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Abstract 
The leucine-rich repeat kinase 2 (LRRK2) is the most mutated gene in familial Parkinson’s 
disease, whose mutations lead to pathogenic hallmarks of the disease. The LRRK2 WDR domain 
is an understudied drug target for Parkinson’s disease with no known inhibitors prior to the first 
phase of the Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge. 
CACHE challenges are designed to attract state-of-the-art computational methods for both hit-
finding and lead optimization of small molecule inhibitors to challenging protein targets. A unique 
advantage of the CACHE challenge is that the predicted molecules are experimentally validated 
in-house. Here we report on our winning submission of experimentally confirmed LRRK2 WDR 
inhibitor molecules, predicted from thermodynamics integration (TI) calculations performed on 
only 672 compounds within a chemical space of 25,171 molecules. We used a free energy 
molecular dynamics (MD) -based active learning (AL) workflow to optimize our two previously 
confirmed hit molecules. We identified 8 experimentally verified novel inhibitors out of 35 tested 
(23% hit rate) with a maximum affinity increase of almost 35-fold. These results demonstrate the 
efficacy of free energy-based active learning workflow to quickly and efficiently explore large 
chemical spaces while minimizing the number and length of computational simulations. This 
workflow is widely applicable to the screening of any chemical space for small molecule analogs 
with increased affinity, subject to the general constraints of RBFE calculations. The mean 
absolute error of TI MD calculations was 1.30 kcal/mol with respect to measured KD of hit 
compounds. 

Significance Statement 
Mutations in the LRRK2 gene are the most common cause of Parkinson’s disease. The WDR 
domain of the LRRK2 protein is a promising but underexplored drug target. In the CACHE 
Challenge #1, we used advanced computational and machine learning (ML) methods to discover 
small molecules WRD inhibitors. Our method, which combines alchemical free energy molecular 
dynamics simulations and active learning, helped us select effective binders from a pool of 5.5 
billion molecules. We experimentally evaluated binding affinity of eight new compounds, with one 
showing a 35-fold improvement in binding affinity compared to initial hit. This approach 
demonstrates how computational methods can be efficient for the in silico design of small-
molecule binders of a challenging protein target.  
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1. Introduction 
The Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge1 is a 
series of scientific competitions that benchmark computational approaches to identify small 
molecules capable of binding to specific molecular targets with the goal of stimulating in silico 
drug discovery for rare and understudied medicinally important targets. The objective of the 
CACHE Challenge #1 was to find small molecule binders to the WDR domain of the leucine-rich 
repeat kinase 2 (LRRK2), a multi-domain protein and a Parkinson’s Disease (PD) target. LRRK2 
is the most mutated protein in familial PD and its mutation leads to pathogenic hallmarks of the 
disease.2-4 While inhibitors and PROTACs targeting the kinase domain of LRRK2 have been 
reported,5-7 no ligand so far targets the juxtaposed WDR domain of the protein,8 even though 
WDR domains have proved druggable in other proteins.9 A recurrent pathogenic mutation maps 
at the interface of the LRRK2 WDR dimer, highlighting the disease-relevance of this domain.8 
CACHE Challenge #1 included two rounds of prediction and experimental confirmation, allowing 
participants to incorporate insights gained from the first round into their predictions for the second 
round. The first phase focused on hit identification by in silico screening of commercially available 
libraries10, 11 followed by experimental testing, yielding five confirmed hits from our selection12. 

Here we report our winning submission on the “round 2” optimization study of two LRRK2 WDR 
domain binders. These ligands, Hit 1 and Hit 2 (Fig. 1), had the highest experimental binding 
affinities among five initial validated hits from the “round 1”. The computational pipeline included 
the selection from a commercial library of ligands sharing a common substructure with our hits, 
followed by docking and optimized molecular dynamics (MD) thermodynamic integration (TI) 
simulations,13 guided by active learning (AL),14 to compute the RBFE of compounds to the target. 
We screened ~5.5 B commercially available compounds, selected ~25 K ligands for AL-RBFE 
calculations, and computed RBFEs for 672 ligands. Based on the computed RBFEs 75 molecules 
were selected for experimental validation, and 35 were further tested experimentally. Binding of 8 
ligands to the WDR domain was confirmed by surface plasmon resonance (SPR) and 19F nuclear 
magnetic resonance (NMR) for fluorinated molecules. 

These findings pave the road for the next steps towards the discovery of high affinity selective 
compounds targeting the WDR40 domain of LRRK2. Our compound selection received the 
highest score from an independent committee of biophysics and medicinal chemistry industry 
experts in the CACHE #1 competition.15 

  

https://doi.org/10.26434/chemrxiv-2024-jv0rx ORCID: https://orcid.org/0000-0001-7581-8497 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-jv0rx
https://orcid.org/0000-0001-7581-8497
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

4 

 

2. Results and Discussion 
2.1 Computational pipeline 

In this study, we developed a comprehensive pipeline for hit optimization, leveraging our active 
learning (AL) workflow for relative binding free energy (RBFE) calculations14 (see Methods 
section). The Enamine REAL database10 was used for virtual screening, which comprised 5.5 
billion small-molecule compounds at the start of this work. The first step of the virtual screening 
protocol was to filter this set using two distinct SMARTS patterns for each hit (Fig. 2B): the first 
pattern contained Murcko scaffolds and the oxamide group, and the second pattern was 
comprised solely of Murcko scaffolds derived from the initial hits. This resulted in two sets of 
molecules: i) a set of the closest analogs and ii) a set of more distant analogs, further termed 
“general analogs”. For the closest analogs (250 molecules), we conducted template docking to 
the MD representative structures of the protein-ligand complexes associated with Hit 1 and Hit 2. 
Thus, 214 docked molecules (46 analogs of the Hit 1, and 168 analogs of the Hit 2) were selected 
for RBFE MD simulations. To improve diversity within the closest analogs of Hit 1, we further 
performed a nearest neighbor (NN) search among general analogs to identify molecules with high 
similarities to the top 9 molecules exhibiting the lowest computed RBFEs. These identified 
molecules were subsequently incorporated into the set of the closest analogs, with docking and 
RBFE calculations performed in an analogous manner to the initial batch. The RBFEs were 
converted to ABFEs (see Methods section for details). This set will be referred to as the pre-AL 
set.  

For general analogs (~340,000 molecules), we first performed docking without a template and 
filtered by docking score. Subsequently, we performed docking with a template using the same 
protocol as we employed for the closest analogs. We next conducted additional filtering of the 
docked ligands based on docking score and RMSD with respect to the template. The resulting set 
comprised approximately ~16,000 analogs for Hit 1 and ~9,000 analogs for Hit 2. This set 
(~25,000 molecules) is referred to as the AL set (See Fig. 2). 

The theoretical background of the AL as well as the detailed overview of the AL-RBFE workflow 
are provided in our previous work.14 Briefly, the AL-RBFE workflow is an iterative procedure 
where at each iteration, molecules with computed MD TI RBFE are used to train an ML model 
predicting the RBFE of a ligand based on its chemical structure. After the ML model is trained, it 
predicts the RBFE for all the molecules from the dataset, and uses these predictions to select 
molecules for the next round of RBFE calculations with MD TI simulations. In this work, we used 
ABFE instead of RBFE to allow for screening analogs of both hits with the same ML model. 
Importantly, we still performed MD TI simulations to compute RBFEs, not ABFEs, after which we 
converted RBFEs to ABFEs (see Methods for details) and then used this data for training the ML 
model. 

2.2 Perturbation map for relative binding free energy calculations 

The perturbation map for MD TI RBFE calculations for the Hit 1 analogs is presented in Fig. S1. 
For all molecules from the pre-AL set, RBFE calculations were performed using Hit 1 as a 
reference ligand. In contrast, the RBFE calculations of the general analogs were performed using 
the ligand X as a reference ligand. Ligand X was derived from the Hit 1 analog A which had the 
lowest ABFE among the molecules from the pre-AL set (see Fig. S1). Ligand X was utilized as a 
reference ligand for the general analogs due to difficulties in preparing initial structures for RBFE 
calculations. Specifically, when trying to compute RBFEs for some molecules from the AL-1 set, 
we found that the initial conformation of these substituents was significantly distorted at the MD TI 
input structures. The reason for this distortion was that substituents at the 5 position of the 
1,2,3,4‐tetrahydroisoquinoline were forced to be aligned with the methyloxamide group of the 
reference ligand (Hit 1) when preparing the system for MD TI RBFE simulations (see Methods 
section). This artificial alignment may bias sampling of this ligand and provide unreliable RBFEs. 
Moreover, in some cases, this led to the appearance of clashes between the ligand and the 
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protein with a subsequent failure of MD simulations. To address this challenge, we created ligand 
X from ligand A by substituting a methyloxamide group with hydrogen. Using ligand X as a 
reference for RBFE calculations allowed the substituents of challenging ligands to preserve their 
initial conformations. At the same time, it also allowed for more optimal RBFE calculations for 
ligands that do not have substituents at the 5 position of the 1,2,3,4‐tetrahydroisoquinoline. While 
using Hit 1 as a reference ligand in these cases would require the complete annihilation of the 
methyloxamide group, using ligand X as a reference avoids this process and can thus increase 
the convergence of calculations. 

2.3 Results of active learning guided relative binding free energy calculations 

We performed eight iterations of the AL-RBFE workflow. The pre-AL set was used as a training 
set to build the initial ligand ABFE predicting ML model in the first iteration. For the next seven AL 
iterations (AL-1 – AL-7), molecules for RBFE calculations were selected by an ML model (see 
Table S2 for number of compounds selected at each AL iteration). Since Hit 1 had higher binding 
affinity than Hit 2, iterations AL-1 – AL-6 were performed only for the analogs of Hit 1. The last 
iteration AL-7 included both Hit 1 and Hit 2 analogs, with the aim of enriching predicted hits with 
analogs of Hit 2. After each round of MD TI simulations, computed RBFEs were converted to 
ABFEs (see Methods for details).  

Results of all iterations of the AL-RBFE workflow are presented in Fig. 3 and Table S2. The 
ABFEs were computed for 674 molecules in total (493 and 181 analogs of Hit 1 and Hit 2 
respectively). Overall, we identified 102 analogs with computed ABFE lower than the initial hits 
(87 and 15 analogs for Hit 1 and Hit 2, respectively). For Hit 1, ca. 80% of the analogs with 
improved ABFE were selected by the AL (70 of 87 molecules). Improved analogs were identified 
at each AL iteration. The share of Hit 1 analogs with improved ABFE among all computed Hit 1 
analogs were more than 1.5 times higher for the AL sets compared to the pre-AL sets: ca. 20% 
versus 13%, respectively. These results demonstrate the effectiveness of utilizing AL to guide 
RBFE calculations. 

For more insight into the performance of the AL-RBFE workflow, we visualized the chemical 
space of all analogs (pre-AL and AL sets together) and molecules with computed ABFEs using t-
SNE projections (Fig. 4). The t-SNE plots were built for each individual AL iteration (Fig. 4A) as 
well as the results of all iterations together (Fig. 4B). We can see that the computed molecules of 
the pre-AL set are distributed over different regions of chemical space instead of being localized 
at the same region, indicating a certain structural diversity among molecules of this set. The same 
trend is maintained during the rest of the iterations: AL selects molecules from different regions of 
the chemical space, both from the regions screened at the previous iterations and those 
unexplored at the preceding stages. Therefore, the use of AL to guide molecule selection 
increased the diversity of the ligands with improved ABFE. 

2.4 Experimentally validated hits 

The selection of molecules for the submission to the experimental assays was done according to 
the challenge budget (75 molecules or $10,000, whatever comes first) as follows: 70 molecules 
were greedily selected solely based on the most negative computed ΔG (67 derivatives of Hit 1 
and 3 derivatives of Hit 2), and the remaining 5 molecules were selected across Hit 2 derivatives 
with negative ΔG yet chemically diverse representatives. The selected 75 molecules were quoted 
to the Enamine chemical vendor, 35 of which were procured and tested experimentally by SPR at 
50 µM (See Methods, Experimental Methods, Surface plasmon resonance). Eleven hit 
candidates were advanced to dose response experiments, eight of which had measurable 
dissociation constant KD better than 150 µM and acceptable SPR sensorgrams (Chi2 < 10% 
Rmax; T(KD) > 1), with KD values ranging from 14 µM to 142 µM (Fig. 5, Table S1). As some of 
the hits were fluorinated molecules, we used 19F NMR as an orthogonal assay to confirm that 
binding was not assay-specific (Fig. 5). We verified in a dynamic light scattering assay that 
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compounds were soluble and did not aggregate at relevant concentrations (Fig. 5, Table S1).16 
Therefore, the hit rate for the second round of the CACHE challenge was 23%. CACHE typically 
discards SPR hits with less than 30% binding. Compounds O1, O2 and O3 displayed 18%, 24% 
and 28% binding respectively, which is under this cut-off, but are part of a chemical series with 
confirmed binding to LRRK2 and have acceptable quality descriptors (Chi2 < 10% Rmax and 
T(KD)>1). They are therefore included in this SAR, even though low binding by SPR and absence 
of binding signal by 19F NMR in the case of O2 indicate some liability, the source of which is 
unclear. 

The binding free energies of O1-O8 hits are presented in Table S3. For two hits (O4, O6), binding 
was additionally confirmed using 19F nuclear magnetic resonance (NMR). The experimental 
dissociation constants (Table S3, Table S1) were ranging from 14 µM (though this compound 
showed on 18% binding by SPR) to 142 µM (the corresponding ABFE range is from -4.9 to -6.6 
kcal/mol) with three stronger binders (KD = 14-19.3 µM), two moderate binders (Kd = 65.3-67.8 
µM), and four weak binders (KD =108-249 µM). The mean absolute error between computed and 
experimental ABFE for hit compounds was 1.30 kcal/mol. 

All optimized hits are analogs of Hit 1 and include an indole ring connected to the piperidine ring 
via a carbonyl bridge. Four hits (O6, O5, O7, O4) also contain a benzene ring joined with the 
piperidine ring forming a 1,2,3,4‐tetrahydroisoquinoline system. Three out of these five hits (O6, 
O5, O7) have the same modification (the terminal amide of the oxamide group is substituted with 
the methoxymethyl group) and differ only by substituents in the indole ring. Hit O7 was from the 
pre-AL set, and two other hits (O6, O5) were selected by AL at the first iteration (AL-1). While 
computed ABFEs were comparable for all four compounds (within 0.2 kcal/mol), the experimental 
ABFEs varied more (within 0.8 kcal/mol), with hit O5 showing the strongest binding affinity among 
these hits. Compound O4 was different from the other hits: the methyloxamide was substituted 
with an oxazolidinone ring. This is the only optimized hit that contains three-ring systems. Despite 
having the highest computed ABFE, it showed a moderate experimental binding affinity with KD of 
65.3 µM. 

In four other compounds (O8, O2, O1, O3) the substituted benzene ring of 1,2,3,4‐
tetrahydroisoquinoline system is replaced with substituted six-membered heterocyclic aromatic 
cycles. Hits O8 and O2 contain 2-pyridone-carboxamide, compound O1 contains N-
propylpyridazin‐3‐one and Hit O3 contains a pyridine substituted with a methyl carboxylate group. 
Compounds O8 and O2 were selected at the last two iterations of the AL workflow and had 
ABFEs significantly lower compared to the rest of the rest of the analogs. These analogs differ 
from each other only in the substituents on the indole ring; however, while Hit O2 showed the 
second strongest binding affinity among all hits with a KD of 19 µM, Hit O8 was a considerably 
weaker binder with a KD of 142 µM.  

Hits O1 and O5, selected at the fourth AL iteration (the AL-4 set), had the same substituents in 
the indole ring but differed in the substituted ring system (N-propylpyridazin‐3‐one versus methyl 
pyridine carboxylate). Despite the structural differences, both the computed and the experimental 
ABFE of these hits were relatively close to each other (less than 0.4 kcal/mol difference). Hit O1 
was the strongest binder among all hits with a KD of 14 µM and Hit O3 was the third strongest 
binder with a KD of 19.3 µM. Importantly, all three strongest binders (O1, O2, O3) belonged to the 
set of general analogs of Hit 1 and had relatively diverse structures. 

3. Conclusions 
Recent advances in molecular modeling and machine learning technologies allow for the 
development of novel, previously impossible approaches. This paper illustrates how such novel 
combinations can be superior to traditional in silico drug design. Here, we utilized accurate 
physics-based molecular simulations with ML methods to achieve superior ranking power even 
on a challenging target with limited prior information. 
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CACHE is a public-private initiative that aims to evaluate and improve computational approaches 
for identifying small-molecule binders for molecular targets of pharmaceutical importance.1 To 
date, six CACHE challenges have been organized.17 Each CACHE challenge includes two rounds 
of predictions, thus allowing participants to leverage insights gained from the initial rounds for 
subsequent design efforts. In the CACHE Challenge #1,15 participants were asked to predict 
small molecules binding to the central cavity of the WDR domain of LRRK2. There were no 
known small molecule compounds binding the LRRK2 WDR domain at the start of the challenge. 
Compounds submitted by participants at the first phase and experimentally confirmed with 
binding assays were selected as starting points for optimization at the second phase. At this 
stage, participants were asked to select a new set of molecules for experimental characterization. 

In this work, we developed a computational pipeline for hit optimization and applied it to predict 
molecules with improved binding affinity for the second round of the CACHE Challenge #1. Two 
small-molecule binders of the LRRK2 WDR domain, experimentally confirmed in the first phase of 
the challenge, were selected as parent molecules for the in silico screening of commercially 
available analogs. The pipeline integrated well-established computational methods such as 
chemical substructure searching and molecular docking with our recently developed workflow for 
AL-guided MD TI RBFE calculations and our TI simulation time optimization algorithm. 
Substructure searching with subsequent docking and filtering of ca. 5.5B commercially available 
small-molecule compounds allowed us to acquire a set of ca. 25K analogs of the initial hits. 
Leveraging AL-RBFE workflow with optimized simulations enabled an efficient exploration of this 
set for analogs with improved predicted binding affinity. We identified 102 predicted hits by 
computing MD TI RBFE for only 672 analogs. A set of 75 predicted hits, selected based on 
computed MD TI RBFE, was submitted for the experimental testing. Amongst the 35 tested, 
binding assays revealed 8 hits, 3 of which had more than 20-fold improvement in binding affinity 
compared to the initial hit. While the binding affinity of the molecules was only in the mid 
micromolar range, their confirmed binding in an orthogonal assay, the selectivity of the primary 
hits against an unrelated target,12, 15 and their experimentally verified solubility and absence of 
aggregation at high concentration represent a solid foundation for further optimization. 

Thus, our results for the first and second rounds of CACHE Challenge #1 demonstrated that the 
proposed approach is efficient for the in silico design of small-molecule binders of a challenging 
protein target. Starting with a known structure of the apo protein only, we were able to first identify 
5 binders with different scaffolds using Deep Docking in combination with MD TI ABFE 
calculations,12 and then significantly improve the binding affinity of one of the initial hits using AL-
RBFE workflow. We believe that this approach has a promising potential for streamlining and 
accelerating the early stages of drug discovery. 

4. Methods 
4.1 Database Screening and Library Preparation 

The computational pipeline included the virtual screening of two sets: the PreAL set, which 
contained the closest analogs of Hits 1 and 2; and the AL set, which contained general analogs of 
Hits 1 and 2 (see Fig. 2, A). Both the PreAl and the AL sets were then used for AL-RBFE 
calculations. The individual steps of our pipeline are described below. 

4.1.1 Virtual Screening for closest analogs 

4.1.1.1 SMARTS Search Stage 

The Enamine REAL (release as of Oct 2022) database,10 which contained 5.5B enumerated 
compounds, was searched for closest analogs of Hits 1 and 2. This search was performed using 
SMARTS patterns (see Fig. 2B, Closest analogs) of Hits 1 and 2 substructures via the OpenEye 
Chem Toolkit.18 The SMARTS patterns were based on the chemical structures of the hits but with 
allowance for any heavy atom substitution while preserving the aromaticity and pharmacophoric 
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groups (oxamide, peptide bond, aromatic nitrogen). This search resulted in 58 and 192 closest 
analogs for Hits 1 and 2, respectively. MD TI RBFEs were computed for all molecules from these 
libraries. 

4.1.1.2 Nearest neighbors search (NNS) 

All Hit 1 analogs with computed negative RBFE at the time of selection were used as query 
molecules against a set of Hit 1 general analogs (Fig. 2A). or each query molecule, 3 Nearest 
Neighbors (based on the Tanimoto distance on ECFP6-2048 bit fingerprint) were acquired from 
post-Template Docking library of Hit 1 analogs (n=19,451) (Fig. 2C), forming a list of 27additional 
unique molecules for RBFE calculations. 

4.1.1.3 Curated Selection (CS) 

Curated selection (CS, see Fig. 2) was performed after RBFE calculations for the initial set of 
molecules selected by the SMARTS search. Ligand A, a Hit 1 analog with the lowest computed 
RBFE (Fig. S1), was used as the parent compound. An additional set of analogs of Ligand A was 
selected based on the visual inspection of general analogs of Hit 1 and MD TI RBFE. All selected 
molecules had a 4,5-dimethylindole ring but differed in their substituents on the 1,2,3,4-
tetrahydroisoquinoline ring. This resulted in an additional set of 49 molecules for MD TI RBFE 
calculations. 

4.1.1.4 Pre-AL set 

The Pre-AL set (Fig. 2) included all closest analogs of Hits 1 and 2 obtained from the SMARTS 
search, NNS and CS stages with computed MD TI RBFE. In total, the Pre-AL set included 302 
molecules: 134 analogs of Hit 1 and 168 analogs of Hit 2. 

4.1.2 Virtual Screening for general analogs 

4.1.2.1 SMARTS Search Stage 

The Enamine REAL (release as of Oct 2022) database,10 containing ~5.5B enumerated 
compounds, was searched for general analogs of Hits 1 and 2. The general analogs search was 
performed using the SMARTS pattern (see Fig. 2B, General analogs) of Hits 1 and 2 
substructures via the OpenEye Chem Toolkit.18 The SMARTS patterns were based on Murko 
scaffolds of Hit 1 and Hit 2 but allowed any heavy atom substitution while preserving the 
aromaticity pattern. This formed libraries for the Docking Stage of 154,204 and 187,077 
molecules for Hit 1 and Hit 2 general analogs, respectively. 

4.1.2.2 Template-free Docking Stage 

The selected ligands were docked to the minimized crystal structure of the LRRK2 WDR domain8 
(PDB ID: 6DLO) using Glide SP.19 Three docked poses with the best docking scores were saved 
for each molecule. The protein structure prepared for docking and the parameters of Glide SP 
were the same as in the first phase of the CACHE Challenge #1.12 The docked molecules were 
filtered individually for Hit 1 and Hit 2 derivatives based on the docking score and the root-mean-
square deviation of the indole ring-like substructure of the docked pose with respect to the indole 
ring of the MD representative pose (see Molecular Dynamics subsection for details) of the 
corresponding hit (RMSDindole). The filtering included the following steps: 1) for each molecule, the 
best pose with minimal RMSDindole with respect to the MD representative pose was selected; 2) 
molecules satisfying RMSDindole ≤ 5 Å and Glide docking score ≤ -6 were kept. Thus, we 
generated libraries for further template docking of 22,428 and 26,667 molecules for Hits 1 and 2, 
respectively. 

4.1.2.3 Template Docking Stage 
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The MD representative structures of the LRRK2 WDR domain in complex with Hit 1 and Hit 2 
were prepared for template docking using OpenEye Make Receptor program (version 4.0.0.0). 
The Hit 1 and Hit 2 were set as templates and no constraints were added. 3D conformers were 
generated from SMILES using OpenEye OMEGA (version 4.1.0.0). A maximum number of 
conformers for a single molecule of 2000 and a minimum root mean square deviation (RMSD) of 
0.2 Å were used. Template docking was performed using OpenEye HYBRID (version 4.0.0.0). 
For each molecule, the 100 best poses were stored in the output data. All other parameters were 
set by default. 

The docked molecules were filtered based on the docking score and RMSD of the generalized 
Murcko scaffold of a molecule with respect to the corresponding substructure of Hit 1 or Hit 2 MD 
representative pose (RMSDMurcko). The filtering included the following steps: 1) for each molecule, 
one pose with minimal RMSDMurcko was selected and 2) molecules satisfying RMSDMurcko ≤ 4 Å, 
OpenEye Hybrid docking score ≤ -6, and OpenEye Hybrid docking score component for clash ≤ 
0.5 were kept. This formed libraries of 19,451 and 10,070 molecules for Hit 1 and Hit 2 
derivatives, respectively. The libraries were additionally filtered from duplicates based on isomeric 
SMILES and for charged molecules. This formed the final library of 16,101 and 9,070 molecules 
for Hit 1 and Hit 2 derivatives, 25,171 molecules in total. This library will be referred to as the AL 
set. 

4.2 Alchemical Relative Binding Free Energy Calculations 

4.2.1 Molecular Dynamics 

The docked structures of LRRK2 WDR domain in complex with Hit 1 and Hit 2 obtained at the 
CACHE Challenge #1 phase 112 were used as the initial structures for MD simulations. The 
protein-ligand complexes were solvated in a rectangular water box with a minimum distance 
between the edges of the box and the solute of 12 Å. The protein and water were parameterized 
using the FF14SB20 forcefield and the TIP3P21 model, respectively. Ligand atom parameters were 
obtained using GAFF222 (version 2.11), and ligand atomic charges were derived using the AM1-
BCC23, 24 method. GPU-accelerated MD simulations were performed using the pmemd.cuda 
module of AMBER 20.25-27 The simulation protocol included the following steps: 1) 2000 steps of 
minimization with the gradient descent method; 2) 100 ps of heating from 1 K to 298 K in the NVT 
ensemble; 3) 300 ps of density equilibration in the NPT ensemble; 4) 100 ns of production 
simulation in NVT. Harmonic RMSD restraints were imposed on heavy atoms of the protein, 
ligand, and three water molecules located in the binding site during minimization and heating and 
were gradually removed during density equilibration. No restraints were used during production 
simulations. The first 10 ns of the production MD simulation were discarded. The average 
structure was obtained from the last 90 ns of the simulation by averaging coordinates of ligand 
heavy atoms and protein Cα atoms. A trajectory frame with the minimum RMSD of the ligand 
heavy atoms and protein Cα atoms with respect to the average structure was selected as a 
representative structure. 

4.2.2 Ligand Preparation and Parameterization 

Atom mapping between reference and target molecules was based on their corresponding 
docking poses: maximum common substructures with a maximum distance of 1.1Å between the 
mapped heavy atoms were obtained via RDKit. Topologies and input coordinates for the protein-
ligand complex and the solvated ligand system were generated with the FESetup28 v.1.2.1 
software package using the generated atom mappings and MD representative structures of the 
protein-ligand complex for Hit 1 and Hit 2 as the input data. The ligand was parameterized with 
the GAFF2 force field with charges assigned via the AM1-BCC charge model. The protein was 
parameterized with the FF14SB force field, and the TIP3P water model was employed. The 
protein-ligand complex and solvated ligand box sizes employed were the same as in the 
calculations for the CACHE Challenge #1 phase 1.12 
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4.2.3 TI Simulations 

A λ-schedule following the 9-point Gaussian quadrature was employed for all simulations with 
softcore potentials. Each λ-window was equilibrated with 2000 minimization steps, followed by 50 
ps of heating in the NVT ensemble and 300 ps of density equilibration in the NPT ensemble. On-
the-fly optimization of computational resources13 was employed for all production simulations to 
minimize the computational cost of simulations. This method utilizes a short initial simulation 
followed by iterative automatic equilibration detection29 and convergence testing of the two 
chronological halves of the coupling potential derivative time series via the Jensen-Shannon 
distance, with additional simulations performed if the convergence criteria are not met. For most 
simulations, an initial simulation length of 2.5 ns with additional simulation lengths of 0.5 ns and a 
Jensen-Shannon convergence criterion of 0.1 was employed. For several simulations performed 
at the last AL iteration, an initial simulation length of 1.0 and additional simulation lengths of 0.25 
were utilized to accelerate the simulations further. When additional resources were available, 
multiple replicates of various transformations were performed, prioritizing those with an initial 
negative calculation RBFE. When multiple replicates of a transformation were performed, the 
ΔΔG was calculated via an ensemble method in which each gradient timeseries of a given λ-
window was individually equilibrated and de-correlated, and then all values were combined to 
determine overall gradient time series mean values. 

4.3 AL Library formation: ML-guided selection 

Molecules for MD TI simulations were iteratively sampled from the AL set based on the 
recommendation of the ML model, which utilized the Active Learning approach in a similar 
manner to our previous work.14 On each iteration of the AL cycle, ML models are trained to 
predict ABFE via the AutoML approach. The highest performing model is then used to screen the 
AL set for molecules predicted to have superior ABFE. Computed RBFEs of molecules from 
PreAL set were converted to ABFEs and used to initialize the AL-RBFE workflow. 

4.3.1 Molecular Representations and ML algorithms 

The following featurization techniques were used: 1) RDKit molecular fingerprints (Path 
Fingerprints with path length 7 and binary vector length 2048, e.g. RDKFP7_2048) using RDKit, 
2) Morgan fingerprints (Extended-Connectivity Fingerprints with radius 3 and binary vector length 
2048, e.g. ECFP6_2048) using RDKit, 3) 3D molecular fingerprints E3FP with default 
parameters30, 4) pharmacophore fingerprint (2D) with binary vector length 1024 (ph4fp2D_1024) 
using RDKit, and 5) pharmacophore fingerprint (3D) with binary vector length 1024 
(ph4fp3D_1024) using RDKit. 

The following ML algorithms implemented in the scikit-learn library31 were used: 1) Linear 
Regression, 2) Random Forest, and 3) Gaussian Process Regression with the Tanimoto kernel. 
An inner loop 5-fold-cross validation grid search was utilized for optimal hyperparameter 
selection. 

4.3.2 Machine Learning Modelling 

For each iteration of the AL cycle, ML models were trained on all molecules with available ABFEs 
(RBFE converted to ABFE) as the target variable. On each iteration, the ML model (combination 
of molecular representation and algorithm) with the highest R2 was selected based on leave-one-
out cross validation (LOOCV) across combinations of molecular representations and ML 
algorithms. After the selection of algorithm and molecular representation, the model was refitted 
on the entirety of the data; however, for AL iteration 1-6, ML models were trained only on Hit 1 
derivatives and the selected model was used to screen only the Hit 1 derivatives of the AL set 
(n=16,101). For AL iteration 7, ML models were trained on Hit 1 and Hit 2 derivatives and the 
selected model was used to screen the entirety of the AL set. The selection of molecules was 
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performed greedily, harvesting the compounds with the most negative ML-predicted ABFE. 
Details of AL at each iteration are provided in Table S4. 

4.4 Selection of molecules for experimental validation 

Molecules were selected for experimental validation according to the challenge budget (75 
molecules or $10,000, whatever comes first). 70 molecules were selected solely based on the 
most negative computed ABFE (67 derivatives of Hit 1 and 3 derivatives of Hit 2), and the 
remaining 5 molecules were selected across Hit 2 derivatives with negative ABFE but biased 
towards chemical diversity. The selected 75 molecules were quoted by the Enamine chemical 
vendor. All 75 quoted molecules passed initial vendor quality control and satisfied the challenge 
budget. 

4.5 Experimental methods 

4.5.1 Protein expression and purification 

DNA fragments encoding LRRK2 residues (T2124- E2527) and (T2141- E2527) were cloned into 
pFastBac HTA donor plasmid downstream of a His-tag or into pFBD-BirA expression vector, a 
derivative of Invitrogen pFastBac Dual vector for in-cell biotinylation,32 respectively. The resulting 
plasmid was transformed into DH10Bac™ Competent E. coli (Invitrogen) to obtain recombinant 
viral bacmid DNA, followed by a baculovirus generation for protein production in Sf9 insect cells. 
For in-cell biotinylation, D-biotin was added at the final concentration of 10 μg/mL during protein 
expression. The cells were harvested by centrifugation (2500 rpm for 10 mins at 10°C), 72-96 
hours post-infection with well-developed signs of infections and 70-80 % viability as previously 
described.33 Harvested cells were resuspended in 20mM Tris-HCl, pH 7.5, 500mM NaCl, 5mM 
imidazole and 5% glycerol, 1X protease inhibitor cocktail (100 X protease inhibitor stock in 70% 
ethanol (0.25mg/ml Aprotinin, 0.25mg/ml Leupeptin, 0.25mg/ml Pepstatin A and 0.25mg/ml E-64) 
or Pierce™ Protease Inhibitor Mini Tablets, EDTA-free. The cells were lysed chemically by 
addition of 1mM PMSF, 1mM TCEP, 0.5% NP40 and benzonase (in-house) followed by 
sonication at frequency of 7.0 (5” on/7” off) for 5 min (Sonicator 3000, Misoni). The crude extract 
was clarified by high-speed centrifugation (60 min at 14000 rpm at 10˚C) by Beckman Coulter 
centrifuge. The clarified lysate was loaded onto open columns containing pre-equilibrated Ni-NTA 
resin (Sigma Aldrich). The column was washed and eluted by running 20mM Tris-HCl, pH 7.5, 
500mM NaCl, 5% glycerol, containing 5mM, 15mM and 250mM imidazole, respectively. The 
eluted proteins were then supplemented with 2mM TCEP. The His- and Avi-tagged protein was 
then further purified by size-exclusion chromatography on a Superdex200 16/600 using an ÄKTA 
Pure (Cytiva) after the column was equilibrated with 50mM Tris-HCl pH 7.5, 300mM NaCl, 2mM 
TCEP. 

For the His-tagged protein, the tag was cleaved after elution using tobacco etch virus protease 
(TEV) overnight while the protein was dialyzed against 20mM Tris-HCl, pH 7.4, containing 
300mM NaCl, 2mM TCEP. The protein was then loaded on equilibrated Ni-NTA resin for reverse 
affinity to remove His-tagged TEV enzyme and the uncut His-tagged proteins. The purity and size 
of the cut protein was confirmed on SDS-PAGE gel and mass spectrometry, respectively and the 
pure protein was concentrated and flash frozen. 

4.5.2 Surface plasmon resonance 

The binding affinity of compounds was assessed by Surface plasmon resonance (SPR, Biacore™ 
8K, Cytiva Inc.) at 25 °C. Biotinylated LRRK2 (2141-2527aa - https://www.addgene.org/210899/) 
was captured onto flow cells of a streptavidin-conjugated SA chip at approximately 5,000 
response units (RU) (according to manufacturer's protocol). Compounds were dissolved in 100% 
DMSO (30 mM stock) and diluted to 10 mM before serial dilutions were prepared in 100% DMSO 
(dilution factor of 0.33 was used to yield 5 concentrations). For SPR analysis, serially titrated 
compound was diluted 1:50 in HBS–buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 0.01% Tween-
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20) to a final concentration of 2% DMSO. Experiments were performed using the same buffer 
containing 2% DMSO and multi-cycle kinetics with a 60 s contact time and a dissociation time of 
120 s at a flow rate of 40 μL/min. Kinetic curve fittings and KD value calculations were done with 
a 1:1 binding model using the Biacore Insight Evaluation Software (Cytiva Inc). 

4.5.3 Dynamic light scattering 

The solubility of compounds was estimated by DLS that directly measures compound aggregates 
and laser power in solution. Compounds were serially diluted directly from DMSO stocks, then 
diluted 50x into filtered 10 mM HEPES pH 7.4, 150 mM NaCl(2% DMSO final). The resulting 
samples were then distributed into 384-well plates (black with a clear bottom, Corning 3540), with 
20μl in each well. The sample plate was centrifuged at 3500 rpm for 5 minutes before loading into 
DynaPro DLS Plate Reader III (Wyatt Technology) and analyzed as previously described.34, 35 

4.5.4 19F-NMR spectroscopy 

The binding of fluorinated compounds was assayed by looking for the broadening and/or 
perturbation of 19F resonances upon addition of LRRK2 (at protein to compound ratios of 0.5:1 to 
4:1) in PBS buffer (pH 7.4, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, and 
with 5% D2O). 1D-19F spectra were collected at 298K on a Bruker AvanceIII spectrometer, 
operating at 600 MHz, and equipped with a QCI probe. Two to four thousand transients were 
collected with an acquisition period of 0.2 s, over a sweep width of 150 ppm, a relaxation delay of 
1.5 s, and using 90° pulses centered at -120 ppm. The concentration of the compounds in both 
reference and protein-compound mixtures was 5-10 µM. TFA (20 µM) was added as an internal 
standard for referencing. Prior to Fourier transformation, an exponential window function was 
applied (lb = 1 to 3) to the FID. All processing was performed at the workstation using the 
software Topspin 3.5. 
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Figures and Tables 

 
Figure 1. Experimentally confirmed hits identified in the first phase of CACHE #1 Challenge 
selected for subsequent optimization. 
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Figure 2. Overview of computational approach for hit optimization. A. General scheme of 
computational pipeline used for optimization of both hits (see main text for description). The 
blocks corresponding to closest analogs, general analogs and RBFE calculations are shown in 
blue, gray and green correspondingly. NNS stands for the nearest neighbors search, and CS 
stands for curated selection (see the Methods section for details). B. SMARTS patterns of the 
closest analogs and the general analogs used for Hit 1 and Hit 2. C. Virtual screening of the 
general analogs of Hit 1 and Hit 2. The numbers of molecules for Hit 1 and Hit 2 after each step 
of the pipeline are shown. D. General scheme of the automated computational workflow for RBFE 
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calculations guided by AL (AL-RBFE). The workflow includes two main modules: AutoML and MD 
TI RBFE and four principal steps. The chemical space is shown as 2D t-SNE plots. Analogs of Hit 
1 and Hit 2 with computed ΔΔG are depicted as colored squares and triangles consistent with the 
color scheme on Fig. 5. 
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Figure 3. Box plot distribution of MD TI RBFEs of analogs of Hit 1 (red dots) and Hit 2 (green 
dots) computed in the course of the active learning cycle (AL-RBFE, Fig. 2D). The RBFE of Hit 1 
and Hit 2 are set to 0 kcal/mol and indicated by black arrows at the preAL step. The analogs of 
both hits selected for the submission to the experimental evaluation (in-vitro) are encircled in 
black or magenta colors. Magenta color shows novel hits with measured KD 
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Figure 4. AL-guided calculated TI ABFEs shown as t-SNE projections of chemical space of Hit 1 
and Hit 2 analogs. A. t-SNE plots of each individual AL iteration for Hit 1 analogs. B. t-SNE plots 
of each individual AL iteration for Hit 2 analogs. C. t-SNE plot of all iterations of active learning. 
Each molecule is shown as a point. Hit 1 and Hit 2 are indicated by black arrows. Molecules are 
colored by their computed ABFE and the rest of molecules are shown in gray. The initial hits are 
circled by purple. Molecules selected for experimental in vitro validation are circled in black and 
optimized hits confirmed experimentally are circled in magenta. 
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Figure 5. Experimental confirmation. SPR sensorgams, NMR spectra of fluorinated 
compounds (10 µM compound with 0-10-20 µM protein [black-green-red]), and chemical 
structures are shown. Solubility and aggregation of compounds as measured by DLS are 
indicated. 
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