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GOCIA: grand canonical Global Optimizer for Clusters,
Interfaces, and Adsorbates
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Restructuring of surfaces and interfaces underlie the activation and/or deactivation of a wide spec-
trum of heterogeneous catalysts and functional materials. The statistical ensemble representation
can provide unique atomistic insights into this fluxional and metastable realm, but constructing the
ensemble is very challenging, especially for the systems with off-stoichiometric reconstruction and
varying coverage of mixed adsorbates. Here we report GOCIA, a general-purpose global optimizer
for exploring the chemical space of these systems. It features the grand canonical genetic algorithm
(GCGA), which bases the target function on the grand potential and evolves across the compositional
space, as well as many useful functionalities and implementation details. GOCIA has been applied
to various systems in catalysis, from cluster to surfaces, and from thermal to electro-catalysis.

1 Introduction
Understanding the catalyst’s structure under reaction conditions
is crucial for deciphering the reaction mechanism and further de-
sign or optimization. In the recent decade, with the development
of in situ and operando characterization techniques, many com-
mon thermal and electro-catalysts have been found to undergo
highly non-trivial restructurings during operation.1 Moreover, the
"restructuring" is not a single transformation but a collective phe-
nomena which involves multiple coexisting catalyst states, path-
ways, time scales, and intricate interplay with the adsorbates and
environments.2

Molecular dynamics (MD) based methods, when combined
with enhanced sampling techniques3 and/or machine learning
interatomic potentials,4,5 have become a powerful tool to mod-
eling many dynamical behaviors in catalysis. However, they
typically focus on the potential energy landscape of a fixed-
composition system and hence are often insufficient in explor-
ing the chemical space of off-stoichiometric restructuring systems
with a fluctuating composition and without any well-defined col-
lective variable.

Another approach is the to revise the representation of the cat-
alyst as a statistical ensemble of many catalyst states instead of a
single or a few selected structures.6,7 By extending to a grand
canonical (GC) ensemble representation, all reaction-relevant
global minimum (GM) and local minimum (LM) catalyst states

a Department of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California, 90095-1569, USA. Email: ana@chem.ucla.edu
b Department of Chemical Engineering and SUNCAT Center for Interface Sci-
ence and Catalysis, Stanford University, Stanford, California 94305, USA. Email:
zishengz@stanford.edu
c SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

with varying geometry and composition (including both surface
itself and adsorbate/adatom coverage) can be included in the
representation, with their individual contributions to reactivity
or spectroscopic signals properly evaluated.8 By probing the re-
sponse of GC free energetics of the states to external factors (i.e.,
reaction conditions), the ensemble becomes condition-dependent
in nature and can be used to understand and predict structural
evolution during operation,9 or to better simulate spectra by
ensemble-averaging.10

Despite the simplicity of the ensemble representation theory,
obtaining such an ensemble – including the ab initio thermody-
namics of all relevant surface phase – is rather computationally
challenging.11 The difficulty lies in the exponentially growing
chemical space of off-stoichiometric restructuring versus system
size and number of elements. Indeed, constructing a realistic
ensemble requires inclusion of all relevant states, which means
searching extensively the global and local minima on the poten-
tial energy surface (PES), for all relevant stoichiometries. Note
that the global optimization minima search at density functional
theory (DFT) level, even for small clusters with fixed composition,
is highly nontrivial.12,13

A recently emerging family of GO techniques is to directly use
the grand canonical free energy (Ω, also named grand potential),
which is a function of system’s composition at a given set of chem-
ical potentials, as the target function of the minima search. This
allows for GC global optimization, in which the stoichiometry is
also treated as a set of discrete variables to optimize. In this way,
we do not need to extensively sample each possible stoichiome-
try in a grid-search fashion, but can efficiently sample into the
relevant stoichiometries in the grand canonical free energy sur-
face (FES) and producing a distribution of stoichiometries in the
resulted states. GC treatments has recently been successfully ap-
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Fig. 1 Examples of previous applications of GOCIA on catalytic systems. (a) H-covered Ptn clusters supported on hydroxylated F-doped tin oxide
in electrochemical conditions. (b) Partially oxidized and hydroxylated over-layer of hexagonal boron nitride. (c) Restructuring of crystalline Cu(100)
surface under the coverage of a mixture of H and CO adsorbates.

plied to multiple cluster or surface systems, within algorithms
such as GC basin hopping (BH),14,15 GC Monte Carlo (MC),16

and GC genetic algorithm (GA).17,18 However, these algorithms
are usually tailored for a specific set of systems, and a general-
purpose GC global optimizer has been lacking.

This article is aimed to introduce our recent efforts in devel-
oping a Global Optimizer of Clusters, Interfaces, and Adsorbates
(GOCIA)19 – a versatile Python package featuring GC global op-
timization of off-stoichiometric restructuring systems – with a de-
tailed dissection of its components, and to showcase its previous
successful applications, applicability, and a roadmap to future de-
velopments.

2 Overview of features
GOCIA is built to achieve efficient global optimization of periodic
systems and can handle internally many nuances that come with
the periodic boundary conditions such as collision of atoms and
breaking of polyatomic fragments.

The main feature of GOCIA is the grand canonical genetic algo-
rithm (GCGA) which can efficiently explore the relevant regions
in the chemical space of varying compositions, by using grand
canonical free energy as the search target, and it eliminates the
need to grid search for every possible composition. Built on the
basis of GA, GCGA can achieve extremely efficient exploration
of geometric and compositional space, as compared to MD- or
Monte Carlo (MC)-based approaches.

GOCIA was initially built to handle amorphous layers with-
out well-defined bonding modes, where every atom in the sam-
pling region was allowed to form any type of bond (as individual
adatoms). A recent update enabled our implementation of GCGA
to handle the coverage of polyatomic and mixed adsorbates while
maintaining their intactness, which is rather relevant to study-
ing reaction intermediate-relevant surface phenomenon and the
complex interplay between surface atoms and multiple types of
surface species.

GOCIA’s random structure generator, whose primary role is to
make the initial population for GCGA, can also work as a good
one-shot sampler for the smaller systems such as smaller sub-
nanometer clusters supported on surfaces and adsorbate configu-

rations at low coverage.20

GOCIA also provides a toolkit and streamlined workflow for
grand canonical density functional theory (GCDFT) calculations
using the surface charging approach. This is useful for sampling
of electrified interfaces, such as those used in electrocatalysis.

Every mentioned component of GOCIA are highly versatile and
can be customized to meet a broadness of needs in the areas of
catalysis, materials science, surface science, and so on.

GOCIA has been applied to study the structure, reactivity, and
spectroscopy of many surface systems ranging from clusters to
amorphous over-layers and to reconstruction of crystalline metal
electrodes, in thermal- and electro-catalysis.21 A few represen-
tative systems shown in Fig. 1a-c are: fluorine-doped tin oxide
(FTO) supported Ptn (n=1-8) clusters under varying H coverage
during electrochemical hydrogen evolution reaction (HER);10

partial boron oxide/hydroxide over-layer formed on hexagonal
boron nitride (hBN) in conditions of oxidative dehydrogenation
of propane (ODHP);22,23 restructuring of crystalline Cu facets in-
duced by H and CO coverage in CO2 reduction reaction (CO2RR)
conditions.24 Other notable applications include restructuring of
Cu in acidic HER conditions,9,25 metal-support contact angle of
small nano-particles (NPs),20 and the structure of amorphous
nickel oxide/hydroxide on Pt surface.26

3 Code architecture

3.1 The Interface class

Central to GOCIA is the Interface class which is a representation
of the system of study.

The Interface class is based on the Atoms class (from the ASE
module27) with some additional structure-related metadata as is
illustrated in Figure 2. There are two atomistic parts within an
Interface object, a constrained region and a relaxed region. The
constrained region is usually the bottom few layers of the slab and
can mimic the behaviour of the bulk. The relaxed region is the
part of the surface that can interact with the external environment
but cannot change its own composition, usually the top few layers
of the slab or supported surface species such as subnanometer
clusters or adatoms.

The user would also need to define a rectangular sampling box
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(by the coordinates of its vertices) which intersects with the top
few layers of the relaxed region. Compositional changes are only
allowed within the sampling box.

In the case of sampling polyatomic adsorbates, one would also
need to supply a list of atomic indices for each adsorbate, so that
GOCIA can keep track of the connectivity and make sure every
adsorbate is intact during the local and global optimizations, with
a similar practice to ref13.

A number of useful functions are built-in under the Interface
class for easy access, modification, and geometric analysis of each
individual component.

3.2 Data structure
During the global optimization, a large number of structures are
generated, and each must be fully optimized to a local minimum
before it can be added to the ensemble. GOCIA will make a ded-
icated sub-directory to each structure, so that the local optimiza-
tion jobs would be performed in separate sub-directories and not
interfere with each other. After a local optimization job finishes,
the results will be updated to the project database file in the main
directory.

The project database file (a SQL database in ASE format) stores
all optimized structures along with their metadata (calculator, en-
ergy, magnetic moments, fragment lists, labels, population infor-
mation, etc.), to allow for easy query and manipulation.

All structures in a global optimization search share the same
definition of the constrained region, the relaxed region, and the
sampling box. These information are stored in a substrate.vasp
file (it can be in any format that supports periodic structure with
constraints) which is one of the required input files.

The other variables needed to set up a global optimization run,
such as the dictionary of chemical potentials, control parameters
of GA, and paths/commands to initiate software, can be provided
as a separate input.py file in the main directory or included in the
main "manager" script (vide infra).

Fig. 2 Schematic of the components of the Interface class.

3.3 Parallel scheme
The overall parallelization efficiency of the global optimization
depends on two factors. (i) The scaling performance of the local
optimization calculation: For most electronic structure codes, the
scaling performance versus the number of nodes is rather poor,
and the optimal parallelism setting is usually within 20 nodes

per instance.28 (ii) The population updating of GA: To avoid too
drastic a change of the population, it is more beneficial to add
new structures to the population one-by-one or in small batches
(similar to the population size), instead of in large batches.

Depending on the job requirements and queuing policy of the
high performance computer (HPC), GOCIA users can choose from
two different workflows:
(i) If the HPC allows submission of a large number of small jobs
from a single user: submit a manager job of long wall time,
as a single-core process on the login node or interactive session
(the manager sleeps periodically and is not resource intensive at
all). The manager job will automatically make and submit many
worker jobs, each performing a series of local optimization calcu-
lations on a structure to which the worker is assigned. The man-
ager will check the queue constantly and resubmit a new worker
job if an old one has finished.
(ii) If the HPC strongly encourages large job by measures such
as limiting the wall time of smaller jobs: Use the multiprocessing
module of Python to maintain a pool of many worker processes.
The main script will automatically spawn a new worker process
to the idle nodes whenever an old one has finished. This should
be submitted as a single large bundled job.
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Fig. 3 Parallel scheme of GOCIA on computing clusters. (a) The dis-
tributed scheme where each master or worker job are submitted as sep-
arate jobs on each allocated node. (b) The bundled scheme where one
master job manages all tasks within a large bundled job on all allocated
nodes.

3.4 Extensibility
GOCIA currently supports VASP the best, covering all functional-
ities described in this article. In principle, GOCIA can interface
with any code via the ASE Calculator class to perform the core
functionalities. Note that, although the ASE Calculator class in-
terface is easy to use, it comes with some compromise in computa-
tional efficiency (charge density and/or wavefunction IO from the
use of a Python wrapper per force call) and some advanced func-
tionalities (iterative local optimization with fragment information
and GCDFT). A workaround is to define the calculator such that
it runs a local optimization internally using the code’s own opti-
mizer, and then GOCIA calls it for a single point, which conserves
the conveniences of using the ASE calculator class while suffer-
ing no IO bottleneck. Since GC global optimization is a highly
computationally intensive task, we plan to ultimately make an in-
dividual optimized interface for each popular periodic DFT and
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semi-empirical code.

4 Grand canonical genetic algorithm

Fig. 4 Schematic comparison of different approaches to explore off-
stoichiometric restructuring involving elements X and Y. The grand
canonical free energy landscape is shown as a contour plot depending
on the number of X and Y atoms. (a) Grid search within a defined
range of compositions, performing a canonical global optimization at
each grid. The inset bar shows the energetic distribution of states of
the same composition. (b) Stochastic one-shot sampling, with × rep-
resenting the samples. (c) Grand canonical global optimization with an
iterative scheme. Lighter and deeper colors represent samples in earlier
and later iterations, respectively.

Before going into the details of the GCGA, we first discuss the
challenges in exploring the off-stoichiometric restructuring. In
the context of thermal and electro-catalytic surfaces, we assume
that the system is always in the electronic ground state for a given
set of nuclear positions. Finding the stable and metastable struc-
tures of a certain stoichiometry is then equal to locating the global
minimum and local minima of the ground state potential energy
surface (PES) defined by a non-convex function E(r), where r is
the atomic coordinate. For a system containing N atoms, there
are 3N variables, spanning a vast high-dimensional space. More-
over, there is no analytical expression of E(r) due to its quantum
mechanical nature, and all values (energy) and gradients (forces)
needs to be computed numerically, which is extremely resource-
intensive.

Abstraction, such as treating surface adsorption configurations
as lattices of graphs, could help reduce the dimensionality of the
problem. However, these abstraction will only hold when the sur-
face itself is relatively rigid regardless of the adsorbate/adatoms
on it. In other words, the coupling between surface species cov-
erage/configuration and arrangement of surface atoms are neg-
ligible. This might be actually the case for some systems, but
it is quite dangerous to assume so universally, with the growing
collection of reports on non-trivial restructurings of surface and
clusters.29 For the latter, there exists no shortcut.

The picture further complicates when we allow the composition
to vary —- the system becomes a collection of many constant-
composition potential energy hyper-surfaces, each with different
dependence on external factors/conditions. Let us consider a sys-
tem where the number of X and Y atoms, nX and nY, can vary.
In the discrete compositional space, each grid point defined by
(nX,nY) entails a full PES.

The most straightforward approach to explore this chemical
space is the grid search (Fig. 4a) —- performing a canonical
global optimization on the corresponding constant-composition
PES of each (nX,nY). This approach would in theory yield the
most uniform sampling distribution over the whole chemical

space, however, it is extremely inefficient as the vast majority of
the (nX,nY) grids are in the irrelevant regime to the ambient or
operating condition of the catalyst. In addition, the compositional
space is infinite, and the initial definition of the grid (i.e., the up-
per and lower bounds) is arbitrary.

Stochastic sampling into random compositional grids can pro-
vide a bird’s-eye view of the GC free energy landscape at a very
low cost (Fig. 4b). For smaller systems, the one-shot samples may
sometimes even suffice as a (sub-)ensemble. However, for larger
systems, it is as inefficient as the grid search approach, because,
again, the majority of the grid points are catalytically irrelevant.

To guide the search towards those relevant regions in the com-
positional space, one can adopt the GC free energy Ω, within the
GC ensemble (µV T ), as the basis of the target function. The com-
position is then treated as an additional set of variables to opti-
mize. In a typical iterative GC global optimization search, the ini-
tial stochastic samples inform the searcher about the "promising"
regions, and the search direction is adaptively updated through-
out the search to sample denser and denser into the relevant min-
ima regions (Fig. 4c).

4.1 Calculation of the grand canonical free energy

Now we introduce the calculation of the main thermodynamic
metric used in GC global optimization, GC free energy Ω. In the
context of off-stoichiometric surface restructuring under a certain
reaction condition, we divide the atoms into two groups: group
A includes species (blue spheres in Figure 2) that the system can
freely exchange with the reservoir, such as adatoms and adsor-
bates; and group B are atoms in the substrate (relaxed and con-
strained regions in Figure 2). The whole system is labeled as AB.
The number of atoms in group B is constant, while those in the
group A can fluctuate. The GC free energy of a certain AB con-
figuration with respect to the group A species can then be written
as:

ΩA =UAB −T SAB −∑
A

µiNi −∑
B

µ jN j (1)

Because the number of group B atoms does not change, the fourth
term is a constant for all states in the ensemble and does not
influence the relative energetics. Here we take the bare surface
as a reference state for group B atoms and set value of ∑B µiNi as
the electronic energy of a bare surface slab, EB.

ΩA =UAB −T SAB −∑
A

µiNi −EB (2)

In a strict sense, the calculation of UAB and T SAB terms requires
vibrational analysis, which is unaffordable in the context of ab
initio global optimization involving tens of thousands of configu-
rations. Hence, we approximate the value of UAB −T SAB to the
electronic energy of the whole system, EAB. The lost thermal cor-
rection terms related to group A species are then absorbed into
the chemical potential as a new µ ′ term. The GC free energy with
respect to group A species can then be expressed as:

ΩA ≈ EAB −EB −∑
A
(µi −δEi)Ni = EAB −EB −∑

A
µ
′
i Ni (3)
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Here δE denotes the thermal correction terms to the free en-
ergy related to the group A species, including the zero point
energy, constant pressure heat capacity, and vibrational entropy.
Note that, for consideration of cost, we assume that any group
A species in any configuration has the same δE to avoid explicit
vibrational analysis for every configuration.

The µ is a function of reaction conditions such as temperature,
partial pressure, concentration, pH, and electrode potential. For
example, the corrected chemical potential of H, µ ′

H, can be ex-
pressed as:

µ
′
H =

1
2

Egas
H2

+δEgas
H − ln(10)kBT pH−|e|USHE −δEads

H (4)

The Egas
H2

is the electronic energy of an optimized gas phase H2

molecule. The δEgas can be obtained from vibrational analysis
of the gas phase H2 molecule and thermochemistry calculations.
pH effect is incorporated using the Nernst equation, and the elec-
trode potential effect is included using the computational hydro-
gen electrode model. The δEads

H can be obtained from vibrational
analysis and thermochemistry calculations on one or a set of rel-
evant H adsorption configurations.

Fig. 5 The recommended practice for constructing a well-sampled GC
ensemble. Multiple GC global optimizations are performed at a series
of chemical potentials (µn, n = 1,2,3, ...). The samples (sub-ensembles)
from multiple runs are then merged in to a total ensemble. If the sample
distribution is continuous over the stoichiometric space of interest, the
merged ensemble can be used in the interpolated µ range among the µn
values.

Note that, the calculation of µ for some elements or species
can be less straightforward for a lack of appropriate reference
state and/or the limitation of electronic structure method. The
calculated µ can be off by up to a few hundred meV from the
realistic condition, and in some cases, one may only be able to es-
timate a relevant range of µ for a specific species. In those cases,
it is advised to perform multiple searches at various µ values in
the relevant range, so as to gain a broader distribution of stoi-
chiometry. If there are prior experimental information on surface
composition or adsorbate coverage, one may also vary the µ on a
sub-ensemble (from one-shot sampling or an unfinished search)
and probe the response of the GM stoichiometry by using the en-
semble analysis functions provided by GOCIA (vide infra). This
will help narrow down the µ window relevant to the experiment.

Each GC global optimization run would yield likely a multi-
modal distribution of stoichiometries (Fig. 5, left panel). The
number of modes and the width of the distribution can be highly
system dependent, so it is recommended to always check the sto-
ichiometric distribution in the final ensemble merged from multi-
ple searches —- they should ideally join and have a more or less

uniform density over the stoichiometric space of interest (Fig. 5,
right panel). If there is any discontinuity, then more sampling
is deserved at its corresponding µ values. After sufficient sam-
pling, the final merged ensemble can be used for further analysis
at any µ within the interpolated range among the µ values used
in sampling .

4.2 Random structure generation

GOCIA offers three types of structure generation methods from a
base surface:
(i) Growth sampling. It first randomly selects an existing atom
from the relaxed region. A random unit vector will be gener-
ated to be the direction of the ”growth”. The adatom/adsorbate
is then aligned to the ”growth” direction and placed along it,
with the selected surface atom as the starting point. The dis-
tance between the adatom/adsorbate and the selected surface
atom is then sampled from the bond length distribution algorithm
(BLDA),30 based on the covalent bond radii of the two atoms that
should form the surface-adsorbate bond. This methods can gener-
ate new structures with the most reasonable interatomic distances
with high efficiency, but it may fail for some corner cases where
the growth direction is ambiguous, such as the interface between
a large cluster and the surface, or when the surface is already
quite crowded with adsorbates.
(ii) Box sampling. It directly makes attempts to place
adatoms/adsorbates into the sampling box with random posi-
tions and orientations. Since it is less dependent on the sur-
face structure, it works well on cases with irregular shapes and
morphology, non-directional and multi-center bonds, as well as
very crowded surfaces. Note that this method can also be used
to generate molecular packing structures, such as micro-solvation
slab,31 by applying connectivity constraints and expanding the
sampling box.
(iii) Graph sampling. This method constructs a connectivity graph
of the top surface layer, and then identify the atop, bridge, and
hollow sites using the NetworkX module.32 Adsorbates are then
added to the identified sites with random rotations. Note that
this method expects well-defined lattices and works the best for
exploring adsorption on unrestructured surfaces or just to enrich
the initial population.

In all three methods, the interatomic distances of attempted ge-
ometry are checked to avoid bad contacts. The user may also opt
to check the similarity of a new structure with already generated
structures to prevent duplicates in the very beginning. GOCIA
also offers many user-defined constraints such as bonds that must
(or must not) form, upper and lower limits of the coordination
number, whether the added adatom/adsorbate can incorporate
into the relaxed region or must stay above. If multiple types of
adatoms/adsorbates are to be added, the list can be randomly
shuffled before addition to prevent biases from the original or-
dering. The process iterates until all adatoms/adsorbates have
been added to the sampling box while satisfying all geometric
constraints.
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4.3 Pre-optimization & iterative optimization

To ensure an aggressive sampling, which underlies extensive and
delocalized exploration of the chemical space, oftentimes one
would allow some unphysical connectivity or interatomic dis-
tances to form in the random structure generation. This may
cause slow-down (or even failure) of the self-consistent field
(SCF) or force convergence to the initial steps in the local op-
timization.

A remedy to this problem is to perform a pre-optimization at
a lower level of theory before the structure is fed to the elec-
tronic structure calculator. GOCIA currently supports Hookean
and Lennard-Jones potential as the calculator for the preoptimiza-
tion. Any code can be interfaced to GOCIA as the pre-optimizer
via the ASE Calculator class.

To reduce the overall computational expense, we adopt a multi-
stage local optimization strategy (Figure 6, left), where each stage
has a different level of precision and convergence criteria, from
computationally cheaper to more expensive. In this way, we can
rationalize the structure in earlier and cheaper stages and bring
the structure closer to its local optimum, before the final stage of
higher precision for production.

Since electronic structure codes do not intrinsically constrain
connectivity (bonds are determined quantum mechanically),
some unwanted motifs or bonds may form during the local op-
timizations. GOCIA also offers an iterative local optimization
scheme which checks the geometry for undesired connectivity af-
ter each stage. If any unwanted substructure is detected, GOCIA
would modify the structure to meet the constraint and call for an-
other multi-stage local optimization. This again goes iteratively
until convergence of the connectivity (Figure 6, right). Currently,
GOCIA supports the following connectivity constraints: (1) make
sure where is no desorbed species that is not connected to the
slab; (2) remove any atom that is outside the sampling region; (3)
force all adsorbates to directly form bonds with the surface; (4)
remove fragments that are not intact; (5) prevent bonds between
fragments; (6) remove atoms that are not involved in a specific
type of bonds. Each connectivity constrained can be switched on
and off or modified easily. Users can also define their own con-
straints (geometric or compositional) inside the worker script to
archive the unwanted structure, terminate the job, or to modify
the structure and send it back for re-optimization.

4.4 Crossover, mutation, and selection

The crossover, mutation, and selection process largely follows the
original genetic algorithm proposed by ref33 and the gradient-
embedded genetic algorithm by ref12. Here we only highlight a
few notable modifications and additions in Figure 7.

In the crossover process, the parent structures are split-and-
spliced along the same cutting plane. In case of any bad atomic
contact, the one whose center is closer to the cutting plane would
be preserved, while the farther one removed. In case of poly-
atomic adsorbate, the bridle atom (via which the adsorbate is
supposed to bind to the substrate) would be viewed as the center
of the adsorbate.

In the mutation process, GOCIA offers the following operators:

1. Low precision
rationalize the structure

2. Mid precision
bring to close to GM

3. High precision
Final geom. & energy

Geom.
check

Adjust
geom.

Starting
geom.

pass
fail

Fig. 6 The workflow of the iterative multi-stage local optimization pro-
cess in GOCIA.

(i) adding an atom/fragment, (ii) deleting an atom/fragment;
(iii) moving a random atom/fragment to a random empty site;
(iv) rattling the surface atoms along random vectors drawn from
a normal distribution; (v) translating the buffer slab along x or
y axis by a fraction of the cell length; (vi) permuting a random
fraction of the buffer slab. If an offspring is too similar to its par-
ent, its mutation rate is raised to 100% to avoid recalculating the
same structure.

In the selection process, an over-mating penalty factor of
1+(Nmate)

−3/4 is multiplied to the grand canonical free energy-
based fitness factor. Here Nmate is the mating counts, and it penal-
izes the candidates that have mated too many times to diversify
the population. Similarity checks against the current population
are performed before adding any new candidate to remove dupli-
cates. Adopted mutation operations include: Upon the addition
of each offspring to the population, the candidate with the lowest
fitness is archived to maintain the population size.

4.5 Filtering and sorting the ensemble
It is important to avoid or prevent duplicate structures during
the global optimization or final analysis of the ensemble. GOCIA
adopts an adapted version of the similarity checker proposed by
ref34, which considers both energetic and structural aspects.

After duplicate removal, the unique structures in the ensemble
would be sorted and written to a new database which contains all
essential metadata from the search. The database file can be used
for statistical analysis or computing ensemble-average properties.
GOCIA would also report an oversampling ratio which reflects
how extensively the chemical space has been sampled. A low
oversampling ratio suggests that the sampling is far from exten-
sive, while a high oversampling ratio often means that the search
is extensive enough.

The evolution trajectory of a GCGA run, although carrying no
physical meaning in a strict sense, contains many useful informa-
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Fig. 7 Crossover of two parent structures to produce a child structure, with an illustration of possible mutation operations.

tion. GOCIA offers scripts that can be used to track the progress
of GCGA by plotting the Ω versus number of samples on-the-fly.
It can easily visualize the key new GM’s in the search history and
if there is a good sign of convergence. It can also inform if there
is any sign of significantly restructuring, usually characterized by
a apparent dive of the population’s Ω to a much lower value and
staying there, without needing to inspect each structure in the
trajectory.

GOCIA also stores the inheritance information of each candi-
date in the database. To be specific, the identity of each can-
didate’s parents and the type of mutation (if any) that it went
through. GOCIA offers scripts that can track the lineage of any
candidate and plot it family tree. This can inform putative path-
ways via which the restructured GM may arise from pristine struc-
tures, and which mutation operations are the most effective for
the system of study.

4.6 Ensemble analysis and beyond

The filter and sorted ensemble of unique minima structures well
covers the GM and relevant LMs to a specific condition defined
by the used µ. By merging multiple ensembles from searches
at different sets of µ (followed by filtering and sorting again), a
more complete GC ensemble is yielded and can be applied to all
interpolated µ values among the sampled ones.

GOCIA offers a GCE class for ab initio thermodynamic analysis
of the GC ensemble database. But before anything, an important
thing to check is the distribution of stoichiometries. The GCE class
offer functions that can cluster the minima into separate groups of
the same stoichiometry. By plotting statistical histograms, one can
learn about the density (counts) of samples for each stoichiome-
try, which informs whether the samples cover a continuous range
in the chemical space which is the prerequisite for further analysis
with interpolated µ values. By calculating the structural similarity
metric (the same as in Section 4.5) with respect to a few reference
structures, one can also group the samples by their restructuring
patterns and check their sampling density.

Within each group, it is straight forward to extract the low-
energy local minima (LELMs) as a relevant sub-ensemble, which

can be used for further refinement at a higher level of theory
or with additional treatments such as solvation and GCDFT. A
recommended energy cutoff relative to the GM of each group is
10kBT , however, one should always check if the relative energies
of the LELMs would reorder at a different level of theory, and
there may be a need to use a higher cutoff.

The GCE class offers functions for easy calculation of Ω and
Boltzmann population, p, of any states within the ensemble at a
specific µ or a series of µ values (Fig. 8a-c) by:

pi(µ) =
e−Ωi(µ)/kBT

∑
N
j e−Ω j(µ)/kBT

(5)

The µ-dependent populations can then be used to calculate the
GC ensemble average of a specific function X (Fig. 8d) by:

⟨X⟩=
N

∑
i

pi(µ)Fi (6)

Here X can be a single-value property (activation energy, adsor-
bate coverage, etc.) or an array (simulated microscopy image,
spectrum, etc.). In this way, we can obtain the ensemble aver-
aged X as a function of any reaction condition within the µ range
of sampling.

In the cases where the Boltzmann statistics fail, the ensemble
can still serve as an ab initio thermodynamics database for kinet-
ics simulations, as it well covers the relevant LELMs. The combi-
nation of global optimization and quasi-kinetic MC simulation has
been used to study the off-equilibrium structural evolution such
as Ostwald ripening of sub-nano clusters35 and surface roughen-
ing of Cu electrodes during CO2RR.24

5 Grand canonical density functional theory

GOCIA also supports GCDFT calculations using the surface
charging approach.36 Specifically, the potential-dependent grand
canonical electronic free energy, Ωel(φ), of a charged elec-
trode/electrolyte interface at a constant potential (i.e., a constant
µe), is approximated by an effective capacitor model with con-
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Fig. 8 A typical analysis of the grand canonical ensemble. (a) Computing
the grand canonical free energy Ω of all states within the ensemble with
respect to some elements at a given set of µ. Each bar represents a
unique state. (b) Computing Ω on a series of µ values to generate
a condition dependent phase diagram. Each line represents a unique
state. Slicing at the dotted line would yield panel a. (c) Calculate the
Boltzmann population pi of each state as a function of µ. (d) Use the
pi to calculate µ-dependent ensemble averaged property or spectra. All
steps shown here are straightforward by using the functions within the
GCE class of GOCIA.

stant capacitance:

Ωel(φ) = E(φ)−q(φ) ·Fφ ≈−1
2

Ceff(φ −φ0)
2 (7)

Here, E(φ) is the electronic energy of the surface under the a po-
tential φ that is calculated by referencing the Fermi level of the
system against the vacuum level. q(φ) is the surface charge differ-
ence referenced against the neutral system, and F is the Faraday
constant. φ0 is the potential of zero free charge (PZFC) of the sys-
tem, and Ceff is the effective capacitance of the interface. The lin-
earized Poisson-Boltzmann model as implemented in VASPsol37

is used to represented the polarizable electrolyte region. By vary-
ing the number of electrons (Nel) in the system, the surface is
charged/discharged, and the electrolyte is polarized. The cen-
ter of the empty region in the cell (vacuum filled with implicit
solvation) is then used as the reference energy level to track the
change in the Fermi level of the system. By sampling a series of
q (through varying Nel), we can obtain a data set of E(φ) and
their corresponding φ , which can then be used to fit the quadratic
relation (Eqn. 7).

We can then replace the electronic energy terms (EAB and EB in
Eqn. 3) with the resulted Ωel(φ). In this way, we can eventually
obtain the potential-dependent total GC free energy, Ωtot, with
respect to all adatoms/adsorbates as well as electrons:

Ωtot(φ)≈ Ωel,AB(φ)−Ωel,B(φ)−∑
A

µ
′
i Ni (8)

5.1 Slab symmetrization

Symmetrized slabs are recommended for constant-potential cal-
culations. GOCIA can construct a symmetrized slab using mirror

and center symmetry operations from an asymmetric slab. This
operation only requires a few structural parameters and can be
easily applied to a large number of structures within the same en-
semble. The user can also make customized operations that com-
bines multiple symmetry operations and atoms addition/removal
for slabs with unusual stacking or chirality.

5.2 Automated surface charging workflow

GOCIA provides a wrapper for easy surface charging calculations.
The user only needs to provide a list of numbers of fractional
electrons that needs to be added/removed from the system, and
GOCIA would calculate the corresponding Nel and make the input
files. A separate job sub-directory will be made for each Nel, and it
again can be run in a serial or parallel way. After jobs correspond-
ing to all Nel values converge, GOCIA can automatically parse the
output files, extract the key results, and then fit and report the Ωel

– φ relation. After all GCDFT calculations converge, GOCIA can
extract the fitting parameters and write them into the database
file for further data query and analysis (similar to in 4.5).

6 Comments & perspectives
We would like to note that GOCIA is not a black box, but rather
a open toolbox with many tunable parts and options. The user
should be prepared to make customization according to the na-
ture of the system to study, especially what to do with each in-
dividual component. Otherwise the sampling could go off to
unwanted configurational subspace and waste a lot of computa-
tional resource.

Future developments of the GOCIA would include: (i) Varying
the chemical potentials (corresponding to reaction conditions)
during the search. The ”scan rate” can be adaptive and depend
on how extensive the local chemical potential regime has been
sampled. This can be useful in identifying the critical condi-
tions where there is a switch in thermodynamic global minimum.
(ii) Symmetry-based operations and substructure representation,
which may accelerate the convergence for some systems where
the bonding is more directional and coordination patterns are
more well-defined. (iii) Motif-based operations, which can keep
track of energetically favorable structural motifs during the search
and include them in later structure generation steps, similar to
ref13 but covering periodic and multi-component cases. (iv) Sam-
pling of explicit solvation layers. Some key goals are determin-
ing electrolyte hydration structures, and building micro-solvation
models for surface species in a more adaptive and efficient way.

Machine learning (ML) models, especially the interatomic po-
tentials, have undergone impressive development over the recent
decade.38–41 However, in our opinion, there are still two obsta-
cles in applying them to global optimizations: (i) Overall cost.
The computational cost for generating the training data for mak-
ing a good model that well covers the corner cases would be com-
parable to, if not larger than, that of a direct global optimization
approach. (ii) Force accuracy. Unlike the case of MD, global opti-
mizations requires very accurate force (at the magnitude of a few
meV/Å) to ensure that the final ensemble contains only minima
states and exclude saddle points or other structures on flat local
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regions of the PES. We look forward to further advances in ML
model architectures that can enable more accurate force predic-
tions and surpass the limitations discussed afore. At that time,
GOCIA would still serve as a excellent generator of diverse and
off-equilibrium training dataset – or it can be incorporated as an
on-the-fly component into active learning workflows.

7 Conclusions
Herein, we report GOCIA, an open-source Python package for
general-purpose global optimization of various off-stoichiometric
restructuring systems. GOCIA has proven efficient and successful
in a wide range of applications involving adatoms, clusters, crys-
talline surfaces, amorphous over-layers, and/or adsorbate cover-
age.

This manuscript covers the main features of GOCIA, with de-
tailed descriptions of its code structure and the grand canonical
genetic algorithm. The relevant theories are explained, and other
key functionalities are introduced.

GOCIA is a highly versatile and extendable code, and it can be
potentially customized to study many other systems beyond het-
erogeneous catalysis, such as plasma chemistry, metallurgy, bat-
teries, environmental chemistry, and functional materials. GO-
CIA is an ongoing effort and is open to comments and contribu-
tions from researchers in all afore mentioned areas, and we hope
to continue the development and implementation of community-
needed features in the future.
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