1	Photochemical Formation of Trifluoroacetic Acid: Mechanistic
2	Insights into a Fluoxetine-Related Aryl-CF3 Compound
3	
4	Zhefei Guo ¹ , Azka A. Attar ¹ , Qiqige Qiqige ¹ , Rylan J. Lundgren ¹ , Shira Joudan ^{1*}
5	
6	¹ Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
7	
8	Email: joudan@ualberta.ca
9	
10	

11 TOC Art

13 ABSTRACT

12

14 Trifluoroacetic acid (TFA) is a ubiquitous environmental contaminant; however, its sources are poorly constrained. One understudied source is from the photochemical reactions of aromatic 15 compounds containing -CF₃ moieties (aryl-CF₃) including many pharmaceuticals and 16 17 agrochemicals. Here, we studied the aqueous photochemistry of 4-(trifluoromethyl)phenol (4-18 TFMP), a known transformation product of the pharmaceutical fluoxetine. When exposed to 19 lamps centred at UV-B, 4-TFMP formed up to 9.2% TFA at steady state under acidic conditions 20 and 1.3% under alkaline conditions. TFA yields of fluoxetine were similar to 4-TFMP for acidic 21 and neutral pH, but higher at alkaline pH, suggesting fluoxetine may have a mechanism of TFA formation in addition to via the 4-TFMP intermediate. Use of a ¹³CF₃ isotopologue of 4-TFMP 22 23 allowed for the tracking of TFA formation, which formed via multiple oxidative additions prior to oxidative ring cleavage. The oxidation is mediated by reactive oxygen species (ROS) 24 25 generated through self-sensitized photolysis, with singlet oxygen and hydroxyl radicals as the key ROS. In addition to the TFA formation mechanism, other photochemical reactions of 4-26 TFMP resulted in defluorination and dimerization. Overall, this work expands the 27

28	understanding of how TFA forms from aryl-CF $_3$ compounds to better understand the total global
29	burden of TFA.
30	
31	Synopsis: 4-(Trifluoromethyl)phenol, a transformation product of fluoxetine, forms up to 9.2%
32	TFA from photolysis via oxidative cleavage of the aromatic ring.
33	
34	Keywords: Fluoxetine, trifluoroacetic acid, PFAS, aqueous photochemistry, oxidative cleavage,
35	isotope tracking, self-sensitized photolysis, reactive oxygen species

36 INTRODUCTION

37 Trifluoroacetic acid (TFA) is a very persistent and very mobile pollutant ubiquitously present in the environment.¹⁻⁷ TFA is the smallest analogue of perfluoroalkyl carboxylic acids, and 38 according to the OECD definition, is classified as a per- and polyfluoroalkyl substance 39 (PFAS).^{8,9} Reported TFA concentrations in environmental matrices are often higher than other 40 PFAS,^{3,4,7} with rapid increases observed since the 1990s.^{2,5,6,10} This raises concerns about its 41 accumulation in ecosystems and potential human exposure. Although TFA is less 42 bioaccumulative in mammals compared to longer-chain PFAS, it can be uptaken and 43 accumulated by plants.^{11,12} Due to its hydrophilic and mobile nature, TFA is challenging to 44 remove from water, allowing it to migrate into drinking water supplies.^{13,14} In 2016-2017, 45 46 Scheurer et al. found surprisingly high concentrations of TFA (>100 µg/L) during screening of potable and surface waters in south-west Germany.¹³ Neuwald et al. reported TFA as the most 47 predominant PFAS in German drinking water sources, with a maximum concentration of 12.4 48 µg/L.¹⁵ In an investigation of drinking water in U.S. home, Zheng et al. found that TFA was the 49 predominant PFAS with the median concentration of 79 ng/L and a 95% detection frequency.⁷ 50 51 TFA has many known direct and indirect environmental sources. However, environmental 52 levels of TFA exceed estimations based on both direct emissions of TFA and of known precursors, indicating the existence of uncharacterized sources.¹⁶ A well-identified source of 53 54 TFA is from atmospheric oxidation of fluorinated gases including hydrofluorocarbons and hydrofluoroolefins.^{17,18} Other sources include thermolysis of fluoropolymers and oxidation of 55 some longer-chain PFAS.¹⁹⁻²¹ An additional known and further speculated class of TFA 56 precursors are compounds containing aromatic CF₃ functional groups, referred to as aryl-CF₃. 57

58	Modern chemistry incorporates fluorine into pharmaceuticals and agrochemicals to
59	enhance their properties and performance. ²² Since the 1950s, fluorine has been integrated into
60	these compounds in various forms, including aryl-CF ₃ . ²³ Examples include the antidepressant
61	fluoxetine, the lampricide 3-trifluoromethyl-4-nitrophenol (TFM), and the herbicide
62	oxyfluorfen. These compounds enter the environment from different point and nonpoint sources,
63	such as wastewater treatment plants (WWTPs) when not effectively removed or mineralized,
64	direct emissions (e.g. TFM directly used in the Great Lakes), and agricultural runoff (e.g.
65	herbicides and pesticides). For instance, fluoxetine is not efficiently removed in WWTPs and
66	is detected in surface waters at concentrations ranging from 1 to 100 ng/L. ²⁴ Once in the
67	environment, aryl-CF3 present in sunlit waters may undergo photochemical reactions. Previous
68	research indicates that defluorination of the -CF ₃ moiety is a major pathway for the photolysis
69	of aryl-CF ₃ (i.e. C-CF ₃ to C-COOH). ²⁵ However, depending on aqueous pH and substituents
70	on the aromatic ring, TFA can also be formed. ^{26–28} Early laboratory studies by Ellis & Mabury
71	showed that TFM can photochemically form TFA and undergo photo-defluorination via two
72	competing pH-dependent pathways: defluorination is always the favored pathway, becoming
73	more dominant at higher pH, while lower pH enhances the formation of TFA. ²⁶ TFA formation
74	has also been observed in more recent research on the direct and indirect photolysis of
75	fluoxetine. ^{27,29} Despite these efforts, reaction kinetics and TFA yield under different pH
76	conditions and the mechanism of TFA formation are not sufficiently characterized. To the best
77	of our knowledge, except for the early study on the photolysis of TFM, ²⁶ no intermediates have
78	been reported nor mechanism proposed for the formation of TFA from any aryl-CF ₃ , which is
79	expected to include oxidative cleavage of the aromatic ring.

80	To understand the formation of TFA from some aryl-CF3 compounds, we investigated the
81	aqueous photolysis of a probe aryl-CF3 compound, 4-(trifluoromethyl)phenol (4-TFMP) under
82	different pH conditions. 4-TFMP was selected because it is a well-known transformation
83	product (TP) of fluoxetine, ²⁹⁻³¹ and has long been hypothesized to be the key intermediate in
84	the photochemical formation of TFA, yet the mechanism of TFA formation has not been
85	elucidated. ^{27,29} We determined the reaction kinetics and steady state TFA molar yield (TFA _{ss} %),
86	which represents the total potential of the 4-TFMP to release TFA. Furthermore, we aimed to
87	elucidate the mechanism leading to TFA formation by identifying TPs and by characterizing
88	the possible self-sensitized photochemistry.
89	Stable isotope labeling (SIL) uses stable isotopes (e.g. deuterium and carbon-13) to label
90	compounds and track their TPs. ³² In high-resolution mass spectrometry (HRMS) analysis,
91	labeled TPs can be easily distinguished by mass spectrometry due to the mass difference
92	introduced. Several groups have investigated the environmental fate or biotransformation of
93	stable isotope-labeled pollutants, such as ¹³ C-labeled poly(butylene succinate) and ² H-labeled
94	6PPD and 6PPD-quinone. ^{33–35} Inspired by SIL, an in-house synthesized ¹³ CF ₃ -labeled 4-TFMP
95	(¹³ CF ₃ -4-TFMP) was used to track the ¹³ CF ₃ -TFA (¹³ CF ₃ COOH) formation and to help identify
96	¹³ C-labeled TPs. Since the structure ¹³ CF ₃ -TFA completely retains - ¹³ CF ₃ group, we
97	hypothesized that ¹³ CF ₃ -TFA would be generated during the photolysis of ¹³ CF ₃ -4-TFMP.
98	Furthermore, we proposed that in the pathway from ¹³ CF ₃ -4-TFMP to ¹³ CF ₃ -TFA, key
99	intermediates would retain the entire $-{}^{13}CF_3$ group.

102 MATERIALS AND METHODS

103 Chemicals.

All chemicals were used as received. Details on chemicals used are described in the Supporting Information (SI). ${}^{13}CF_{3}$ -4-TFMP was synthesized in-house with 99% isotopic purity of the ${}^{13}CF_{3}$ -carbon. In brief, 1,4-dibromobenzene was treated with n-BuLi followed by ${}^{13}CO_{2}$ to introduce the carbon label.³⁶ The corresponding benzoic acid was reacted with fluolead/HF•pyridine³⁷ to prepare ${}^{13}CF_{3}$ -labeled 4-bromobenzotrifluoride. Nucleophilic substitution with benzyl alcohol under basic conditions followed by Pd/C hydrogenolysis yielded ${}^{13}CF_{3}$ -4-TFMP in 24% overall yield over four steps (see SI-2 for full details).

111 **Photolysis Experiments.**

Aqueous stock solutions (5 mM) of 4-TFMP, ¹³CF₃-4-TFMP, and fluoxetine were prepared in 112 113 ultrapure water for photolysis experiments. Prior to the experiment, the stock solutions were 114 diluted with 0.5 mM acidic, neutral, or alkaline phosphate buffer to achieve an initial 115 concentration of 50 µM in a 100 mL polypropylene (PP) volumetric flask. ¹³CF₃-4-TFMP 116 experiments were performed in ultrapure water. The solutions were then transferred into 10 mL quartz tubes. For each experiment, three quartz tubes were kept in the dark as a control, and the 117 118 other three were placed in the photoreactor. Photolysis experiments were carried out in a 119 Luzchem LZC photoreactor equipped with 14 lamps centered at 311 nm in the UV-B region 120 (Figure S5), distributed on the ceiling and two opposite inner sides of the photoreactor. The 121 quartz tubes were placed on a carousel and rotated at a low speed to ensure that each tube was 122 evenly exposed to the UV-B light. Samples were taken at set intervals for a suite of analysis. To verify the self-sensitized photolysis mechanism of 4-TFMP, experiments using 123

124 different initial concentrations of 4-TFMP of 4 μ M and 85 μ M were carried out in ultrapure 125 water. To identify if hydroxyl radicals were formed during photolysis, duplicate photolysis 126 experiments were performed in ultrapure water in the presence of excessive (20 mM and 80 127 mM) methanol.³⁸ To determine if singlet oxygen (¹O₂) was produced, duplicate photolysis 128 experiments were performed in the presence of excessive (20 mM) furfuryl alcohol (FFA)³⁹ and 129 in 99% D₂O.^{40,41}

The *p*ara-nitroanisole (PNA) actinometer was used to evaluate the quantum yield,⁴² following a setup previously described.^{28,43,44} Briefly, PNA was dissolved in acetonitrile as a stock solution, then further diluted in ultrapure water to an initial concentration of 10 μ M with 0.2% acetonitrile as the co-solvent. Photolysis of PNA were performed in triplicate using the same quartz tubes. The pseudo-first-order rate constant for PNA was determined, and the revised quantum yield of 0.00029 was used to calculate the quantum yield of 4-TFMP (see eq S1 for calculation details).^{45,46}

137 Analytical Methods.

145

High performance liquid chromatography with UV detection (HPLC-UV). At set sampling events, 200 μ L was aliquoted into an autosampler vial with a PP insert for HPLC analysis. A Waters 2695 Alliance HPLC coupled to a Waters 2487 dual-wavelength UV detector was used to quantify 4-TFMP, fluoxetine, PNA, and a transformation product of 4-TFMP, 4hydroxybenzoic acid (4-HBA). Retention and separation were achieved using a Poroshell EC-C18 column (2.7 μ m, 4.6 × 50 mm) (details in **Table S3**). All standards were prepared from neat material dissolved in methanol.

Ion chromatography (IC). At set sampling events, 600 μ L was aliquoted into a PP vial for IC

analysis with conductivity detection. Fluoride (F^-) and TFA were quantified by a Dionex ICS-5000+ equipped with an AS18 analytical column (4 × 250 mm) and Dionex ADRS 600 4 mm suppressor. Gradient elution with NaOH was used to retain and separate F^- and TFA from matrix anions including the phosphate buffer (details in **Table S4**).

UHPLC-MS/MS. ¹³CF₃-TFA was quantified from photolysis experiments of ¹³CF₃-4-TFMP.
Aliquots were diluted 10× to a final composition of 10% methanol before analysis using a

152 Waters Acquity ultra-high performance liquid chromatography (UHPLC) system coupled to a

153 Waters Xevo TQ-S triple quadrupole mass spectrometer using a Luna Omega PS C18 column

154 (1.6 μ m, 2.1 \times 50 mm) to retain polar TFA. ¹³CF₃-TFA was quantified by external calibration

using the commercially available ${}^{13}CO_2$ -TFA (CF $_3{}^{13}COOH$) (details in **Table S5**).

UHPLC-Orbitrap-HRMS. Triplicate samples from 4-TFMP or ¹³CF₃-4-TFMP photolysis 156 157 were combined as a pooled sample and diluted $10 \times$ to a final composition of 10% methanol 158 before analysis. Suspect and non-targeted screening of TPs was performed using a Thermo 159 Vanquish UHPLC coupled to a Thermo Scientific Orbitrap Exploris 240 HRMS and a Luna 160 Omega Polar C18 column (1.6 μ m, 2.1 \times 50 mm). Data were acquired under both positive and negative electrospray ionization mode as separate injections by full scan (m/z range 50-750, 161 162 resolution 60 000) (details in Table S6). Targeted MS^2 (tMS²) with a suspect list and datadependent acquisition (DDA) were used to gain structural information (see SI-11). Fluoxetine 163 164 experiments were analyzed to confirm 4-TFMP and its other major TP. ¹⁹F NMR. For the ¹⁹F NMR experiments, a higher initial concentration of 100 μM 4-TFMP or 165

- 166 fluoxetine in ultrapure water were used due to the ¹⁹F NMR sensitivity limitation. At select
- 167 times, a 540 μ L aliquot was placed in an NMR tube and 60 μ L D₂O was added. Non-targeted

screening of all fluorinated species was conducted on an Agilent 400 MHz NMR (376 MHz for
¹⁹F NMR). The scan range was from +30 to -165 ppm to cover organic fluorine and inorganic
fluoride, and 1152 scans were obtained to improve the signal-to-noise ratio (details in Table
S7).

172 Kinetics Modeling.

For 4-TFMP experiments, pseudo-first-order kinetics equations were applied to 4-TFMP degradation, and a parallel reaction kinetics model was used to fit the normalized TFA

- 175 concentration generated over time, providing the rate constant of TFA formation, and the TFA_{ss}%
- 176 (see eq S2-eq S7). For fluoxetine experiments, we focused only on the TFA_{ss} %, which was
- 177 calculated using the software COPASI⁴⁷ for kinetics modelling. Please refer to the SI-4 for more
 178 details.
- 179

180 RESULTS AND DISCUSSION

181 pH Dependent Photochemical TFA Formation

182 All 4-TFMP and fluoxetine aqueous photochemistry experiments produced TFA as a product, with pH influencing the yields and rates of TFA formation. Figure 1A shows the degradation 183 184 of 4-TFMP in different pH solutions, with higher pH levels resulting in faster degradation, both 185 in the presence and absence of UV-B light. This observation is consistent with Bhat et al.'s report on the photolysis of 4-TFMP, despite the use of different light sources.²⁷ In dark controls, 186 the pH-dependent degradation of 4-TFMP is attributed to hydrolysis, driven by the 187 deprotonation of the phenol-OH group. The pKa of the phenol-OH in 4-TFMP is 8.1,48 thus, 188 under acidic conditions (pH 4.3), the phenol-OH remains protonated, and is less reactive to 189

190	hydrolysis. Under neutral to alkaline conditions (pH 7.4 to pH 10.5), 4-TFMP exists as either
191	partially (~17%) or fully (>99%) the phenolate, which facilitates the spontaneous degradation
192	and defluorination reaction likely via the E1cB mechanism. ⁴⁹ In both pH 7.4 and pH 10.5 dark
193	controls, 4-TFMP underwent defluorination, releasing three equivalents of F ⁻ and forming the
194	corresponding benzoic acid, 4-HBA (Figure S6 and Figure S7). For all photochemistry
195	experiments, the defluorination of 4-TFMP was greater than corresponding dark controls at the
196	same pH, confirming that defluorination also occurred due to photochemistry and not solely
197	hydrolysis (Figure S7). Due to the high electron density of the phenoxide anion (i.e. the
198	deprotonated 4-TFMP), which can delocalize onto the benzene ring, the UV-Vis absorption
199	spectrum of 4-TFMP exhibits a red shift, resulting in greater overlap with the lamps used in
200	these experiments (Figure S5), leading to an increased photolysis rate, a phenomenon that has
201	been discussed. ^{25–27} The quantum yield of these direct photochemistry reactions were highest
202	for 4-TFMP at pH 4.3 and lowest at pH 10.5 (Table 1). Since the reaction rate constants and
203	quantum yields have inverse trends across the pH range, it seems that the increased absorption
204	due to the red shift of the phenolate drives the faster reactivity at higher pH.
205	Figure 1B shows TFA was formed during 4-TFMP photolysis at all three pH levels tested,

but the formation kinetics and yield were both impacted by pH. An early study also observed TFA formation across pH levels from TFM, a lampricide structurally similar to 4-TFMP, as both have phenolic-OH and a $-CF_3$ group.²⁶ However, a recent study on 4-TFMP photolysis did not detect TFA under alkaline conditions (pH 10), likely due to the sensitivity limitations of their quantitative ¹⁹F NMR method.²⁷

Figure 1. Photolysis of 4-TFMP (panels A and B) and fluoxetine (panels C and D) and the formation of TFA: time trend for (A) 4-TFMP photodegradation (including dark control groups); (B) the formation of TFA from 4-TFMP; (C) fluoxetine degradation and the formation/decay of 4-TFMP as an intermediate (only the pH 7.4 is shown here); and (D) the formation of TFA from fluoxetine. Note that concentrations measured throughout experiments were normalized to the initial concentration of 4-TFMP or fluoxetine. Mean and standard deviation of triplicates are shown.

219 TFA formation from 4-TFMP photolysis was fastest at pH 10.5 with a rate k_{TFA} of 0.055 h⁻ 220 ¹, however, as the reaction reached steady state, the TFA_{ss}% was the highest at pH 4.3, with a

predicted molar yield of 9.2% (Table 1). This observation emphasizes the need to quantify TFA 221 222 across multiple time points of the experiments, because the conclusion will be misleading if the 223 measurement of TFA was made early in the reactions. As shown in Figure 1B, TFA 224 concentrations from 4-TFMP photolysis were initially higher under alkaline conditions (pH 225 10.5) compared to the other pH levels during the first 40 minutes, but quickly plateaued at a TFAss% of 1.3% after 40 minutes. These kinetics may be attributed to the rapid hydrolysis 226 reaction occurring under alkaline conditions, which competes with the pathway of TFA 227 formation and quickly degrades 4-TFMP by defluorination. The result that 4-TFMP photolysis 228 229 under acidic condition generated more TFA aligns with previous research on this compound and the related TFM.^{26,27} The TFA generated was a terminal product and was stable when 230 231 irradiated with UV-B light (see Figure S9).

232 Fluoxetine remained stable in dark control groups buffered across acidic to alkaline pH levels (Figure S10), which is consistent with previous research on the laboratory stability test 233 of fluoxetine.⁵⁰ This stability may be attributed to the absence of the acidic hydrogen from the 234 235 phenol-OH group, which is present in 4-TFMP but not in fluoxetine's structure. Figure 1C and Figure S10 show the photolysis of fluoxetine at different pH levels, where 4-TFMP was an 236 237 intermediate that was generated and then degraded away, which has been previously observed.^{27,29,30} Our UHPLC-HRMS results identified α-[2-(methylamino)ethyl]benzyl alcohol 238 239 as the TP of the other half of fluoxetine during cleavage of the alkyl aryl ether bond (Table S9). 240 Under alkaline conditions (pH 10.7), 4-TFMP concentration remained relatively low, likely due 241 to its rapid photolysis and hydrolysis after formation. Figure 1D shows the formation of TFA during fluoxetine photolysis across various pH levels. The TFAss% from fluoxetine predicted 242

243	by the kinetic model was 8.0% and 3.8% under acidic and neutral conditions, respectively,
244	comparable to that of 4-TFMP under acidic and neutral conditions. Similar to 4-TFMP
245	photolysis, fluoxetine produced TFA the fastest under alkaline conditions but the most TFA
246	under acidic conditions. However, under alkaline conditions, $\text{TFA}_{\text{ss}}\%$ from fluoxetine
247	photolysis was 3.4% compared to only 1.3% from 4-TFMP photolysis (Table 1). Contrary to
248	previous studies that suggest 4-TFMP as the only relevant –CF ₃ species for TFA formation, ^{27,29}
249	our findings indicate that fluoxetine may generate TFA through an additional intermediate that
250	does not involve 4-TFMP. Future work should investigate the formation of TFA from fluoxetine
251	directly, or through a pathway involving an intermediate other than 4-TFMP.

252

Table 1. Summary table of 4-TFMP hydrolysis rate constant ($k_{hydrolysis}$), 4-TFMP photolysis rate constant ($k_{photolysis}$), 4-TFMP photolysis quantum yields (Φ), TFA formation rate constant (k_{TFA}), and steady-state TFA molar yield (TFA_{ss}%) from 4-TFMP or fluoxetine photolysis. Note that photolysis rate constants are

corrected for dark reactions (i.e. hydrolysis).

Compound	pH	4.3	7.4	10.5
4 TEMD	$k_{\rm hydrolysis}~({\rm h}^{-1})$	-	0.059 ± 0.003	0.86 ± 0.01
4-1 Г МГ	$k_{\rm photolysis}$ (h ⁻¹)	0.173 ± 0.004	0.284 ± 0.008	3.3 ± 0.2
HO	Quantum yield (Φ)	0.147 ± 0.004	$(7.0 \pm 0.2) \times 10^{-3}$	$(3.6 \pm 0.2) \times 10^{-3}$
CF3	k_{TFA} (h ⁻¹)	$(1.6 \pm 0.02) \times 10^{-2}$	$(1.2 \pm 0.02) \times 10^{-2}$	$(5.5 \pm 0.2) \times 10^{-2}$
_	TFA _{ss} %	(9.2 ± 0.2) %	(3.5 ± 0.1) %	(1.3 ± 0.3) %
Compound	pH	3.3	7.4	10.7
Fluoxetine				
CF3	TFA _{ss} %	8.0%	3.8%	3.4%

257

258

259

260 Identification of Additional Transformation Products

The fluorine mass balance of 4-TFMP in dark control and photolysis experiments at different 261 262 pH were between 80%-120% based on targeted analysis of 4-TFMP, TFA and F⁻ (Figure S7), suggesting that the major fluorinated products had were quantified. Since TFA and F⁻ are both 263 264 terminal products, any missing fluorine must be from intermediates that form and then react 265 away during the experiments, due to either photolysis or hydrolysis. These intermediates will be discussed below based on ¹⁹F NMR and HRMS results and proposed mechanistic 266 intermediates. Targeted analysis of the defluorination product 4-HBA, which contains no 267 268 fluorine atoms, showed distinct differences between dark controls and photolysis experiments (Figure S6). In the dark controls, 4-TFMP hydrolyzed to produce 4-HBA, with its 269 270 concentration gradually increasing. On the other hand, in the photolysis experiments, although 271 the defluorination rate was higher than in the corresponding dark controls, the concentrations of 4-HBA were lower, which suggests other defluorination pathways may exist, or that 4-TFMP 272 underwent photochemical reactions itself. The time trend of 4-HBA concentrations in 273 274 photochemistry experiments suggests it formed and then reacted away. The fluorine mass balance for fluoxetine photolysis was lower than that of 4-TFMP, especially at acidic pH based 275 276 on quantification of fluoxetine, 4-TFMP, TFA and F⁻, suggesting the existence of more fluorinated intermediates (Figure S7). 277

278 Non-targeted screening of fluorinated TPs was conducted using ¹⁹F NMR. ¹⁹F NMR offers 279 significant advantages over other analytical techniques, such as mass spectrometry, in 280 characterizing the environmental fate of fluorochemicals because it is not depended on 281 physicochemical properties of the molecules, only that they contain F-atoms.^{28,51} The natural fluorine nuclei is 100% abundant in ¹⁹F and is NMR-active, and fluorine's wide spectral window minimizes peak overlap between structurally similar fluorine atoms. Additionally, the lack of naturally occurring organofluorine compounds enhances the confidence in identifying peaks in the spectrum.^{52,53}

collected over time. A growing peak at -64.50 ppm indicates the formation of an unknown

296	fluorinated molecule during 4-TFMP photolysis. Bhat et al. observed a similar peak in the direct
297	photolysis of 4-TFMP in acetate buffer, with no structure assigned. ²⁷ As this resonance lies
298	within the -CF3 region and between the 4-TFMP-CF3 and TFA-CF3 resonances, it may
299	represent an intermediate leading to the formation of TFA from 4-TFMP. ¹⁹ F NMR spectra from
300	fluoxetine photolysis experiments confirmed the formation and decay of 4-TFMP (-60.98 ppm).
301	However, the -64.50 ppm peak present in 4-TFMP photolysis was not observed in fluoxetine
302	photolysis. Instead, a new peak appeared at -60.91 ppm, which exhibited an increase, then
303	decrease trend characteristic of a reaction intermediate. This species may account for some of
304	the missing fluorine mass balance during fluoxetine photolysis. Overall, the fluorine mass
305	balance for the aqueous photochemistry of fluoxetine decreased, then increased over the course
306	of the reaction (Figure S7), complementary to the trend the peak at -60.91 ppm, suggesting it
307	acts as a reaction intermediate before conversion to TFA or F ⁻ . In a previous study on the
308	photolysis of fluoxetine at a lower concentration and in a different buffer, no new peaks were
309	observed to the left (i.e. downfield) of the intermediate 4-TFMP peak in ¹⁹ F NMR spectra. ²⁷
310	However, in those experiments, NMR spectra were only obtained at the beginning and end of
311	the reaction, so the intermediates may have been missed. Norfluoxetine is a well-characterized
312	metabolite and photolysis product of fluoxetine; ^{29,31,54,55} however, comparing with a
313	norfluoxetine standard, no evidence of its formation was supported in either ¹⁹ F NMR
314	(norfluoxetine -61.31 ppm) or HRMS.

318 Mechanistic Insights into TFA Formation

The introduction of the ¹³C isotope did not affect the photolysis rate of 4-TFMP, nor steady state yield of TFA (~9%) (**Figure S11**). A main advantage to having the ¹³CF₃ label for TFA specifically is that there is no concern about laboratory contamination (e.g. from plastic tubing⁵⁶ or as a mobile phase additive). We can be certain the ¹³CF₃-TFA observed is formed as a product of ¹³CF₃-4-TFMP and not a potential impurity by monitoring specifically for this isotopologue using targeted triple quadrupole mass spectrometry (**Table S5**).

Figure 3 is drawn using ¹³CF₃-4-TFMP and its TPs and shows the photolysis of 4-TFMP was divided into three distinct pathways: A) defluorination; B) self-sensitized TFA formation; C) photodimerization. These findings highlight the complexity of the 4-TFMP photolysis reactions. Confirmed and proposed intermediates were drawn based on combining Orbitrap HRMS full scan, tMS², and DDA analysis. These TPs were identified with different levels of confidence and are summarized in **Table S8**. Unlabeled and ¹³CF₃-labeled substances were compared in the same table, with MS² spectra provided in **Figure S12**.

332 Pathway A, defluorination: Defluorination is initiated either spontaneously in the dark in higher pH buffers via reaction at the phenolate or through HF elimination under UV-B 333 334 photolysis. The presumed intermediate is a difluoromethylene quinone, however, similar to other researchers, we were unable to observe it using ¹⁹F NMR and HRMS, likely due to its 335 short lifetime in aqueous solution as a highly reactive conjugated electrophile.²⁹ Subsequently, 336 this proposed electrophilic species undergoes nucleophilic addition with water to form a 337 -13CF₂OH structure, which then eliminates HF. Previous studies on PFAS degradation have 338 noted that in aqueous solutions, this $-{}^{13}CF_2OH$ group can easily eliminate HF, forming a acyl 339

340	fluoride. ²⁰ The benzoyl fluoride intermediate TP-A-1 was detected by HRMS but its
341	characteristic acyl fluoride resonance was not observed by ¹⁹ F NMR. A study on the photo-
342	defluorination of N,N-dimethyl-3-(trifluoromethyl)aniline in water and acetonitrile
343	successfully isolated and identified the corresponding benzoyl fluoride intermediate.57
344	TP-A-1 further reacts with water to produce the hydrolysis product TP-A-2 (¹³ C-4-HBA),
345	which was a major product in the dark controls. Unexpectedly, TP-A-1 also reacts with ¹³ CF ₃ -
346	4-TFMP to form a ¹³ C-labeled trifluoromethylated hydroxybenzoate, TP-A-3, in both dark
347	controls and UV-B photolysis. The rapid formation of TP-A-2 from ¹³ CF ₃ -4-TFMP, quickly
348	followed by its conversion to TP-A-3, may explain why the fluorine mass balance of 4-TFMP
349	at pH 10.5 deviated from 100% at the beginning of the reaction and remained relatively constant
350	thereafter (Figure S7). Under UV-B photolysis, the extracted ion chromatograms (EIC) from
351	the HRMS for the same m/z as TP-A-3 showed multiple chromatographically separated peaks
352	(Table S8), suggesting the formation of isomers during the photolysis. The further conversion
353	of TP-A-2 into other TPs upon UV-B is consistent with the quantitative analysis of 4-HBA.
354	Phenol (m/z of $[M-H]^-$ = 93.0346) was identified as an in-source fragment of 4-HBA rather
355	than a TP, and therefore, 4-HBA does not decarboxylate under UV-B irradiation.
356	

357

Figure 3. Proposed pathways for ¹³CF₃-4-TFMP photolysis. Note that for dimerization products and
 some hydroxylation products, we were unable to determine the exact substitution positions.

360

361 *Pathway B, self-sensitized TFA formation*: A series of ${}^{13}CF_3$ -4-TFMP-oxygen addition TPs 362 were detected by HRMS, including ${}^{13}CF_3$ -4-TFMP+O (TP-B-1), +2O (TP-B-2), and +3O (TP-363 B-3). ${}^{13}CF_3$ -4-TFMP+O was identified as a hydroxylation product because it had a similar 364 chromatographic retention time to ${}^{13}CF_3$ -4-TFMP (**Table S8**) and had HF-eliminated fragments

365	in its MS ² spectrum that preserve the benzene ring (Figure S12C). ¹³ CF ₃ -4-TFMP+O was
366	observed as two chromatographically separated EIC peaks, suggesting the ·OH radicals oxidize
367	non-selectively at both the <i>ortho</i> and <i>meta</i> positions relative to the $-^{13}$ CF ₃ group. Interestingly,
368	•OH radicals were also captured by ¹³ C-4-HBA, the hydrolysis defluorination product. ¹³ C-4-
369	HBA is a ·OH radical probe, and previous studies have shown that its reaction with ·OH
370	produces a single product, 3,4-dihydroxybenzoic acid, which was detected by HRMS as TP-A-
371	4.58,59 TP-B-1 can be further oxidized to TP-B-2 and subsequently to TP-B-3. Both TP-B-2 and
372	TP-B-3 had much earlier retention times compared to ¹³ CF ₃ -4-TFMP and the ¹³ CF ₃ -4-TFMP+O
373	(TP-B-1) (Table S8), which suggests that they are ring-opening products of oxidative cleavage.
374	MS ² spectra support this (Figure S12D), with TP-B-2 showing fragments corresponding to
375	carboxyl group elimination (i.e. loss of CO ₂), while MS ² of TP-B-3 indicates the presence of
376	hydroxyl and aldehyde groups in the structure. In our experimental setup, no additional oxidants
377	(e.g. H ₂ O ₂) were added, yet a series of oxidation reactions still occurred. This suggests <i>in situ</i>
378	photogeneration of ROS via self-sensitized photolysis, a process also observed in the photolysis
379	of tetracycline, fluoroquinolones, and 6PPD. ⁶⁰⁻⁶² To test the hypothesis that 4-TFMP undergoes
380	self-sensitized photolysis, photochemical experiments were performed in ultrapure water at
381	three concentrations of 4-TFMP (4, 50, 85 μM). Figure S13 shows the pseudo-first-order
382	kinetics fitting for the 4-TFMP photolysis in ultrapure water with different initial concentrations,
383	highlighting those higher initial concentrations inhibited photolysis, while lower concentrations
384	enhanced it, indicating that the 4-TFMP photolysis involves self-sensitization mechanism. ⁶⁰ As
385	shown in Figure 4A, the photolysis rate of 4-TFMP was decreased when the well-known ·OH
386	scavenger methanol (20 mM) was present in the solution, with more reaction suppression at a

387	higher concentration of methanol (80 mM). However, even with methanol in great excess (at
388	20 mM, MeOH:4-TFMP = 400:1), its inhibitory effect on 4-TFMP photolysis was limited.
389	When the methanol concentration was increased to 80 mM (MeOH:4-TFMP = $1600:1$), the
390	photodegradation was further suppressed, but the extent of further inhibition was relatively low.
391	Interestingly, the addition of excess FFA (20 mM), a scavenger for ¹ O ₂ , inhibited the photolysis
392	of 4-TFMP more effectively than 80 mM methanol (Figure 4B). Although FFA also quenches
393	•OH radicals, ^{38,63} the large decrease in photodegradation rate when excessive FFA was present
394	suggests that ${}^{1}O_{2}$ may play a more prominent role among the generated ROS. ${}^{1}O_{2}$ has ~20 times
395	longer lifetime in D ₂ O than in H ₂ O, ^{40,41} as a ¹ O ₂ enhancer, photodegradation of 4-TFMP was
396	accelerated in 99% D ₂ O as expected (Figure 4B), further demonstrating ¹ O ₂ is a key ROS
397	generated during 4-TFMP photolysis.

398 Based on all evidence presented, we propose that under UV-B irradiation, 4-TFMP undergoes self-sensitized photolysis, wherein 4-TFMP is oxidized, and molecular oxygen 399 either reacts with triplet-state [4-TFMP]* to form ¹O₂ or is reduced to superoxide. Superoxide 400 401 is then converted into H_2O_2 , which decomposes to $\cdot OH$. $\cdot OH$, a strong oxidant which can attack multiple reactive sites on organic compounds, leading to hydroxylated TPs (i.e. TP-B-1),⁶⁴ 402 while ¹O₂ is a weaker oxidant which can react with phenols to form hydroperoxides,⁶⁵ leading 403 404 to ring-opening TPs after hydrolysis (i.e. TP-B-2). As shown in Figure S14, ¹O₂ can add to the phenol ring through two pathways, forming cyclic peroxides that convert into hydroperoxides. 405 406 Since the ring-opening product 4-TFMP+2O, formed from the 1,4-addition, does not have 407 characteristic carboxyl group loss in MS², it is likely that the 1,2-addition pathway is favored. 408 TP-B-2 may also form through the reaction of the 4-TFMP radical cation with superoxide, as

proposed in a similar mechanism by Deng et al. in lignin photolysis.⁶⁶ Multiple pathways 409 contribute to the formation of TP-B-2, in which the aromatic ring no longer exists, while the -410 CF₃ group remains, likely corresponding to the -64.50 ppm resonance in the ¹⁹F NMR spectrum. 411 TP-B-2 can undergo further oxidation by various ROS to form TP-B-3, which can then 412 413 experience deeper oxidative cleavage, eventually yielding TFA. Notably, in a study on bacterial 414 degradation of fluoxetine that produces TFA, the intermediates 4-TFMP+3O were also detected.⁶⁷ Its structure resembles the oxidative ring-opening product 4-TFMP+3O found in 415 photolysis, suggesting similarities in mechanisms between the photolysis of 4-TFMP and its 416 417 bacterial biotransformation. The oxidative cleavage process of 4-TFMP is analogous to a bleaching process of brown carbon in atmospheric chemistry, where UV-Vis absorbing aromatic 418 419 compounds are step wised oxidized, resulting in aromatic ring cleavage, the loss of conjugated structures, and a reduction in light absorption.^{68–70} 420

Pathway C, photodimerization: Unexpectedly, ¹³CF₃-4-TFMP underwent dimerization 421 during photolysis. While the exact substitution position of the phenoxide could not be 422 determined, the MS² spectrum of the dimer product TP-C-1 clearly indicates that one phenoxide 423 added to the benzene ring of another ¹³CF₃-4-TFMP molecule (Figure S12F). Previous studies 424 on phenol oxidation have shown that phenol can polymerize via phenoxide radicals.^{71,72} We 425 hypothesize that the photodimerization of ¹³CF₃-4-TFMP follows a similar mechanism, with 426 self-sensitization still contributing to the process, as the photodimerization of two ¹³CF₃-4-427 TFMP molecules results in the net formation of one H₂O₂. The dimer product, TP-C-1, contains 428 two -13CF₃ groups and further photo-defluorinated through intermediates TP-C-2 and TP-C-3, 429 ultimately forming a ¹³C₂-labeled dimer of 4-HBA (TP-C-4). 430

433 Figure 4. Photolysis of 4-TFMP in the presence of excessive (20 mM and 80 mM) methanol (MeOH) as 434 a \cdot OH scavenger, in the presence of excessive (20 mM) FFA as a $^{1}O_{2}$ scavenger, and in the presence of 435 99% D₂O as a $^{1}O_{2}$ enhancer. Note that concentrations measured throughout experiments were normalized 436 to the initial concentration of 4-TFMP, and the control group is 4-TFMP in ultrapure water without any 437 additives. Mean and standard deviation of duplicates are shown.

438

432

439 Environmental Implications

Here, we report the kinetics and yields of TFA from aqueous photochemical reactions of 4-TFMP at different pH, and compare to the yields of TFA from fluoxetine. Currently, TFA is being reviewed as one of the smallest PFAS across many jurisdictions.^{73,74} In order to understand the global burden of TFA, production of TFA from aryl-CF₃ compounds must be

better characterized. Under our experimental conditions, the yield of TFA from 4-TFMP
photolysis ranged from 1.3 to 9.2% depending on the pH of the solution. Fluoxetine had a
higher yield than 4-TFMP at alkaline pH, which suggests it may have an additional formation
mechanism of TFA – this should be investigated further.

Here, we reported the first mechanistic insight including tracking the formation of TFA from 4-TFMP via a series of oxidative additions prior to oxidative cleavage of the aromatic ring. The use of an isotopically-labeled test compound increased confidence of intermediates and TFA formation, which was particularly useful as TFA has notoriously challenging laboratory contamination. There is no doubt that the TFA formed in these experiments originated from 4-TFMP – it did not arise from contamination nor from reactions of an impurity in the experiment.

Ideally, reactions of contaminants in the environment will result in complete mineralization, but for 4-TFMP and fluoxetine, they form TFA which persists in the environment and will continue to accumulate if usage continues.⁷⁵ If certain aryl-CF₃ can be designed to undergo defluorination pathways only and not form TFA, we may be able to harness the power of the $-CF_3$ moiety without producing very persistent TFA.

These experiments were performed using lamps centered at UV-B and buffers prepared in the lab. Based on the three proposed pathways, only one forms TFA. It is possible that other oxidative reactions, including indirect photochemistry (which has been observed to form TFA for 4-TFMP²⁷) or microbial reactions,⁶⁷ may increase the yield of TFA compared to what we observed here, thereby increasing the overall contributions of TFA to the environment from 4-TFMP and related compounds. Future studies should investigate the TFA yield from a range of

466	aryl-CF3 under a range of realistic environmental conditions, including from agrochemicals,
467	since the concentration of TFA in surface waters has been correlated to land use. ⁷⁶
468	
469	ACKNOWLEDGEMENTS
470	Funding for this work was provided by the National Science and Engineering Research Council
471	(NSERC RGPIN-2023-04369 to S.J.) and the Faculty of Science at the University of Alberta.
472	A.A.A. was partially funded by the Lloyd and Margaret Cooley Memorial Studentship in
473	Analytical Chemistry. The authors thank Randy Whittal and Béla Reiz from the University of
474	Alberta Department of Chemistry Mass Spectrometry Facility for assistance with Orbitrap-
475	HRMS and suggestion of isotopic analysis, and thank Liang Li for access to the triple
476	quadrupole MS. The authors also thank Bowen Yang and Geneviève Tremblay (University of
477	Alberta), Alexandra Burnett (McMaster University), and Juliana Laszakovits (ETH Zürich) for
478	their help and discussions.
479	
480	Supporting information
481	The Supporting Information is available free of charge online. A number of references in the
482	SI that are not in the main text are cited here. ^{77–80}

483

484 **REFERENCES**

- 485 (1) Hale, S. E.; Neumann, M.; Schliebner, I.; Schulze, J.; Averbeck, F. S.; Castell-Exner, C.; Collard,
- 486 M.; Drmač, D.; Hartmann, J.; Hofman-Caris, R.; Hollender, J.; de Jonge, M.; Kullick, T.;
- 487 Lennquist, A.; Letzel, T.; Nödler, K.; Pawlowski, S.; Reineke, N.; Rorije, E.; Scheurer, M.;

488		Sigmund, G.; Timmer, H.; Trier, X.; Verbruggen, E.; Arp, H. P. H. Getting in Control of
489		Persistent, Mobile and Toxic (PMT) and Very Persistent and Very Mobile (vPvM) Substances
490		to Protect Water Resources: Strategies from Diverse Perspectives. Environ. Sci. Eur. 2022, 34
491		(1), 22. https://doi.org/10.1186/s12302-022-00604-4.
492	(2)	Zhai, Z.; Wu, J.; Hu, X.; Li, L.; Guo, J.; Zhang, B.; Hu, J.; Zhang, J. A 17-Fold Increase of
493		Trifluoroacetic Acid in Landscape Waters of Beijing, China during the Last Decade.
494		Chemosphere 2015, 129, 110–117. https://doi.org/10.1016/j.chemosphere.2014.09.033.
495	(3)	Tian, Y.; Yao, Y.; Chang, S.; Zhao, Z.; Zhao, Y.; Yuan, X.; Wu, F.; Sun, H. Occurrence and Phase
496		Distribution of Neutral and Ionizable Per- and Polyfluoroalkyl Substances (PFASs) in the
497		Atmosphere and Plant Leaves around Landfills: A Case Study in Tianjin, China. Environ. Sci.
498		Technol. 2018, 52 (3), 1301–1310. https://doi.org/10.1021/acs.est.7b05385.
499	(4)	Chen, H.; Yao, Y.; Zhao, Z.; Wang, Y.; Wang, Q.; Ren, C.; Wang, B.; Sun, H.; Alder, A. C.;
500		Kannan, K. Multimedia Distribution and Transfer of Per- and Polyfluoroalkyl Substances
501		(PFASs) Surrounding Two Fluorochemical Manufacturing Facilities in Fuxin, China. Environ.
502		Sci. Technol. 2018, 52 (15), 8263-8271. https://doi.org/10.1021/acs.est.8b00544.
503	(5)	Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades.
504		Environ. Sci. Technol. 2022, 56 (13), 9428–9434. https://doi.org/10.1021/acs.est.2c01826.
505	(6)	Freeling, F.; Scheurer, M.; Koschorreck, J.; Hoffmann, G.; Ternes, T. A.; Nödler, K. Levels and
506		Temporal Trends of Trifluoroacetate (TFA) in Archived Plants: Evidence for Increasing
507		Emissions of Gaseous TFA Precursors over the Last Decades. Environ. Sci. Technol. Lett. 2022,
508		9 (5), 400–405. https://doi.org/10.1021/acs.estlett.2c00164.

509 (7) Zheng, G.; Eick, S. M.; Salamova, A. Elevated Levels of Ultrashort- and Short-Chain

- 510 Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57 (42), 15782–
- 511 15793. https://doi.org/10.1021/acs.est.2c06715.
- 512 (8) Wang, Z.; Buser, A. M.; Cousins, I. T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.;
- 513 Patlewicz, G.; Richard, A. M.; Walker, G. W.; White, G. S.; Leinala, E. A New OECD
- 514 Definition for Per- and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2021, 55 (23),

515 15575–15578. https://doi.org/10.1021/acs.est.1c06896.

- 516 (9) OECD. Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances:
- 517 *Recommendations and Practical Guidance*; Organisation for Economic Co-operation and 518 Development: Paris, 2021.
- 519 (10) Pickard, H. M.; Criscitiello, A. S.; Persaud, D.; Spencer, C.; Muir, D. C. G.; Lehnherr, I.; Sharp,
- 520 M. J.; De Silva, A. O.; Young, C. J. Ice Core Record of Persistent Short-Chain Fluorinated
- 521 Alkyl Acids: Evidence of the Impact From Global Environmental Regulations. *Geophys. Res.*

522 *Lett.* **2020**, 47 (10), e2020GL087535. https://doi.org/10.1029/2020GL087535.

- 523 (11) Rollins, A.; Barber, J.; Elliott, R.; Wood, B. Xenobiotic Monitoring in Plants by 19F and 1H
- 524 Nuclear Magnetic Resonance Imaging and Spectroscopy: Uptake of Trifluoroacetic Acid in
- 525 Lycopersicon Esculentum. *Plant Physiol.* **1989**, *91* (4), 1243–1246.
- 526 https://doi.org/10.1104/pp.91.4.1243.
- (12) Zhang, L.; Sun, H.; Wang, Q.; Chen, H.; Yao, Y.; Zhao, Z.; Alder, A. C. Uptake Mechanisms of
 Perfluoroalkyl Acids with Different Carbon Chain Lengths (C2-C8) by Wheat (*Triticum Acstivnm* L.). Sci. Total Environ. 2019, 654, 19–27.
 https://doi.org/10.1016/j.scitotenv.2018.10.443.
- 531 (13) Scheurer, M.; Nödler, K.; Freeling, F.; Janda, J.; Happel, O.; Riegel, M.; Müller, U.; Storck, F.

- 532 R.; Fleig, M.; Lange, F. T.; Brunsch, A.; Brauch, H.-J. Small, Mobile, Persistent: Trifluoroacetate in the Water Cycle - Overlooked Sources, Pathways, and Consequences for 533 534 Drinking Water Supply. Water Res. 2017, 126, 460-471. 535 https://doi.org/10.1016/j.watres.2017.09.045. 536 (14) Scheringer, M.; Cousins, I. T.; Goldenman, G. Is a Seismic Shift in the Landscape of PFAS
- 537 Uses Occurring? *Environ. Sci. Technol.* 2024, 58 (16), 6843–6845.
 538 https://doi.org/10.1021/acs.est.4c01947.
- 539 (15) Neuwald, I. J.; Hübner, D.; Wiegand, H. L.; Valkov, V.; Borchers, U.; Nödler, K.; Scheurer, M.;
- Hale, S. E.; Arp, H. P. H.; Zahn, D. Ultra-Short-Chain PFASs in the Sources of German
 Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. *Environ. Sci.*
- 542 *Technol.* **2022**, *56* (10), 6380–6390. https://doi.org/10.1021/acs.est.1c07949.
- (16) Joudan, S.; Silva, A. O. D.; J. Young, C. Insufficient Evidence for the Existence of Natural
 Trifluoroacetic Acid. *Environ. Sci. Process. Impacts* 2021, 23 (11), 1641–1649.
- 545 https://doi.org/10.1039/D1EM00306B.
- 546 (17) Kotamarthi, V. R.; Rodriguez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.; Prather, M. J.
- 547 Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-Dimensional Modeling
- 548 Study. J. Geophys. Res. Atmospheres 1998, 103 (D5), 5747–5758.
 549 https://doi.org/10.1029/97JD02988.
- 550 (18) Holland, R.; Khan, M. A. H.; Driscoll, I.; Chhantyal-Pun, R.; Derwent, R. G.; Taatjes, C. A.;
- 551 Orr-Ewing, A. J.; Percival, C. J.; Shallcross, D. E. Investigation of the Production of
- 552 Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using
- a Global Three-Dimensional Chemical Transport Model. ACS Earth Space Chem. 2021, 5 (4),

- 554 849–857. https://doi.org/10.1021/acsearthspacechem.0c00355.
- 555 (19) Ellis, D. A.; Mabury, S. A.; Martin, J. W.; Muir, D. C. G. Thermolysis of Fluoropolymers as a
- 556 Potential Source of Halogenated Organic Acids in the Environment. *Nature* **2001**, *412* (6844),
- 557 321–324. https://doi.org/10.1038/35085548.
- 558 (20) Zhang, Y.; Moores, A.; Liu, J.; Ghoshal, S. New Insights into the Degradation Mechanism of
- 559 Perfluorooctanoic Acid by Persulfate from Density Functional Theory and Experimental Data.
- 560 Environ. Sci. Technol. 2019, 53 (15), 8672–8681. https://doi.org/10.1021/acs.est.9b00797.
- 561 (21) Young, C. J.; Mabury, S. A. Atmospheric Perfluorinated Acid Precursors: Chemistry,
- 562 Occurrence, and Impacts. In *Reviews of Environmental Contamination and Toxicology Volume*
- 563 208: Perfluorinated alkylated substances; De Voogt, P., Ed.; Springer: New York, NY, 2010;
- 564 pp 1–109. https://doi.org/10.1007/978-1-4419-6880-7 1.
- 565 (22) Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition.
- *Science* **2007**, *317* (5846), 1881–1886. https://doi.org/10.1126/science.1131943.
- 567 (23) Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to
 568 Pharmaceuticals. ACS Omega 2020, 5 (19), 10633–10640.
- 569 https://doi.org/10.1021/acsomega.0c00830.
- 570 (24) Mole, R. A.; Brooks, B. W. Global Scanning of Selective Serotonin Reuptake Inhibitors:
- 571 Occurrence, Wastewater Treatment and Hazards in Aquatic Systems. *Environ. Pollut.* 2019,
- 572 250, 1019–1031. https://doi.org/10.1016/j.envpol.2019.04.118.
- 573 (25) Manfrin, A.; Hänggli, A.; van den Wildenberg, J.; McNeill, K. Substituent Effects on the Direct
- 574 Photolysis of Benzotrifluoride Derivatives. *Environ. Sci. Technol.* **2020**, *54* (18), 11109–11117.
- 575 https://doi.org/10.1021/acs.est.9b07429.

576 (26) Ellis, D. A.; Mabury, S. A. The Aqueous Photolysis of TFM and Related
577 Trifluoromethylphenols. An Alternate Source of Trifluoroacetic Acid in the Environment.

578 Environ. Sci. Technol. 2000, 34 (4), 632–637. https://doi.org/10.1021/es990422c.

- 579 (27) Bhat, A. P.; Mundhenke, T. F.; Whiting, Q. T.; Peterson, A. A.; Pomerantz, W. C. K.; Arnold,
- 580 W. A. Tracking Fluorine during Aqueous Photolysis and Advanced UV Treatment of
- 581 Fluorinated Phenols and Pharmaceuticals Using a Combined ¹⁹F-NMR, Chromatography, and
- 582 Mass Spectrometry Approach. ACS Environ. Au 2022, 2 (3), 242–252.
 583 https://doi.org/10.1021/acsenvironau.1c00057.
- (28) Bhat, A. P.; Pomerantz, W. C. K.; Arnold, W. A. Finding Fluorine: Photoproduct Formation
 during the Photolysis of Fluorinated Pesticides. *Environ. Sci. Technol.* 2022, *56* (17), 12336–
 12346. https://doi.org/10.1021/acs.est.2c04242.
- 587 (29) Tisler, S.; Zindler, F.; Freeling, F.; Nödler, K.; Toelgyesi, L.; Braunbeck, T.; Zwiener, C.
- 588 Transformation Products of Fluoxetine Formed by Photodegradation in Water and
- 589 Biodegradation in Zebrafish Embryos (Danio Rerio). *Environ. Sci. Technol.* 2019, 53 (13),
- 590 7400–7409. https://doi.org/10.1021/acs.est.9b00789.
- (30) Lam, M. W.; Young, C. J.; Mabury, S. A. Aqueous Photochemical Reaction Kinetics and
 Transformations of Fluoxetine. *Environ. Sci. Technol.* 2005, *39* (2), 513–522.
 https://doi.org/10.1021/es0494757.
- 594 (31) Altamura, A. C.; Moro, A. R.; Percudani, M. Clinical Pharmacokinetics of Fluoxetine. Clin.
- 595 *Pharmacokinet.* **1994**, *26* (3), 201–214. https://doi.org/10.2165/00003088-199426030-00004.
- 596 (32) Mutlib, A. E. Application of Stable Isotope-Labeled Compounds in Metabolism and in
- 597 Metabolism-Mediated Toxicity Studies. Chem. Res. Toxicol. 2008, 21 (9), 1672–1689.

598 https://doi.org/10.1021/tx800139z.

- 599 (33) Nelson, T. F.; Baumgartner, R.; Jaggi, M.; Bernasconi, S. M.; Battagliarin, G.; Sinkel, C.;
- 600 Künkel, A.; Kohler, H.-P. E.; McNeill, K.; Sander, M. Biodegradation of Poly(Butylene
- 601 Succinate) in Soil Laboratory Incubations Assessed by Stable Carbon Isotope Labelling. *Nat.*
- 602 *Commun.* **2022**, *13* (1), 5691. https://doi.org/10.1038/s41467-022-33064-8.
- 603 (34) Qian, Y.; Chen, Z.; Wang, J.; Peng, M.; Zhang, S.; Yan, X.; Han, X.; Ou, X.; Sun, J.; Li, S.;
- 604 Chen, K. H/D Exchange Coupled with 2H-Labeled Stable Isotope-Assisted Metabolomics
- 605 Discover Transformation Products of Contaminants of Emerging Concern. *Anal. Chem.* 2023,
- 606 95 (33), 12541–12549. https://doi.org/10.1021/acs.analchem.3c02833.
- 607 (35) Zhang, J.; Cao, G.; Wang, W.; Qiao, H.; Chen, Y.; Wang, X.; Wang, F.; Liu, W.; Cai, Z. Stable
- 608 Isotope-Assisted Mass Spectrometry Reveals *in Vivo* Distribution, Metabolism, and Excretion
- of Tire Rubber-Derived 6PPD-Quinone in Mice. Sci. Total Environ. 2024, 912, 169291.
- 610 https://doi.org/10.1016/j.scitotenv.2023.169291.
- 611 (36) Ben-Tal, Y.; Lloyd-Jones, G. C. Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr:
- 612 Intermediacy of ArNiII(L)Br and Rate/Selectivity Factors. J. Am. Chem. Soc. 2022, 144 (33),
- 613 15372–15382. https://doi.org/10.1021/jacs.2c06831.
- 614 (37) Liang, Y.; Taya, A.; Zhao, Z.; Saito, N.; Shibata, N. Deoxyfluorination of Acyl Fluorides to
- 615 Trifluoromethyl Compounds by FLUOLEAD®/Olah's Reagent under Solvent-Free Conditions.
- 616 Beilstein J. Org. Chem. 2020, 16 (1), 3052–3058. https://doi.org/10.3762/bjoc.16.254.
- 617 (38) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate Constants
- 618 for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals ($\cdot OH/\cdot O^{-}$ in
- 619 Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17 (2), 513–886.

- 620 https://doi.org/10.1063/1.555805.
- 621 (39) Haag, W. R.; Hoigne, Juerg. Singlet Oxygen in Surface Waters. 3. Photochemical
- 622 Formation and Steady-State Concentrations in Various Types of Waters. *Environ. Sci. Technol.*
- 623 **1986**, 20 (4), 341–348. https://doi.org/10.1021/es00146a005.
- 624 (40) Wilkinson, F.; Helman, W. P.; Ross, A. B. Rate Constants for the Decay and Reactions of the
- 625 Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded
- and Revised Compilation. J. Phys. Chem. Ref. Data 1995, 24 (2), 663–677.
 https://doi.org/10.1063/1.555965.
- (41) Ossola, R.; Jönsson, O. M.; Moor, K.; McNeill, K. Singlet Oxygen Quantum Yields in
 Environmental Waters. *Chem. Rev.* 2021, *121* (7), 4100–4146.
- 630 https://doi.org/10.1021/acs.chemrev.0c00781.
- 631 (42)Dulin, David.; Mill, Theodore. Development and Evaluation of Sunlight Actinometers. *Environ*.

632 Sci. Technol. 1982, 16 (11), 815–820. https://doi.org/10.1021/es00105a017.

- 633 (43) Buth, J. M.; Ossola, R.; Partanen, S. B.; McNeill, K.; Arnold, W. A.; O'Connor, M.; Latch, D.
- E. Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile
- 635 Laboratory or Remote Learning Investigation. J. Chem. Educ. 2021, 98 (7), 2411–2418.
- 636 https://doi.org/10.1021/acs.jchemed.0c01398.
- 637 (44) Challis, J. K.; Carlson, J. C.; Friesen, K. J.; Hanson, M. L.; Wong, C. S. Aquatic Photochemistry
- 638 of the Sulfonamide Antibiotic Sulfapyridine. J. Photochem. Photobiol. Chem. 2013, 262, 14–
- 639 21. https://doi.org/10.1016/j.jphotochem.2013.04.009.
- 640 (45) Laszakovits, J. R.; Berg, S. M.; Anderson, B. G.; O'Brien, J. E.; Wammer, K. H.; Sharpless, C.
- 641 M. P-Nitroanisole/Pyridine and p-Nitroacetophenone/Pyridine Actinometers Revisited:

- 642 Quantum Yield in Comparison to Ferrioxalate. *Environ. Sci. Technol. Lett.* **2017**, *4* (1), 11–14.
- 643 https://doi.org/10.1021/acs.estlett.6b00422.
- 644 (46) Anton, L. de B.; Silverman, A. I.; Apell, J. N. Determining Wavelength-Dependent Quantum
- 645 Yields of Photodegradation: Importance of Experimental Setup and Reference Values for
- 646 Actinometers. Environ. Sci. Process. Impacts 2024, 26 (6), 1052–1063.
 647 https://doi.org/10.1039/D4EM00084F.
- 648 (47) Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes,
- 649 P.; Kummer, U. COPASI—a COmplex PAthway SImulator. *Bioinformatics* 2006, 22 (24),
- 650 3067–3074. https://doi.org/10.1093/bioinformatics/btl485.
- (48) Dearden, J. C.; Weeks, G. R. Relationship of Physicochemical Properties of Isomeric
 Trifluoromethylphenols with Their Bactericidal Effect on *Escherichia Coli. J. Pharm. Sci.* 1973,
- 653 62 (5), 843–844. https://doi.org/10.1002/jps.2600620540.
- 654 (49) Sakai, T. T.; Santi, D. V. Hydrolysis of Hydroxybenzotrifluorides and Fluorinated Uracil
- 655 Derivatives. General Mechanism for Carbon-Fluorine Bond Labilization. J. Med. Chem. 1973,
- 656 *16* (10), 1079–1084. https://doi.org/10.1021/jm00268a003.
- (50) Kwon, J.-W.; Armbrust, K. L. Laboratory Persistence and Fate of Fluoxetine in Aquatic
 Environments. *Environ. Toxicol. Chem.* 2006, 25 (10), 2561–2568. https://doi.org/10.1897/05-
- 659 613R.1.
- (51) Bhat, A. P.; Pomerantz, W. C. K.; Arnold, W. A. Fluorinated Pharmaceutical and Pesticide
 Photolysis: Investigating Reactivity and Identifying Fluorinated Products by Combining
- 662 Computational Chemistry,¹⁹F NMR, and Mass Spectrometry. *Environ. Sci. Technol.* 2024, 58
- 663 (7), 3437–3448. https://doi.org/10.1021/acs.est.3c09341.

664	(52) Gauthier, J. R.; Mabury, S. A. Identifying Unknown Fluorine-Containing Compounds in
665	Environmental Samples Using ¹⁹ F NMR and Spectral Database Matching. Environ. Sci.
666	Technol. 2023, 57 (23), 8760-8767. https://doi.org/10.1021/acs.est.3c01220.
667	(53) Gauthier, J. R.; Mabury, S. A. Noise-Reduced Quantitative Fluorine NMR Spectroscopy
668	Reveals the Presence of Additional Per- and Polyfluorinated Alkyl Substances in
669	Environmental and Biological Samples When Compared with Routine Mass Spectrometry
670	Methods. Anal. Chem. 2022, 94 (7), 3278–3286. https://doi.org/10.1021/acs.analchem.1c05107.
671	(54) van der Most, M. A.; Bakker, W.; Wesseling, S.; van den Brink, N. W. Toxicokinetics of the
672	Antidepressant Fluoxetine and Its Active Metabolite Norfluoxetine in Caenorhabditis Elegans
673	and Their Comparative Potency. Environ. Sci. Technol. 2024, 58 (7), 3129-3140.
674	https://doi.org/10.1021/acs.est.3c07744.
675	(55) Zindler, F.; Tisler, S.; Loerracher, AK.; Zwiener, C.; Braunbeck, T. Norfluoxetine Is the Only
676	Metabolite of Fluoxetine in Zebrafish (Danio Rerio) Embryos That Accumulates at
677	Environmentally Relevant Exposure Scenarios. Environ. Sci. Technol. 2020, 54 (7), 4200-4209.
678	https://doi.org/10.1021/acs.est.9b07618.
679	(56) Joudan, S.; Gauthier, J.; Mabury, S. A.; Young, C. J. Aqueous Leaching of Ultrashort-Chain
680	PFAS from (Fluoro)Polymers: Targeted and Nontargeted Analysis. Environ. Sci. Technol. Lett.
681	2024 , <i>11</i> (3), 237–242. https://doi.org/10.1021/acs.estlett.3c00797.
682	(57) Deng, L.; Zhang, C.; Li, B.; Fu, J.; Zhang, Z.; Li, S.; Zhao, X.; Su, Z.; Hu, C.; Yu, Z. Photo-
683	Induced Defluorination Acyl Fluoride Exchange as a Fluorogenic Photo-Click Reaction for
684	Photo-Affinity Labeling. Chem. Sci. 2023, 14 (13), 3630–3641.
685	https://doi.org/10.1039/D2SC04636A.

686	(58) Ste-Marie, L.; Boismenu, D.; Vachon, L.; Montgomery, J. Evaluation of Sodium 4-
687	Hydroxybenzoate as an Hydroxyl Radical Trap Using Gas Chromatography-Mass
688	Spectrometry and High-Performance Liquid Chromatography with Electrochemical Detection.
689	Anal. Biochem. 1996, 241 (1), 67-74. https://doi.org/10.1006/abio.1996.0379.

- 690 (59) Freinbichler, W.; Bianchi, L.; Colivicchi, M. A.; Ballini, C.; Tipton, K. F.; Linert, W.; Corte, L.
- 691 D. The Detection of Hydroxyl Radicals *in Vivo. J. Inorg. Biochem.* 2008, *102* (5), 1329–1333.
 692 https://doi.org/10.1016/j.jinorgbio.2007.12.017.
- 693 (60) Werner, J. J.; Arnold, W. A.; McNeill, K. Water Hardness as a Photochemical Parameter:
- 694Tetracycline Photolysis as a Function of Calcium Concentration, Magnesium Concentration,
- 695 and pH. *Environ. Sci. Technol.* **2006**, *40* (23), 7236–7241. https://doi.org/10.1021/es060337m.
- 696 (61) Huang, S.; Zhang, Z.; Lin, C.; Cheng, H. Solar Photodegradation of a Novel Des-F(6)-
- 697 Fluoroquinolone, Garenoxacin, and Ecotoxicity of Its Phototransformation Products. *Environ*.

698 Sci. Technol. 2024, 58 (31), 13918–13928. https://doi.org/10.1021/acs.est.4c03206.

- 699 (62) Zhou, Y.; Yixi, L.; Kong, Q.; Peng, J.; Pan, Y.; Qiu, J.; Yang, X. Sunlight-Induced
- 700 Transformation of Tire Rubber Antioxidant N-(1,3-Dimethylbutyl)-N'-Phenyl-p-
- 701 Phenylenediamine (6PPD) to 6PPD-Quinone in Water. Environ. Sci. Technol. Lett. 2023, 10 (9),
- 702 798–803. https://doi.org/10.1021/acs.estlett.3c00499.
- 703 (63) Hu, X.; Zhu, M. Were Persulfate-Based Advanced Oxidation Processes Really Understood?
- 704 Basic Concepts, Cognitive Biases, and Experimental Details. *Environ. Sci. Technol.* 2024, 58
- 705 (24), 10415–10444. https://doi.org/10.1021/acs.est.3c10898.
- 706 (64) Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl
- 707 Radicals (•OH). Chem. Rev. 2015, 115 (24), 13051–13092. https://doi.org/10.1021/cr500310b.

708	(65) Ghogare, A. A.; Greer, A. Using Singlet Oxygen to Synthesize Natural Products and Drugs.							
709	Chem. Rev. 2016, 116 (1	7), 9994–	10034. https://d	loi.org/10.102	21/acs.che	emrev.5b00720	6.	
710	(66) Deng, Y.; Zhu, K.; Jiang,	, W.; Liu, Y	7.; Xie, L.; Liu,	F.; Yang, K.; J	iang, Y.; J	ia, H. Novel C	Chemical	
711	Routes for Carbon Diox	ide and M	ethane Product	tion from Ligr	nin Photo	degradation: 7	The Role	
712	of Environmental	Free	Radicals.	Environ.	Sci.	Technol.	2024.	
713	https://doi.org/10.1021/a	acs.est.4c0	3414.					

- 714 (67) Khan, M. F.; Murphy, C. D. Bacterial Degradation of the Anti-Depressant Drug Fluoxetine
- 715 Produces Trifluoroacetic Acid and Fluoride Ion. Appl. Microbiol. Biotechnol. 2021, 105 (24),
- 716 9359–9369. https://doi.org/10.1007/s00253-021-11675-3.
- 717 (68) Hems, R. F.; Abbatt, J. P. D. Aqueous Phase Photo-Oxidation of Brown Carbon Nitrophenols:
- 718 Reaction Kinetics, Mechanism, and Evolution of Light Absorption. ACS Earth Space Chem.

719 **2018**, *2* (3), 225–234. https://doi.org/10.1021/acsearthspacechem.7b00123.

- 720 (69) Laskin, A.; Laskin, J.; Nizkorodov, S. A. Chemistry of Atmospheric Brown Carbon. Chem. Rev.
- 721 **2015**, *115* (10), 4335–4382. https://doi.org/10.1021/cr5006167.
- 722 (70) Zhao, R.; Lee, A. K. Y.; Huang, L.; Li, X.; Yang, F.; Abbatt, J. P. D. Photochemical Processing
- 723 of Aqueous Atmospheric Brown Carbon. *Atmospheric Chem. Phys.* 2015, *15* (11), 6087–6100.
- 724 https://doi.org/10.5194/acp-15-6087-2015.
- 725 (71) Peng, J.; Zhou, P.; Zhou, H.; Huang, B.; Sun, M.; He, C.-S.; Zhang, H.; Ao, Z.; Liu, W.; Lai, B.
- 726 Removal of Phenols by Highly Active Periodate on Carbon Nanotubes: A Mechanistic
- 727 Investigation. Environ. Sci. Technol. 2023, 57 (29), 10804–10815.
- 728 https://doi.org/10.1021/acs.est.2c08266.
- 729 (72) Chen, Y.; Ren, W.; Ma, T.; Ren, N.; Wang, S.; Duan, X. Transformative Removal of Aqueous

730	Micropollutants into Polymeric Products by Advanced Oxidation Processes. Environ. Sci.						
731	Technol. 2024, 58 (11), 4844–4851. https://doi.org/10.1021/acs.est.3c06376.						
732	(73) Canada, E. and C. C. Updated draft state of per- and polyfluoroalkyl substances (PFAS) report.						
733	https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-						
734	substances/updated-draft-state-per-polyfluoroalkyl-substances-report.html (accessed 2024-09-						
735	18).						
736	(74) Registry of CLH intentions until outcome - ECHA. https://echa.europa.eu/de/registry-of-clh-						
737	intentions-until-outcome/-/dislist/details/0b0236e188e6e587 (accessed 2024-09-18).						
738	(75) T. Cousins, I.; C. DeWitt, J.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; A. Ng, C.;						
739	Scheringer, M.; Wang, Z. The High Persistence of PFAS Is Sufficient for Their Management as						
740	a Chemical Class. Environ. Sci. Process. Impacts 2020, 22 (12), 2307–2312.						
741	https://doi.org/10.1039/D0EM00355G.						
742	(76) Cahill, T. M. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes.						
743	Environ. Sci. Technol. 2024, 58 (6), 2966–2972. https://doi.org/10.1021/acs.est.3c08822.						
744	(77) Still, W. C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations						
745	with Moderate Resolution. J. Org. Chem. 1978, 43 (14), 2923–2925.						
746	https://doi.org/10.1021/jo00408a041.						
747	(78) Wang, X.; Xu, Y.; Mo, F.; Ji, G.; Qiu, D.; Feng, J.; Ye, Y.; Zhang, S.; Zhang, Y.; Wang, J. Silver-						
748	Mediated Trifluoromethylation of Aryldiazonium Salts: Conversion of Amino Group into						
749	Trifluoromethyl Group. J. Am. Chem. Soc. 2013, 135 (28), 10330–10333.						
750	https://doi.org/10.1021/ja4056239.						

752	Metal-Free Arylation	of Alcohols	with	Aryl	Bromides.	Synthesis	2022,	55,	637–646.
753	https://doi.org/10.1055/	a-1932-6146							

- 754 (80) Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J.
- 755 Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating
 756 Confidence. *Environ. Sci. Technol.* 2014, 48 (4), 2097–2098.
 757 https://doi.org/10.1021/es5002105.

758