarser PM, highlighting this through a two-pollutant model where UFP 

remained the only positively associated variable for cardiovascular risk 29. On the other hand, in a 

cohort from Toronto, Canada, no change in the association between UFP and acute myocardial 

infarction and congestive heart failure was observed after correcting for exposure to PM2.5 and 
•NO2 

30, and this was confirmed by another study on airborne nanoparticle concentrations 

reporting an association with increased mortality risk in Canada’s two largest cities 31. The 

European Study of Cohorts for Air Pollution Effects (ESCAPE) also found no correlation 

between PM2.5 concentrations and all cardiovascular disease deaths 32. 

There is substantial epidemiological and clinical evidence for a major contribution of PM to 

adverse human health effects, and that not only the respiratory system is affected, but remote 

organ systems as well 33. Numerous studies have been conducted on the differential effects of the 

PM composition, providing an overview of the role and contribution of different toxicants carried 

by airborne PM 34-36. On the other hand, the studies addressing the effects of PM size have been 

inconclusive. The reasons are the focus on air pollution-derived UFP that exhibits a high load-to-

mass ratio of surface toxicants, which impedes detection of size effects 10. Further, the use of 

biologically inert PM, e.g. for contrast agents, drug delivery systems and food or cosmetic 

stabilizers has generated contradicting findings 37, 38. Especially in preclinical research, 
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chemically inert particles, such as TiO2, silver, gold, or synthetic carbon/plastic particles have 

been used 39-41.    

This study aimed to determine if ultrafine or nanoparticles penetrate the air-blood barrier more 

easily than microparticles and if they can be detected in remote organs. We also sought reliable 

functional and molecular markers related to cardiovascular and pulmonary systems to 

differentiate the level of harm and tissue transmigration between particle sizes. Hazard ratios 

from a Dutch cohort were used to extrapolate UFP effects on cardiovascular disease incidence in 

humans, highlighting the importance of nanometer-sized particles in disease outcomes. 

 

 

RESULTS AND DISCUSSION 

With the present studies, we investigated the biological toxicity of nano- versus micro-sized 

synthetic particles with emphasis on their potential to transmigrate through the lung epithelium 

into the bloodstream and to cause damage to other remote organs (e.g. the aorta, heart, and brain). 

We used fluorescence-labeled or magnetic nano- versus micro-sized particles to trace their 

biodistribution. In the second part we estimated UFP effects on human cardiovascular disease 

incidence at a global scale. 

 

Organ distribution of PM  

The size distributions of the used SPM are presented in suppl. Figure S2. Since particle mass is 

proportional to the diameter cubed, when exposing animals to the same mass concentration, they 

are exposed to more individual particles in the nano SPM exposure categories. 

After the exposure to fluorescent micro- or nano SPM, mice were sacrificed and extracted lungs 

were imaged with a fluorescence imager (Figure 1A, B). The lungs of mice exposed to micro 

SPM showed a pronounced difference in fluorescence when compared to non-exposed mice, 

while lungs of nano SPM exposed mice showed a more subtle increase in fluorescence intensity 

(Figure 1A). The more pronounced increase in fluorescence intensity after the micro SPM 
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exposure points to the accumulation of the particles in the lung, while the lower fluorescence 

after nano SPM exposure points to the migration of particles from the lung tissue into circulation.  

After the exposure to magnetic micro or nano SPM, mice were subjected to a whole-body rodent 

MRI depicting the abdomen of the mice (Figure 1C, D). The T2
* relaxation values of the tissue 

were measured, enabling the calculation of R2
* parameter maps. We hypothesized that the iron 

particles may accumulate in the heart (Figure 1E) and liver (Figure 1F) when they enter the 

body, and therefore these organs were examined for contrast changes due to the presence of 

magnetic SPM. No statistically significant changes were observed in either organ, although a 

trend toward a reduction in R2
* values was observed in the nano SPM exposed mice.  

Using synthetic particles, i.e. free from detrimental air pollutants, we show that the size of PM 

plays a significant role in detrimental effects on multiple organ systems. This suggests additive or 

synergistic adverse effects by small particle size and a high load of toxicants due to high 

surface/mass ratio combined with high particle number concentrations 23, 42. Ambient particles 

contain chemically active substances (such as transition and heavy metals, peroxides, quinones, 

endotoxins) known to induce inflammation and oxidative stress 43-47. The limitations applying for 

our animal studies, e.g. particle size distribution, sufficient concentrations for MRI contrast, are 

explained in detail in the online supplement. 

 

Vascular function in nano- and micro SPM exposed mice 

Systolic blood pressure, as measured by the tail-cuff method, was increased after exposure to 

both the fluorescent and magnetic nano SPM (Figure 2A, C). Blood pressure was not changed 

after the exposure to fluorescent and magnetic micro SPM. Endothelium-dependent vascular 

relaxation achieved through ACh titration showed a right shift after exposure to fluorescent nano 

SPM but not after the exposure to fluorescent micro SPM (Figure 2B). The endothelium-

independent vascular relaxation in response to nitroglycerin was not changed upon fluorescent 

SPM exposure. The exposure to both magnetic nano and micro SPM caused a right shift in the 

endothelium-dependent relaxation curve by trend, but no clear pattern emerged (Figure 2D). The 

exposure to magnetic SPM also did not affect the endothelium-independent vascular relaxation in 

response to nitroglycerin. Aortic protein expression of endothelin 1 (ET-1) was also increased in 
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mice exposed to the magnetic nano SPM, together with a decrease in endothelial nitric oxide 

synthase (eNOS) by trend (Figure 2E, F).  

The elevated levels of ROS in the aortic tissue that were observed after exposure to nano-sized 

SPM correlate with the impairment of endothelium-dependent vasodilation and the lowering of 

eNOS expression by trend. Elevation of ET-1 expression, a potent vasoconstrictor that is 

upregulated by oxidative stress 48, points to the ability of nano-sized PM to promote vascular 

dysfunction. Another pathway by which PM can influence the cardiovascular system is by 

activation of the sympathetic nervous system (SNS) and the amygdala stemming from the 

translocation of the UFPM through the olfactory nerve 49. The activation of the SNS leads to the 

release of catecholamines which cause vascular constriction, blood pressure increase and vascular 

inflammation 50, 51, also observed here together with the increase in cortical ROS production. In 

addition, modulation of the SNS can lead to disruption of the circadian rhythm, further disrupting 

cardiovascular redox balance by phase shifts of genes encoding for ROS producing and 

degrading proteins 52. In addition, air pollutants cause circadian rhythms impairment by adverse 

redox regulation of the clock core components such as period, cryptochrome, clock and BMAL1. 

It was also previously observed that SPM can disrupt cardiac function through myocardial injury 

and apoptosis via ROS 53. 

 

Oxidative stress in different tissues of PM exposed mice 

Dihydroethidium (DHE) staining was used to assess spatial oxidative stress levels in aortic, 

pulmonary, and cortical tissue of SPM-exposed mice. Fluorescent nano SPM showed a 

significant increase in oxidized DHE-derived fluorescence in both aortic and cortical tissue 

(Figure 3A, B). The fluorescent micro SPM did not change the oxidative stress status in these 

tissues compared to the non-exposed control. Magnetic nano SPM exposure caused again 

increased oxidized DHE fluorescence signal (Figure 3C, D), which was absent upon exposure to 

magnetic micro SPM. In the pulmonary tissue, the magnetic micro and nano SPM showed an 

increase in oxidized DHE-derived fluorescence (Figure 3E). The lung tissue of fluorescent SPM-

exposed animals could not be evaluated due to excessive fluorescence background originating 

from the accumulation of fluorescent particles in the lungs of exposed mice.  
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Oxidative stress and inflammation play a major role in vascular dysfunction as they interfere with 

the important pathways regulating vascular tone. Nitric oxide (·NO), as an important signaling 

molecule, is susceptible to oxidative stress, as the reaction with superoxide (·O2
-) not only creates 

peroxynitrite (ONOO-) at the expense of ·NO, but it also impairs ·NO production by uncoupling 

eNOS 7, 48. Here the origin of ·O2
- can be attributed to the activation of the NADPH oxidase 

(NOX1/2), which is also supported by the elevation of the PKC activity through phosphorylation 

of MARCKS.  

 

Protein markers of oxidative stress and inflammation in cardiac and pulmonary tissue 

NADPH oxidase subunits NOX1 and NOX2 protein expression was elevated in lung tissue of 

magnetic micro SPM, but not in the lung tissue of nano SPM exposed mice (Figure 4A, B). In 

addition, the NADPH oxidase subunit p67phox was measured but did not show a trend in either 

micro or nano SPM exposure groups (Figure 4C). Protein kinase C alpha 1 (PKCα1), which 

promotes NADPH oxidase complex formation, was also elevated in the lung tissue but 

phosphorylated myristoylated alanine-rich C-kinase substrate (P-MARCKS), a marker of PKCα1 

activity, was not changed (Figure 4D, E). CD68 was also elevated in the lungs of micro SPM-

exposed mice, indicating local inflammation initiation (Figure 4F).  

In cardiac tissue, it was the nano SPM that produced a significant effect. NADPH oxidase subunit 

NOX2 and the phosphorylated p47phox showed a significant increase in protein expression 

(Figure 5A, B), pointing to the activation of the ROS-producing complex. Monocyte 

chemoattractant protein-1 (MCP-1), a marker of inflammation, was also elevated in the cardiac 

tissue of nano SPM, but not the micro SPM exposed mice (Figure 5C). P-MARCKS' expression 

was increased upon nano SPM exposure, indicating kinase activity (Figure 5D). Heme 

oxygenase 1 (HO-1) was significantly upregulated in the hearts of both nano and micro SPM-

exposed mice, indicating the activation of the antioxidant defense through the Nrf2 pathway 

(Figure 5E). The expression of dihydrofolate reductase (DHFR), was not observed to be 

significantly changed (Figure 5F). 

Inflammation also leads to the development of vascular dysfunction, e.g. by oxidative burst of 

activated leukocytes upon tight adhesion to the endothelium or infiltration into the vascular 

wall54. Elevated levels of CD68 in the pulmonary tissue of micro-sized SPM point to local 
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inflammation in the lung, which is also accompanied by increase in ROS production, while 

increased expression of MCP-1 in the cardiac tissue of nano-sized SPM point to the ability of 

these ultrafine particles to transmigrate through the lung epithelium, reach the circulation and to 

cause inflammation and remote organ damage, e.g. in the cardiovascular system. 

 

Global exposure to UFP 

Potential cardiovascular health impacts of ambient levels of UFP were also studied by combining 

exposure data with results from an epidemiological cohort study. Figure 6A presents the country-

level, mean, and population-weighted exposure to UFP, aggregated from the downscaled data 

available at a spatial resolution of 0.1° latitude and longitude. The time period considered is one 

year for which coincident emission inventories and measurement data were available, based on 

recently published results 55. We concentrate on long-term –rather than acute– exposure because 

chronic oxidative stress and inflammatory responses are associated with cardiovascular, 

cardiometabolic, and cerebrovascular diseases 56. We find that countries with the highest 

exposure are found in the Middle East and some parts of Asia, to a large degree associated with a 

high degree of urbanization. Annual and country mean concentrations reach up to 20,000 

particles cm-3, e.g., in Singapore, Arabian Gulf states, and Egypt, and somewhat lower (up to 

11,000 cm-3) in other Middle Eastern countries (e.g., Israel, Jordan), and South and East Asia. 

Exposure is also very high in South Africa, New Zealand, Australia, Mexico, and several South 

American, North African, and Eastern European countries. In Europe, country and annual mean 

UFP exposure ranges from about 2,000–3,000 cm-3 in Scandinavia, 10,000 cm-3 in Balkan states, 

and 4,000–6,000 cm-3 in Western and Central Europe. 

 

CVD incidence from UFP 

We combined the downscaled UFP exposure data (0.1° resolution) with hazard ratios of the 

increased risk for incident CVD adopted from an epidemiological cohort study 29 and computed 

the attributable fractions as a function of UFP number concentrations. Results are shown in 

Figure 7. The cohort study was performed in the Netherlands, and considering it is the only one 

of its kind, we assume it is representative of conditions and the population in Europe. For the 27 

countries of the European Union (EU-27) we estimate a UFP-attributable CVD incidence of 419 
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(95% CI: 78–712) thousand per year for a total population of 446 million. The highest incidence 

occurs in Germany, with 82 (15–142) thousand per year, followed by Italy with 67 (13–115) and 

France with 42 (8–71) thousand per year. Since these are relatively populous countries in the EU-

27, we additionally estimated the per capita incidence and found that it is highest in Greece, with 

171 (37–256) per 100,000 population per year, followed by Hungary, with 165 (34–253) and 

Bulgaria with 159 (30–267) per 100,000 annually, whereas it is lowest in Ireland with 33 (7–53) 

and Finland with 43 (8–74) per 100,000 population per year.  

If the Dutch cohort study would also be representative worldwide (absent dedicated cohort 

studies), we derive a yearly global CVD incidence of 5.6 (95% CI: 1.1–9.3) million, attributable 

to the exposure to UFP (Figure 7). Since the global CVD incidence from all causes is 47.1 (95% 

UI: 40.9–53.9) million per year 2, the UFP-attributable incidence amounts to a fraction of about 

11–12% of the total. Figure 6B shows these estimated fractions for all countries worldwide, 

suggesting particularly relevant implications for CVD incidence from UFP exposure in Middle 

Eastern and South Asian countries, for example. These results should be considered preliminary, 

i.e., first-order estimates until additional epidemiological studies become available that account 

for air pollution, including UFP, and health conditions in representative regions of the world. The 

annual global mean per capita CVD incidence due to UFP is estimated at 76.2 (95% UI: 16.2–

115.2) per 100,000 population. CVD is the globally leading cause of death, amounting to 18.6 

(95% UI: 17.1-19.7) million per year, nearly one-third of the all-cause mortality 57. By further 

hypothesising that CVD incidence is proportional to CVD mortality, we estimate that 2.0 (95% 

UI: 0.4–3.3) million CVD-related deaths per year could potentially be attributable to UFP 

exposure.   

Our European and global estimates of UFP exposure and potential consequences for CVD 

incidence are preliminary and associated with uncertainties. The annual average UFP 

concentration in the cohort study of Downward et al. (2018) 29, performed among residents of 

major metropolitan areas in the Netherlands, was 11,110 (±2,400) particles cm-3. This is at the 

higher end of that observed in European cities (e.g., between Milan and Barcelona) but lower 

than in Chinese cities and Arabian Gulf states, for example 58, 59. It captures a good part but not 

the full spread we find in global, annual UFP exposure, and clearly, additional cohort studies are 

needed to reduce uncertainty. This applies to high-income but especially also to low- and middle-

income countries. Even though the Downward et al. (2018) 29 study is the only one available that 
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directly attributes CVD incidence to UFP, it should be noted that these outcomes are qualitatively 

consistent with epidemiological studies that relate UFP to hypertension and diabetes 60, 61 and 

congestive heart failure and acute myocardial infarction 62, as well as enhanced mortality risk 63. 

Hence, the quantitative outcomes presented here may be uncertain, but there is still a high 

likelihood that exposure to UFP contributes to CVD incidence. 

 

CONCLUSIONS 

Our study highlights the distinct biological impacts of nano- and micro-sized synthetic particles 

in exposed mice, indicating effects on human health. Nano-sized particles can transmigrate 

through lung epithelium into the bloodstream, affecting distant organs such as the aorta, heart, 

and brain. This suggests significant direct systemic impacts, extending beyond the pulmonary 

effects typically associated with larger micro-sized particles, which tend to remain in the 

respiratory system, primarily causing pulmonary damage with localized and possible indirect 

systemic health outcomes. Our preliminary assessment based on data of human exposure to air 

pollution corroborates the detrimental health potential of UFP by their substantial contribution to 

the cardiovascular disease burden at the European and global scale. 

Our data show that particles with a small diameter (in our study SPM0.25) enhance the oxidative 

stress and inflammatory parameters in remote organ systems, while particles with larger 

diameters (in our study SPM2.1 and SPM4.1) impact the pulmonary system. This distinction is 

important in defining future studies, as different organ systems could be impacted by PM of 

varying sizes through different mechanisms, also leading to differential increase in the risk of 

specific disease categories, notably cardiovascular versus respiratory diseases, as supported by 

several clinical/epidemiological studies on UFP exposure–health associations. Our preliminary 

assessment based on data of human exposure to air pollution corroborates the detrimental health 

potential of UFP by their substantial contribution to the cardiovascular disease burden at the 

European and global scale. 

Clinically, these findings emphasize the need for healthcare frameworks to consider particle size 

in air pollution regulations and health risk assessments. The ability of nano-sized particles to 

cause systemic harm underscores their potential role in exacerbating cardiovascular conditions 

and necessitates targeted public health strategies to mitigate their effects. Future regulatory 

measures should account for the unique risks posed by ultrafine particles, including revising air 
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quality standards to better reflect the cardiovascular health risks. This warrants the 

comprehensive addition of UFP measurements to air quality monitoring stations so that higher 

spatial and temporal resolution exposure maps can be developed to study epidemiological 

associations derived from large cohorts. 

 

 

METHODS 

Exposure of laboratory animals 

All animals were treated following the Guide for the Care and Use of Laboratory Animals as 

adopted by the U.S. National Institutes of Health, and approval was granted by the Ethics 

Committee of the University Medical Center Mainz and the Landesuntersuchungsamt Rheinland-

Pfalz (Koblenz, Germany; permit number: 23 177-07/G 20-1-055). All mice were housed under a 

12-hour light/dark cycle in the ventilated animal cabinet and fed ad libitum. Male C57BL/6 mice, 

8-12 weeks old, were exposed to either fluorescent particles or magnetic particles of two different 

sizes each or fresh air. The exposure lasted for 6 hours per day for 3 days. The average 

concentration of all synthetic particulate matter (SPM) in the exposure chamber was 230 ± 46 

µg/m3. The custom exposure system (described in detail in 64) was acquired from TSE Systems 

GmbH (Hochtaunuskreis, Germany). Fluorescent SPM were acquired from Spherotec (Lake 

Forest, IL, US), nano SPM (FP-0256-2, Nile Red, 0.25 µm, polystyrene) and micro SPM (FP-

2065-2, Nile Blue, 2.16 µm, polystyrene). Magnetic SPM were acquired from Kisker Biotech 

GmbH (Steinfurt, Germany), nano SPM (PMSI-H-.25-5, superparamagnetic silica-encapsulated 

FeOx particles, 0.25 µm), micro SPM (PM4.5, magnetic polystyrene-encapsulated FeOx particles, 

4.13 µm). The particles were suspended in CLRwater and placed in the collision nebulizer of the 

exposure system. After nebulizing into an aerosol, the particle suspension droplets passed 

through a drying column and dry particles entered the exposure chamber. The mass concentration 

of SPM was monitored by a particle detector that consists of two instruments for different particle 

size ranges combined into a NanoSpectroPan instrument (TSE Systems GmbH, Germany). The 

electric field mobility spectrometer measured the particles in the size range from 0 to 0.2 µm, and 

the light scattering detector measured in the 0.2 – 35 µm range. The measured values of the mean 

SPM mass concentration in the exposure chamber were: 248 ± 66 µg/m3 for nano-fluorescent 
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SPM, 270 ± 65 µg/m3 for micro-fluorescent SPM, 209 ± 37 µg/m3 for nano-magnetic SPM and 

221 ± 27 µg/m3 for micro-magnetic SPM. 

The PM concentration range was chosen because 200 – 300 µg/m3 is a peak concentration 

reached in the most polluted cities 65, 66, therefore it represents a good starting point for acute PM 

effect observations. The relation between mouse exposure and human exposure is approximately 

similar. Mice are exposed for only 6 hours per day, giving a ¼ of the total daily exposure, which 

is in line with the whole day exposures done previously 67, 68. Mice have a respiratory rate of 80-

230 min-1 69 and tidal volume of 0.2 mL 70, making the total mass of PM being inhaled during a 6 

hour exposure session (approximate chamber concentration of 200 µg/m3) 1.15-3.31 µg 

(assuming 100 % PM retention). Assuming the mouse weight of 25 g, the 6 hour exposure 

session will result in 46-132 µg/kg/day. Human respiratory rate is approximately 10-20 min-1 and 

the tidal volume is approximately 0.5 L. Assuming the body mass of 60 kg and the same 

exposure of 200 µg/m3, a human would inhale 24-48 µg/kg/day. Mouse exposure occurs during 

sleeping phase when the respiratory activity is in the lower range, we may assume that mouse and 

human exposures are on par.  

After the exposure mice were sacrificed by transection of the diaphragm and removal of the heart 

and thoracic aorta under deep ketamine/xylazine anesthesia (i.p. 120/16 mg/kg body weight), and 

tissues were harvested. The mouse exposure paradigm is shown in suppl. Figure S1. 

 

Detection of fluorescent SPM in the isolated organs 

After the exposure to fluorescent SPM, mice were sacrificed as described above and organs were 

excised. Removed organs were then imaged using the IVIS® Spectrum imaging system 

(PerkinElmer Inc, Waltham, MA, US) 71, 72. For nano SPM excitation filter at 500 nm and 

emission filter at 560 nm was used, and for micro SPM excitation filter at 570 nm and emission 

filter at 620 nm was used. The mean pixels intensity from the images was obtained with the 

ImageJ software and used in the statistical analysis.  

 

Detection of iron oxide SPM in the whole body via MRI 
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After the exposure to iron oxide SPM, mice were sacrificed by isoflurane overdose and whole 

bodies were frozen at -80°C. Before the magnetic resonance imaging (MRI) measurement, 

depicting the signal decrease caused by changes in T2
* related to accumulated iron particles in the 

investigated tissue 73, 74, mice were heated to 25°C and kept at that temperature through the 

measurement by using a rectal temperature probe coupled with a ventilation system to maintain 

body temperature and avoid T2
* drifts caused by temperature changes (Model 1030, Small 

Animal Instruments Inc., Stony Brook, NY, USA). A 9.4 T small animal MRI system with a 0.7 

T/m gradient system (Biospec 94/20, Bruker Biospin GmbH, Ettlingen, Germany) controlled by 

Paravision 6.0.1 software was used for the measurements. To image the abdomen of the mice, a 

linear whole-body volume transmitter coil combined with an anatomically shaped 4-channel 

receive-only coil array for the rat brain was used. A 3D multigradient echo pulse sequence (TE/ 

TR = (3.5/ 800) ms; average = 2; flip angle = 50°; TA = 1 h 9 min) was carried out, recording 9 

echoes with echo spacing = 5 ms to visualize the T2
* signal decay. Isotropic voxels were 

measured with resolution of (0.25 x 0.25 x 0.25) mm3 resulting in a 192 x 128 x 27 volume 

covering a FOV of 48 x 32 x 6.75 mm3. The R2
* parameter value per voxel was calculated by 

fitting an exponential decay curve to the corresponding pixels resulting in a volume of R2
* values 

(MATLAB, R2022a; MathWorks; Natick, Massachusetts, USA). The R2
* relaxation values were 

used for quantification, as the iron oxide SPM function as contrast agents and lower the T2
* in the 

tissue they are present in.  

 

Exposure model and emissions for human studies 

We applied a data-informed global atmospheric modelling method to compute the exposure to air 

pollutants. The model for atmospheric chemistry and climate (EMAC) used in this study was 

applied at a horizontal resolution of about 1.875° latitude and longitude, with 31 vertical levels 

up to 10 hPa (~30 km altitude) 75, 76. The anthropogenic emissions of trace gases and particles 

used as model input have been adopted from the Community Emission Data System (CEDS) 77. 

Source sectors include fossil energy production, industry, land transport, shipping, aviation, 

domestic energy use from solid biofuels, waste incineration, agriculture, solvent production and 

use. The CEDS emission data have been produced at a geographical resolution of 0.5°. In 

addition, we employed the Emissions Database for Global Atmospheric Research (EDGAR 78) at 

0.1° resolution latitude and longitude for downscaling. The emission size spectrum of aerosol 
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particles depends on the source sectors, according to published work 79, and has been optimized 

according to size distribution measurements 55. A comprehensive evaluation of the modelled 

atmospheric dust, black and organic carbon, aerosol optical depth, and aerosol organic and 

inorganic compounds is presented previously 76.   

 

Downscaling of UFP concentrations 

Since the relatively coarse grid resolution of the EMAC model does not do justice to 

concentration gradients near strong sources of ultrafine particles (UFP), in particular of primary 

particles near areas with heavy traffic and industrial emission hotspots, we downscaled the 

simulation results in two steps, first to 0.5° and then to 0.1° latitude and longitude (~9 km at mid-

latitudes). Observation-guided downscaling was achieved by redistributing the model grid box 

average UFP concentration according to the anthropogenic source sectors, available at higher 

resolution in the CEDS and EDGAR emission inventories 55. UFP results were evaluated against 

the measured number of particles in the size fraction 3 nm to 100 nm, the former based on the 

lower size limit of the measurements. A linear relationship between the observed and modelled 

particle number concentrations was applied to redistribute the particles toward the source areas, 

successively in the 0.5° and 0.1° inventories. Comparison of the results with long-term measured 

UFP concentrations at 60 measurement locations in Europe, India, China, North America and 

remote locations worldwide indicate good agreement 55. The logarithmic correlation coefficient is 

r = 0.95 (the linear r = 0.99), the slope of the linear fit is 1.022, and the root mean square log 

error is 0.43.  

 

Estimation of health impacts 

Incident cardiovascular disease (CVD), C, attributable to the long-term exposure to UFP at 

geographical coordinates x and y, M (x,y), was calculated by: 

𝑀(𝑥, 𝑦) =  ∑ 𝐴𝐹[𝑋(𝑥, 𝑦)] ∙ 𝐶(𝑥, 𝑦) ∙ 𝑃(𝑥, 𝑦)   

where j refers to the age category >25 years, and X is the concentration of UFP 80. AF is the 

attributable fraction of the CVD incidence due to exposure, and P is the population at the 

geographical coordinates, i.e., the 0.1° grid cells for which we computed UFP exposure. The 

incident CVD and population data have been adopted from the Global Burden of Disease 2. The 
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AF has been derived from the hazard ratio (HR) associated with exposure to UFP from data of a 

published cohort study 81, which identified the increased risk of all incident CVD: 

 𝐴𝐹 = (𝐻𝑅(𝑈𝐹𝑃) − 1)/𝐻𝑅(𝑈𝐹𝑃) 

A log-normal exposure-response function was applied to describe the dependency of HR on the 

concentration of UFP, according to HRj = exp (β  X). The factor β was estimated from previous 

results 81 by using an HR of 1.18 (95% confidence interval (CI): 1.03–1.34) per 10,000 particles 

cm-3, obtaining β = 1.6  10-5 (95% CI: 2.9×10-6 – 2.9×10-5). Note that we did not apply a 

theoretical minimum risk exposure level – whether there is one is unknown. The 95% confidence 

intervals in all our results have been derived by adopting the ranges as previously described 81.  

 

Statistics 

Where possible, the results are presented as bar graphs with individual values. Two-way ANOVA 

(with Tukey’s correction for comparison of multiple means) was used for comparisons of 

concentration-relaxation curves. One-way ANOVA (with Tukey’s post-hock analysis for 

comparison of multiple means) was used for comparisons of all other data. All statistical analysis 

was performed in Prism for Windows, version 9. The numerical value of the p-value is either 

used directly or a star signifies a p-value < 0.05 that was considered as statistically significant. 

The number of replicates in the different assays may vary since not all animals were used in all 

assays. 

All other methods (blood pressure, vascular function studies, oxidative stress measurement, 

protein expression analysis) are provided in the online supplement. 
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Figure 1. Distribution of particles with different size after inhalation in the mouse body. 
Lungs of fluorescent nano and micro SPM exposed animals were subjected to fluorescence 
imaging (B), and the mean pixel intensity was recorded (A). Mice exposed to magnetic nano and 
micro SPM underwent magnetic resonance imaging (MRI) of the abdomen measuring T2

*-
relaxation maps. Representative T2*-weighted images (C) with the corresponding R2

* parameter 
maps (D). Images of the heart (E) and liver (F) sections together with quantifications. The scale 
bar for B is 2 cm, for C and D is the same at 20 mm, for E is 2 mm and for F is 5 mm. Data are 
presented as mean ± SEM from n = 3 – 7 animals per group. P values for individual comparisons 
are shown indicating statistical significance obtained by one-way ANOVA with Tukey’s multiple 
comparison analysis. 
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Figure 2. Effects of SPM different size on vascular function. Systolic blood pressure was 
measured in mice exposed to fluorescent SPM (A) and magnetic SPM (C). Vascular function was 
measured in isolated aortic rings of fluorescent SPM (B) and magnetic SPM (C). The 
endothelium-dependent relaxation in the presence of acetylcholine (ACh) and the endothelium-
independent relaxation in the presence of nitroglycerin (GTN) are shown for both type of SPM 
exposure. Western blot quantifications for magnetic SPM-exposed mice aortic endothelial nitric 
oxide synthase (eNOS) (E) and endothelin 1 (ET-1) (F) expression levels are shown together with 
the representative blots (G). Data are presented as mean ± SEM from aortic rings of n = 4 – 9 
mice per group (B, D), or the mouse number is shown by jitter plots for other parameters (n = 4 – 
11 mice per group). P values for individual comparisons are shown, indicating statistical 
significance, or asterisks are used: * (p<0.05), ** (p<0.01) obtained by one-way ANOVA with 
Tukey’s multiple comparison analysis for A, C, E and F, and by two-way ANOVA with Tukey's 
multiple comparisons test for B and D. 
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Figure 3. Effects of fluorescent SPM of different sizes on aortic, cortical and pumonary 
oxidative stress. Dihydroethidium (DHE) fluorescence microtopography was used to assess the 
oxidative stress burden in different tissues. Quantification of oxidized DHE fluorescence in aortic 
(A) and cortical (B) tissue of fluorescent SPM exposed animals and in aortic (C), cortical (D), 
and pulmonary (E) tissue of magnetic SPM-exposed animals are shown together with 
representative image. Green color in panels A and C reflects the autofluorescence of the basal 
laminae. The arrows in panel E indicate the bronchioles. The scale bar for all images is the same 
at 50 µm. Data are presented as mean ± SEM and the mouse number is shown by jitter plots (n = 
3 – 4 mice per group). P values for individual comparisons are shown indicating statistical 
significance obtained by one-way ANOVA with Tukey’s multiple comparison analysis. 
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Figure 4. Effects of magnetic SPM with different sizes on pulmonary protein expression. 
Western blot analysis of the pulmonary NADPH oxidase subunits NOX1 (A), NOX2 (B) and 
p67phox (C), phosphorylated myristoylated alanine-rich C-kinase substrate (P-MARCKS) (D), 
protein kinase C alpha (PKCα1) (E), and cluster of differentiation 68 (CD68) (F) are shown for 
the magnetic SPM exposed mice. Data are presented as mean ± SEM, and the mouse number is 
shown by jitter plots (n = 4 – 8 mice per group). P values for individual comparisons are shown, 
indicating statistical significance obtained by one-way ANOVA with Tukey’s multiple 
comparison analysis. 
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Figure 5. Effects of magnetic SPM with different sizes on cardiac protein expression. 
Western blot analysis of the pulmonary NADPH oxidase subunits NOX2 (A) and phosphorylated 
p47phox (NCF-1) (B), monocyte chemoattractant protein-1 (MCP-1) (C), phosphorylated 
myristoylated alanine-rich C-kinase substrate (P-MARCKS) (D), heme oxygenase-1 (HO-1) (E), 
and dihydrofolate reductase (DHFR) (F) are shown for the magnetic SPM-exposed mice. Data 
are presented as mean ± SEM, and the mouse number is shown by jitter plots (n = 4 – 8 mice per 
group). P values for individual comparisons are shown, indicating statistical significance obtained 
by one-way ANOVA with Tukey’s multiple comparison analysis. 
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Figure 6. Annual and country average, population-weighted exposure to UFP. Particle 
concentrations are in numbers per cm3 (A). Country-average CVD incidence from UFP exposure 
relative to the total CVD incidence from all causes in percent (B). 
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Figure 7. European and global, annual CVD incidence attributed to UFP. Units are the number of 
cases per surface area of 10 km×10 km. 
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