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Abstract 
Drug Discovery is a very lengthy and resource-consuming process. However, a variety of 

advanced Artificial Intelligence (AI) and Deep Learning (DL) techniques are being utilized to 

accelerate and advance DD, such as Large Language Models (LLMs). This survey is in aim of 

discovering and comparing the currently available LLMs, their methodologies, used datasets, and 

the different tasks they are aiding in in the DD process, in particular; de novo drug design, drug-

target interaction prediction, masked language models, variational auto encoders, binding affinity 

prediction, drug repurposing, molecular optimization, activity prediction, contrastive learning for 

drug-target interaction prediction, and other miscellaneous models. This survey gives insights 

into future directions and potential in this area. 
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Introduction 
The process of Drug Discovery (DD) is very time and resource consuming; to come up with a 

single compound you will go through an extremely long and complex journey; starting with 

understanding the disease, then identifying your drug target, and last but not least searching 

through potential natural and synthetic compounds for the desired activity profile; this process 

might take billions of dollars and over 10 years before starting clinical testing or the actual 

production [1]. With the continuously evolving and advancing computational powers, many 

methods have been utilized and taken advantage of in the DD process; Artificial Intelligence (AI) 

and Deep Learning (DL) in particular have shown a profound impact in accelerating and 

advancing the DD process. Large Language Models (LLMs) are now becoming a great promise 

for researchers in the pharmaceutical industry, they are able to reduce the time, costs, and efforts 

required for DD [2]. 

LLMs are basically an architecture of multiple Neural Networks (NNs), harnessing their abilities 

in Natural Language Processing (NLP) tasks. The NN of a LLM is called a transformer; a 

transformer has an encoder that deals with input sentences as a sequence of tokens and learns out 

relations between them based on their positioning, and a decoder that generates an output text 

based on what has been learned in the training phase; this is what we call a self-attention 

mechanism [2]. Since the evolution of LLMs, many datasets were created; pre-training datasets, 
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fine-tuning datasets, preference datasets, evaluation datasets, and traditional NLP datasets. In the 

case of utilizing LLMs for DD, our major drawback is the lack of comprehensive datasets for 

training [3]. 

The phases of LLM engineering are as follows: pre-training, fine-tuning, and transfer-learning, 

alignment, and evaluating [4]. Proper fine-tuning accompanied with prompt-engineering helps 

comprehend the insufficiency in data. Fine-tuning is used to tailor our LLM for a specific task of 

NLP [5], while prompt-engineering is to give the model certain examples to use as a guide in 

future predictions [6]. 

When providing suitable and comprehensive data we can utilize LLMs in many areas that 

advance the DD process, such as de novo drug design [7], Drug-Target Interaction (DTI) 

prediction [8], Masked Language Models (MLMs) [9], Variational Auto-Encoders (VAEs) [10], 

binding affinity prediction, drug repurposing [11], molecular optimization [12], compound 

activity prediction [13], contrastive learning for DTI prediction [14], and other miscellaneous 

models. 

This survey is the first in literature reviewing the state of LLMs in DD. It consists of six main 

chapters; Introduction, Review of Literature, Comparative Analysis of Performance and 

Methodologies, Discussion, Conclusion, and References. In the introduction, we provided a 

general overview about the leveraging of LLMs in DD, our challenges, and the current state. In 

the Review of Literature, we are going to investigate the available literature on LLMs applied in 

DD, compare how similar models are designed, and how that affects their performance. In the 

Discussion chapter, we are going to show a clear overview of the current state-of-the-art, discuss 

the most valuable insights from literature, and to define potential areas for improvement in future 

work. This structure is represented in Figure 1. 
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Figure 1: The survey’s structure 

Review of Literature 
One of the first to address the possibilities LLMs can provide in the DD process was [15], in 

2021, there was not a lot of focus on this topic at that time. His aim was to emphasize the 

applications of LLMs that can accelerate the discovery of a treatment for Corona Virus Disease 

2019 (COVID-19). In his paper he focused on LLMs role in accelerating target identification, 

reshaping clinical trials, assisting the regulatory decision-making, and advancing post-marketing 

surveillance (pharmacovigilance). 

LLMs for de novo Drug Design 
LLMs are becoming of great advantage to the process of de novo drug design (in-silico design of 

drugs, usually proteins, from scratch). A transformer model proposed by [16] depended on 

protein sequences to predict binding affinities between generated molecules and their biological 

targets; avoiding all the obstacles that arise in structure-based de novo drug design that requires 

prior knowledge of the three-dimensional structure of proteins. This transformer model was 

composed of an encoder-decoder architecture, taking the protein sequence as an input to generate 

the corresponding Simplified Molecular-Input Line-Entry System (SMILES) string. The model 

is based only on self-attention mechanisms with no Convolutional Neural Networks (CNN) or 

Recurrent Neural Networks (RNN), with that it works with long-range inputs and is much faster 

than RNN-based models. Most of the generated SMILES strings were valid and unique, with 
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more than 17% novel compound matching the ZINC15 database. Two proteins were selected; 

Insulin-like growth factor 1 receptor (IGF-1R) and Vascular endothelial growth factor 
receptor 2 (VEGFR2), both are from the receptor tyrosine kinases family and contribute to 
major diseases, such as cancer, arthritis, and diabetes. Most of the generated molecules 
had acceptable drug-like molecule boundaries with proper reproducibility of the property 
distribution of molecules as in the training set. However, this must be checked in 
experiment. 51% of generated molecules had a Tanimoto score lower than 0.5; suggesting 
major differences than molecules in the training dataset, this leads to a high variation of 
their functionalities. 

TamGent (Target-aware molecule generator with Transformer) by [17] aimed to advance the 

structure-based drug design. This transformer model takes both the 3D structure and the protein 

sequence into consideration and is trained on 10 million compounds from PubChem; this 

provided the model with a huge generative power. Moreover, a variational auto-encoder (VAE) 

was used to handle the possibility of multiple compounds binding to the same target. TamGent 

outperformed benchmarks in both binding-affinity and drug-likeness properties, generated drugs 

that match drugs in the DrugBank, and generated novel compounds with better docking scores 

than other references. Two cases were studied; SARS-CoV-2 main protease (M pro) and the 

oncogenic mutant KRAS G12C. The generated compounds had both a good previously known 

inhibitors of M pro and potential novel compounds that bind to the enzymatic sites. Stronger 

interactions with G12C mutant were noted, in KRAS G12C, compared to wild type KRAS which 

means that the compounds are more specific on the mutated protein compared with normal cells. 

One of the unique models that addressed the synthesizability of generated molecules is 

DeepLigBuilder+ [9], its framework addresses both 3D structure information and reaction-based 

pathways, supporting the retro-synthetic analysis. The model is a combination of a reinforcement 

learning method based on Monte Carlo tree search (MCTS), as a synthesizability constraint 

depending on purchasable building blocks, and an SE (3)-equivariant transformer conditioned on 

the shape and pharmacophore-based inputs. Also, a masking strategy was applied on each step; 

to guarantee the generation of synthesizable synthons. Two case studies were evaluated; inhibitor 

compounds targeting ATP-binding pocket of Bruton’s tyrosine kinase (BTK) and the NAD+-

binding pocket of human phosphoglycerate dehydrogenase (PHGDH), they have shown high 

predicted binding affinity and suitable binding modes within a proper synthesizability constraint. 

Furthermore, to reach the structure-based generation capability, they created a dataset of 

pharmacophore-ligand pairs using large-scale 3D alignment of molecules, and then use it to 

develop a novel SE (3)-equivariant transformer conditioned on 3D information, followed by 

MCTS as rolling out policy; resulting in a significantly increased search speed. 

In a minireview by [7], he focused on how the advancements in NLP algorithms can be utilized 

in generating drugs with high-level properties; the better the semantic generation of bonded 

elements the better compounds we get, this technique is much more successful and easier than 

the previously utilized complex molecular graphs. In his study, many molecular representation 
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entities were reviewed; the Simplified Molecular Input Line Entry Systems (SMILES) overcame 

Self-referencing embedded strings (SELFIES) and others in the ability of filtering out invalid 

molecules. However, each of the reviewed systems (SMILES, SELFIES, or DeepSMILES) can 

have a superiority depending on the application required, e.g., DeepSMILES predicts binding 

affinity. 

ADA-T5, a novel model was proposed by [18]; to overcome the scarcity in available data, they 

depended on generating pseudo-data in a model teached with few-shot prompting, description on 

SMILES molecules was provided for the model to learn predicting correct molecules from the 

desired properties. A retrieval-based prompting strategy led to excellence in the model’s 

performance and to a continuous increase in data size. 

FSM-DDTR (End-to-end feedback strategy for multi-objective De Novo drug design using 

transformers) [19], a transformer model that uses SMILES as an input to generate molecules 

with proper physicochemical and pharmacological properties. The transformer’s architecture is a 

basic encoder predictor and a decoder generator, along with a feedback loop to optimize 

generated compounds; top-scoring chemical compounds take place of least favorable inputs of 

the decoder. The model could generate valid SMILES strings with a great level of novelty, 

approximately 100% uniqueness. To estimate the unbiased decoder performance MOSES dataset 

was utilized, the decoder had superior performance in novelty rate (> 97%) and comparable 

internal diversity, uniqueness, and validity rate, with reduced chance of overfitting due to the 

novelty of generated compounds. A model trained on multiple features (pIC50, SAS, LogP, MW, 

and TPSA) achieved the overall best performance, with 99.36% of the generated chemical 

entities following Lipinski’s rule of five; potentially orally available. Moreover, mostly they 

were valid and novel, and the average value of pIC50 toward the AA2AR receptor (6.81) 

outperformed the unbiased model result (5.81). 

DGFN (Double Generative Flow Networks) [20], a concept introduced to advance the training 

stability and the exploration abilities of large state spaces of GFN (Generative Flow Networks). 

DGFN is developed with the influence of both reinforcement learning and generative models. 

The enhancement of the exploration capabilities serves as a great chance to improve the 

sampling of molecules for DD and small molecules generation purposes. DGFN was put into 

comparison with conventional GFN on two benchmark tasks: hypergrid and molecule 

generation; DGFN finds modes across the hypergrid faster than conventional GFN. The DD task 

was about generating small molecules, molecules with low binding energy to the soluble epoxide 

hydrolase (sEH) protein, three models were trained DGFNTB along with two baseline models, 

GFNTB and GFNSubTB. GFNTB exhibited more pronounced fluctuations in the training, and 

DGFNTB had lower variance. DGFNTB had also surpassed GFNSubTB in the discovery of modes 

with rewards > 0.9. 

Structured State-Space Sequence Models (S4), engineered by [21], with an architecture 

combining a Long Short-Term Memory (LSTM) and a transformer. The uniqueness of this 

architecture is that it combines the fast-generation capabilities of the LSTM with its element-by-
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element strategy along with the all-at-once molecular processing by the transformer, avoiding the 

extensive computational power transformers require. This dual model has shown success when 

tested and benchmarked in its ability to learn the bioactivity of compounds, chemical space 

exploration, the design of natural products, and was preferred when long sequences were present. 

S4’s ability in generating molecules with suitable Molecular Dynamic (MD) properties and 

potencies was validated by testing the Mitogen-Activated Protein Kinase 1 inhibitors (MAPK1-

inhibitors) it produced. 

Recently, [22] has revealed ProT-Diff, a novel modularized deep generative model, for de novo 

Anti-Microbial Peptides (AMPs) generation, AMPs are the current hope for overcoming the anti-

microbial resistance world-wide problem. ProT-Diff is a sandwich model, embedding a 

continuous diffusion model between the encoder and the decoder of the transformer-based 

protein language model (PLM) ProtT5-XL-UniRef5023. This technique maximized the efficacy 

of the pre-trained PLM and minimized the needed computational power. In one experiment they 

trained the diffusion model with a dataset of AMPs and non-AMPs, pre-trained it on a peptide 

dataset, UniProtKB, to learn a general grammar of protein sequences, and then fine-tuned the 

pre-trained model on the specific AMP dataset to learn specific details from AMPs; this full 

training took less than forty hours. The model was evaluated in-silico, in-vitro, and in-vivo. The 

model has not only produced replicated sequences but has shown uniqueness in the produced 

AMPs; the sequences differed in a range of 20-100 %. Moreover, one of the produced AMPs, 

AMP_2, shown effectiveness against various anti-microbial-resistant bacteria, having low 

Minimum Inhibitory Concentration (MIC) value, and a safe toxicity profile (tested for hemolytic 

toxicity and cytotoxicity). 

Those mentioned models on de novo Drug Design are listed in Table 1. 

Table 1: Comparison between LLMs for de novo Drug Design 

Model Architecture Main advantage Molecular 
entry 
system 

Data source Case studies 

[16] Self-attention 
transformer 

Works with 

long-range inputs 

and is much 

faster than RNN-

based models. 

SMILES BindingDB, 
and datasets 
with 
proteins 
from 
human, 
bovine, rat, 
and mouse. 

Most of the 
generated 
molecules 
targeting IGF-1R 
and VEGFR2 had 
acceptable drug-
like molecule 
boundaries with 
proper 
reproducibility of 
the property 
distribution of 
molecules as the 
training set. 
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TamGent 
[17] 

Transformer Trained on a 
very large dataset 
which gave it 
huge 
computational 
power. 

SMILES PubChem SARS-CoV-2 M 
pro and KRAS 
G12C inhibitors. 

DeepLigBuilder
+ 
[9] 

MCTS and SE 
(3)-equivariant 
transformer 

Guaranteed 
synthesizability 
of compounds. 

------------- PDBBind, 
and synthon 
dataset. 

PHGDH and BTK 
inhibitors. 

ADA-T5 [18] Transformer Pseudo-data 
generation, 
continuous 
increase in data 
size. 

SMILES PubChem, 
DrugBank, 
ChEBI-20, 
PCdes, and 
pseudo-data 
(constructed 
PseudoMD-
1M). 

--------------------- 

FSM-DDTR 
[19] 

Transformer 
and a feedback 
loop. 

High novelty. SMILES ChEMBL, 
and 
MOSES. 

A model trained 
on (pIC50, SAS, 
LogP, MW, and 
TPSA) achieved 
the overall best 
performance. 

DGFN 
[20] 

Same as the 

original GFN 

models. 

The 

enhancement of 

exploration 

capabilities. 

------------- Dataset and 
proxy model 
provided by 
[23]. 

Two 
benchmarking 
tasks, on 
hypergrid and 
molecule 
generation. 

S4 
[21] 

LSTM and a 
transformer. 

Fast-generation 
capabilities of 
the LSTM with 
its element-by-
element strategy 
along with the 
all-at-once 
molecular 
processing by the 
transformer, 
avoiding the 
extensive 
computational 
power 
transformers 
require. 

SMILES ChEMBL, 
LIT-PCBA, 
and 
COCONUT. 

MAPK1-
inhibitors with 
suitable MD 
properties and 
potencies. 

ProT-Diff 
[22] 

Transformer, 
with a 

Maximized pre-
trained PLM 
efficacy and 

------------- CAMPR4, 

ADAM, 

APD3, 

AMP_2, effective 
against various 
anti-microbial-
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continuous 
diffusion model. 

minimized 
needed 
computational 
power. 

GRAMPA, 

and 

UniProtKB. 

resistant bacteria, 
having low MIC 
value, and a safe 
toxicity profile 
(tested for 
hemolytic toxicity 
and cytotoxicity). 

 

Drug-Target Interaction Prediction Models 
Several LLMs were created with the task of Drug-Target Interaction (DTI) prediction, proposed 

models with their different approaches are listed in Table 2: 

Table 2: LLMs with Drug-Target Interaction Prediction 

Model Approach / 

Architecture 

Main 

advantage 

Molecular 

entry system 

Data source 

MolTrans [24] Augmented 
transformer with 
embedding 
module. 

Better extraction 
of semantic 
relations from 
unlabeled data. 

SMILES UniProt, and 
ChEMBL. 

IGT [25] 3-Way graph 
transformer (has 
a receptor graph, 
ligand graph and 
a complex graph 
in each network 
of the model). 

Improved fitting 
and better 
generalizability. 

------------------ DUD-E, LIT-
PCBA, and 
PDBBind. 

DACPGTN [26] Graph 
transformer 

Novel 
interactions 
predictions from 
integrated 
biomedical data. 

------------------ Anatomical 
Therapeutic 
Chemical (ATC) 
benchmark [27], 
KEGG, and 
Drugbank. 

DeepMGT-DTI 
[28] 

Molecule 
Attention 
Transformer 
(MAT) 

Integrated 
structural and 
sequential 
information; 
outperforming 
single module-
models. 

Targets 
sequences, and 
drugs’ SMILES 
sequences. 

Drugbank, 
KEGG, and 
PubChem. 
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MHTAN-DTI 
[29] 

Metapath 
instance-level 
transformer, 
with single and 
multi-semantic 
attention layers. 

Weakened noise 
influence, 
interpretable 
results, and 
better 
generalizability. 

------------------ Dataset on 
interactions by 
[30], DrugBank, 
HPRD, and 
Comparative 
Toxicogenomics. 

DrugormerDTI; 
molecule graph 
and 
Residual2vec 
[31] 

Graph 
transformer 

High-feature 
extraction and 
expression capa-
bilities. 

Encoded protein 
sequences, and 
drug graphs 
representing the 
drugs 
sequences. 

C. elegans, 
Human, Davis, 
and GPCR 
(GPCR is 
particularly 
important for 
interactions 
learning). 

Helix encoder 
[32] 
 

Proteins 
sequences 
encoder 

Specific for G 
protein-coupled 
receptors’ 
(GPCRs) largest 
class, class A. 

Sequences of 
transmembrane 
regions of class 
A. 

GPCR dataset 
constructed from 
Compound-
protein 
Interactions (CPI) 
in GLASS 
database. 

MCL-DTI [33] Transformer; 
encoder, 
decoder, feature 
fusion module, 
and a classifier. 

Increasing drug 
representation 
and increasing 
multimodal 
features learning 
extensively; 
improving DTIs. 

Multimodal 
drug features, 
and FASTA 
sequences. 

Davis, C. 
elegans, Human, 
and Biosnap (for 
Drug-Drug 
Interactions 
(DDIs)). 

FOTF-CPI [34] Transformer Fragmented-
compounds 
understanding, 
and feature-
fusion method 
improved 
affinity 
prediction and 
interpretability. 

SMILES BindingDB, 
Davis, Biosnap, 
and DUD-E. 

DLM-DTI [35] Dual-encoder 

transformer (the 

target encoder is 

a teacher-student 

model). 

Integrated 
general-
knowledge and 
target-
knowledge; 
enhancing 
learning and 
predicting 
capabilities. 

SMILES Davis, 

BindingDB, and 

Biosnap. 
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ULDNA [8] LSTM-attention 
network, and 
three 
unsupervised 
language models 
embeddings. 

Higher DNA-
Binding sites 
prediction 
accuracy than 
sequence-only 
models (Binding 
sites annotations 
were added). 

Amino acids 
sequences. 

PDNA-543, 
PDNA-41, 
PDNA-335, 
PDNA-52 and 
PDNA-316. 

iNGNN-DTI 
[36] 

interpretable 
Nested Graph 
Neural Network 
(iNGNN), with 
an attention-free 
transformer. 

Shown 
consistent 
improvement 
and 
outperformed all 
baseline models. 

Protein graphs; 
generated from 
SMILES using 
AlphaFold2. 

KIBA, Davis, 
and Biosnap. 

 

Masked Language Models in DD 
In the case of DeepLigBuilder+ [9], stepwise masking with chemical constraints was applied to 

control the generated molecules to stay within a specific space of synthesizable and purchasable 

synthons. In this masking strategy, the action masks were based on what atoms and bonds are not 

favorable and would result in a molecule with unpurchasable building blocks. 

Another Masked Language Model (MLM) by [37] was trained to serve as a random mutation 

operator, aiming to generate new optimized molecules. Two generation strategies were applied 

and compared; fixed and adaptive, the fixed strategy refers to the fixed pre-trained set of 

molecules while the adaptive strategy updates and learns from the newly generated mutated 

molecules in each iteration. Starting with a simpler task, these strategies were tested on 

molecular generation; the adaptive strategy produced mutated molecules with closer features of 

synthesizability and drug-likeness to the first generation while the fixed strategy was biased and 

produced mutations prevalent in the pre-trained set. However, there were not any significant 

differences in the generation time both strategies needed. In the case of molecule optimization, 

two opposite scenarios are possible; depending on the quality of the initial data. When had poor 

data, the adaptive strategy failed and generated less valid and less acceptable molecules due to 

continuously learning from molecules with poor scores. On the other hand, when we had high-

score data, the adaptive strategy outperformed the fixed strategy and generated more valid and 

acceptable molecules in all aspects. After testing, the optimal strategy was to start with five 

fixed-generations followed by twenty adaptive-generations. 

Variational Auto-Encoders 

The model represented by [38], is an integrated Variational Auto-Encoder (VAE) with a 

Convolutional Neural Network (CNN) followed by an attention mechanism. The VAE aids in 

learning the Drug-Protein Interactions (DPIs) through probabilistic evaluations that also reduce 

redundancies, while the CNN is to extract local features of drugs and protein, and the attention 

mechanism figures out the key features that relates to DPI sites. Case studies have proved the 

ability of this model to generate proper results compared to base models. 
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SGVAE [39], a modified Grammar VAE (GVAE) by adding properties-information to the input 

data, resulting with a supervised environment. SGVAE covers two important small-molecules 

generation applications; properties prediction and custom novel molecules generation. Moreover, 

SGVAE has the ability to measure the properties’ values of given molecules. SGVAE 

outperformed models that use SMILES for properties predicting tasks. 

Protein Multimodal Network (PMN) model a novel model proposed by [10], with the superiority 

of being able to augment multiple protein-related informations (Multimodal), these informations 

include; primary structure sequences, and 3D structure residue-level graph and geometry. One of 

the successful cases, TargetVAE, a model that generates ligands that bind to specific proteins, 

with customized properties such as binding affinity and high synthesizability. 

LLMs for Binding Affinity Prediction 
DTITR [40], a concatenated-encoders approach, were two transformer-encoders are working in 

parallel to generate Drug-Target binding Affinity (DTA) predictions that are more reliable than 

simple interactions predictions; binding strength is evaluated based on structural and sequential 

information. One encoder takes protein sequences as an input, while the other is for drugs’ 

SMILES sequences. Results from both encoders are concatenated through a cross-attention block 

and further go through a Fully Connected Feed Forward Network (FCNN). DTITR has 

outperformed or worked equally with tested benchmarks. 

GSATDTA [41], a triple channel model that takes sequential and structural information to 

generate DTA predictions; a Graph Neural Network (GNN) learns drugs’ topological features 

followed by a graph-sequence attention layer to catch important structural and sequential 

features, while the protein target is studied by a separate transformer, and at the end both 

outcomes are concatenated and go through a large number of NNs ending with a regression layer 

that gives a predicted DTA value. GSATDTA outperformed tested benchmarks on two different 

datasets. 

TEFDTA [42], a combined encoder and fingerprint transformation model; aimed to study the 

covalent-bonds interactions rather than only focusing on non-covalent bonds. At first, FASTA 

sequences of the proteins are label encoded, go through an embedding layer, and then captured 

data go through several 1D-CNNs. While drugs’ SMILES sequences are converted to MACCS 

fingerprints, to an embedding layer with position encoding employed, and finally features are 

extracted by the encoder. At the end, concatenated predictions are fed into an FCNN that 

generates predicted DTA values. TEFDTA was able to sensitively predict DTAs with minor 

structural variations. 

LLMs in Drug Repurposing 
RHGT [43], a novel model for Drug Repurposing; the process of utilizing available drugs for 

newer indications and diseases. The model is a Relation-aware Heterogeneous Graph 

Transformer, it learns relations between drugs, diseases, and genes; resulting with useful drug-

disease associations. Although many Graph Neural Networks (GNNs) have been developed for 

Drug Repurposing tasks, RHGT model still outperformed them. The networking of the model 
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can be divided into three consecutive embedding modules; subtype-level network, node-level 

network, and an edge-level network. The output of the first level is the input of the other two, 

and the output of the second level is the input the last one; level-by-level learning. Each level 

serves as an irreplaceable factor to the high-performance RHGT demonstrates. 

A model for drug repurposing is proposed by [11], it was tested on Type 2 Diabetes Mellitus 

(T2DM). The model augments both structural information from StAR transformer model and 

semantic information of the name and description of drugs from HittER transformer model; this 

led to outperforming these single-embedding models. The model has successfully discovered 

five drugs that can be repurposed for T2DM; Triterpenes, Sho-saiko-to, LY294002, Clomiphene 

Citrate, and Mitogen-Activated Protein Kinase Inhibitors (MAPK Inhibitors). 

WMAGT [44], an aggregated model of a graph convolutional network and graph transformer, it 

aims to find relation between diseases and drugs; discovering new indications for drugs and 

understanding drugs safety-profiles. The model was created by integrating three networks; drug–

drug similarity, disease–disease similarity, and drug–disease association networks, followed by 

an end-to-end model to find unknown patterns and associations. WMAGT outperformed five 

state-of-the-art methods. To test the applicability of WMAGT, it was challenged to configure 

drugs for Parkinson’s disease; seven predicted drugs were relevant to Parkinson’s as shown in 

further literature analysis. 

LLMs with Contrastive Learning for Drug-Target Interaction Prediction 
ConPLex [45], a pre-trained Protein Language Model (PLex) with protein-anchored contrastive 

co-embeddings (Con). Based on genomic data (sequences) ConPLex generates predictions on 

Drug-Target Interactions (DTIs); it finds relations from the distances of learned entities. 

Therefore, ConPLex is able to work on huge genomic and compounds libraries. ConPLex 

embeddings are interpretable, with that, human cell-surface proteins functions’ can be 

characterized, enabling high-throughput in-silico screening, and it was able to detect compounds 

with sub-nanomolar activity. One of the main advantages of ConPLex, is that it overcame the 

DTIs decoy problem; this is owed to its co-embedding architecture. Moreover, with a simple 

modification on the last activation function, ConPLex can serve as a binding affinity predictor 

model. 

CLAPE [14], a generalizable model developed for performing DNA-Binding sites predictions 

(CLAPE-DB) based on contrastive Learning and a pre-trained encoder. CLAPE was generalized 

as a binding site predictor model of DNA-binding sites (CLAPE-DB), protein-RNA binding sites 

(CLAPE-RB), and antibody-antigen binding sites (CLAPE-AB). In the case of DNA-binding 

sites, CLAPE-DB outperformed the second-best benchmark model. Moreover, it interestingly 

outperformed a structure-based model without being trained on any structural information. In the 

case of protein-RNA binding sites, CLAPE-RB outperformed pre-existing sequence-based 

models, and showed potential in protein structure prediction. CLAPE-AB also achieved 

relatively high Area Under the Curve (AUC) results, 0.92, accurately predicting antibody 

paratopes from sequence inputs. 
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LLMs for Activity Prediction 
SYN-FUSION [46], a unique model that combines features from both Graph Neural Networks 

(GNNs) and transformers, in order to comprehend the global structure of the molecule along 

with individual characteristics of atoms. SYN-FUSION with its combined model architecture has 

outperformed the performance of its individual modules separated. 

The following model [47], proposed a hybrid approach that leverages the importance of LLMs in 

protein sequence-analysis along with the 3D structure-information incorporation by the added 

numerical embeddings in Euclidean space for proteins; contact maps were generated, 

outperforming each of these single modules. The workflow ends with a concatenated features-

result by the favor of these embeddings. 

The next model, R-MAT [48], a relative molecule self-attention transformer with 3D structure 

representations and minimal inductive biases set, was designed in aim of overcoming the humble 

pre-existing pre-training methods; to enhance the prediction outcomes despite the small available 

datasets. The self-attention techniques employed led to the noticed improvement in predicting 

molecular properties. 

LLMs for Molecular Optimization Tasks 
GraphGPT [49], a conditioned-molecular generation model which depends on the scaffold 

information, incorporating both topological characteristics through graph structure information 

and enhanced molecular generation through a Generative Pre-trained Transformer (GPT) 

sequence-to-sequence method. GraphGPT proved its power in high-throughput screening for the 

aim of scaffold-based molecular generation. 

DrugAssist [12], an interactive LLM designed for molecular optimization tasks. It was 

benchmarked with two models; a seq2seq model with attention architecture, and a transformer 

model. Properties tested were Blood-Brain-Barrier Permeability (BBBP) and solubility; their 

success rate, validity, and average similarity with the pre-optimized molecules. When DrugAssist 

was compared against traditional approaches; it scored the highest success rates in single-

property and multi-property optimization and maintained high validity and similarity to the pre-

optimized molecules. Benchmarks performed poorly; faced difficulty in comprehending the 

required work; the results offered a guide for users to websites that talk about molecule 

optimization instead of optimizing molecules. DrugAssist is of good transferability under zero-

shot learning. DrugAssist was able to increase BBBP and QED by at least 0.1 simultaneously, 

resulting with a structurally similar molecule to the pre-optimized one. This means that 

DrugAssist is able to freely combine and learn individual properties, then to optimize them 

simultaneously. Moreover, when the model provides a molecule that does not satisfy the 

requirements, it can correct the error and compensate based on human-provided example, 

opening a potential to aid researchers in continuous optimization of molecules. 

SGPT-RL [50], a model composed of a generative pre-trained transformer (a decoder-only 

version) augmented with the Reinforcement Learning (RL) strategy. SGPT-RL aimed to 

optimize binding affinities of molecules with their targets, the optimization was focused on two 
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prerequisites; molecular docking and Quantitative Structure Activity Relationship (QSAR). The 

model has been evaluated on three measures; Moses distribution learning, and affinity towards 

Dopamine Receptor D2 (DRD2), and Angiotensin-Converting Enzyme 2 (ACE2). SGPT-RL 

generated notably valid and novel molecules in all tasks and outperformed the benchmark in 

molecular docking results. Moreover, SPGT-RL has learned conserved scaffold patterns on its 

own. 

Another transformer model [51], with a primary task to generate molecules with optimized LogD 

and solubility. However, this time it is a multi-head self-attention encoder-decoder transformer 

with masking mechanisms. For the source and target molecules they were obtained from the 

Matched Molecular Pairs provided by ChEMBL, with SMILES representation. Moreover, two 

transformers were tested; a conditional transformer, and an unconditional transformer depending 

on source molecules only. At the end, both transformers generated target molecules with the 

properties desired; ten novel and valid molecules were generated, and the performance was 

comparable to other benchmarks. However, the conditional model generated a higher number of 

successful molecules compared to the unconditional transformer.  

TSMMG [52], a novel teacher-student model that takes advantage of previously available 

models, by using their molecule-text/properties information as a teaching input to the student 

model, building its ability to generate custom novel molecules based on the entered prompt. 

TSMMG is of a quite simple transformer-based decoder architecture. Moreover, in zero-shot 

testing it led to generating molecules with novel augmentation of properties. This model 

overcame many important problems, such as data scarcity and low quality. 

Miscellaneous LLMs for various DD Tasks 
TransDTI [53], a model designed to advance the process of DTI prediction in a way that 

discriminates different types of interactions, to come up with novel interactions predictions; this 

was possible due to being trained on large DTI datasets. Three different categories were assigned 

to predicted drug-target pairs; inactive, intermediate, and active. TransDTI  significantly 

outperformed traditional DTI benchmark models. 

SELFormer [54], a model that outperformed all other benchmarks with SELFIES input, 

including graph transformers and SMILES-dependent models, it is capable of handling several 

prediction tasks; aqueous solubility, side effects, and discriminating structural differences. A 

model with smaller training size was generated from the default SELFormer, and named 

SELFormer-Lite. 

In this study [55], meta-learning was studied and evaluated on the ability to enhance the 

performance and outcomes’ quality of different models, specifically on potent compounds 

generation task. Particularly, meta-learning served as a compensation for the lack in 

comprehensive data; resulting with higher accuracy in Known-Target Compounds (KTCs) 

predictions compared to other benchmarks. 
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PrefixProt [56], a method that was designed to overcome the scarcity of data, such as the 

limitation within 20 amino acid sequences; hindering the ability of creating flexible control tags. 

PrefixProt’s concept is to employ prefix-tuning on each property resulting with tokens that are 

further used in prompting the Protein Language Model (PLM). Results demonstrated the ability 

of PrefixProt to flexibly and controllably provide higher-quality molecular design suggestions. 

FragAdd [57], a virtual screening model of target-binding small molecules and properties 

prediction, with a strategy of adding random fragments to entered molecules; improving the 

model’s ability of learning high-quality features. Moreover, FragAdd works in a way that the 

original molecule is preserved unchanged, allowing for the augmentation with other learning 

protocols, such as masking. FragAdd demonstrated higher performance and accuracy than the 

average of other benchmarks. 
 
Comparative Analysis of Performance and Methodologies 
In this section, we are going to draw a comparison between the latest LLMs with similar tasks. 

The comparison will cover different aspects of models’ performance and followed 

methodologies, such as architecture, used training datasets and their size, augmented parameters, 

performance evaluation metrics, and the availability of source code and data. 

de novo Drug Design Models 

A comparative analysis of performance and methodologies of de novo drug design models 

is listed in Table 3. 

 

Table 3: Comparative Analysis of Performance and Methodologies of de novo Drug Design 

Models 

de novo drug 

design model 

Architecture Used training 

datasets / Size 

Performance 

evaluation 
metrics 

Source code 

and data 
availability 

[16] Self-attention 
transformer 

BindingDB (238,147 
records; 1,613 unique 
amino acid, and 
154,924 unique 
SMILES). 

ROC, AUC, 
Quantitative 
Estimate of 
Drug-likeness 
(QED), and 
Synthetic 
Accessibility 
(SA). 

Available 

TamGent [17] Transformer PubChem (random 10 
million molecules). 

Molecular 
Diversity 
(MD), QED, 
and SA. 

Available 
 

DeepLigBuilder+ 
[9] 

MCTS and SE 
(3)-equivariant 
transformer. 

PDBBind (12,456 
pharmacophores and 
shapes), and 
constructed synthon 

Maximum 
Mean 
Discrepancy 
(MMD), and 

Not available 
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DB (241,310 synthons 
from the global stock, 
103,385 from the EU 
stock, and 783,195 
synthons from the 
comprehensive 
catalog). 

Root Mean 
Square 
Deviation 
(RMSD). 

ADA-T5 [18] Transformer PubChem, DrugBank, 
ChEBI-20, PCdes, 
and pseudo-data 
(constructed 
PseudoMD-1M). 

Accuracy, 
validity, and 
Fingerprint 
Tani-moto 
Similarity 
(FTS). 

Not available 

FSM-DDTR [19] Transformer 
and a feedback 
loop. 

ChEMBL (1,046,964 
compounds). 

Accuracy, 
MSE, R2, 
concordance 
correlation 
coefficient 
(CCC), 
Quantitative 
Estimate of 
Drug-likeness 
(QED), and 
percentage of 
molecules that 
strictly follow 
Lipinski’s 
rule of five. 

Available 

DGFN [20] Same as the 

original GFN 

models. 

Dataset and proxy 
model provided by 
[23]. 

Mean and 
standard error. 

Not available 

S4 
[21] 

LSTM and a 
transformer. 

ChEMBL, LIT-
PCBA, and 
COCONUT. 

Validity, 
uniqueness, 
and novelty. 

Available 

ProT-Diff [22] Transformer, 
with a 
continuous 
diffusion 
model. 

AMP DB (17,456 

AMP-sequence): 

CAMPR4, ADAM, 

APD3, and 

GRAMPA. 

 

UniProtKB 

(567,834 AMP-
sequence). 
 

AUROC, and 
R2. 

Upon request 
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Non-AMP (58,775 
sequence) 

 

Drug-Target Interaction Prediction Models 

A comparative analysis of performance and methodologies of Drug-Target Interaction (DTI) 

prediction models is listed in Table 4. 

 

Table 4: Comparative Analysis of Performance and Methodologies of DTI Prediction Models 

DTI model Architecture Used training datasets / 
Size 

Performance 
evaluation 
metrics 

Source code 
and data 
availability 

MolTrans [24] Augmented 
transformer 
with 
embedding 
module. 

UniProt (560,823 unique 
proteins), and ChEMBL 
(1,870,461 SMILES). 
 

AUROC, 
AUPRC, F1 
score, 
sensitivity, 
and 
specificity. 

Available 

IGT [25] 3-Way graph 
transformer 
(has a receptor 
graph, ligand 
graph and a 
complex graph 
in each network 
of the model). 

DUD-E (101 proteins), 
LIT-PCBA (9,780 active 
compounds, 407,839 
compounds, and 15 
targets), and PDBBind. 
 

AUROC, 
LogAUC, 
AUPRC, 
Balanced 
accuracy, 
ROC 
enrichment, 
enrichment 
factor, and 
Matthews 
Correlation 
Coefficient 
(MCC). 

Available 

DACPGTN 
[26] 

Graph 
transformer 

Anatomical Therapeutic 
Chemical (ATC) 
benchmark [27], KEGG, 
and Drugbank. (1,749 
diseases correlated 
between datasets, with 
data or target). 

Aiming, 
coverage, 
accuracy, 
absolute true, 
and absolute 
false, 
proposed by 
[58]. 

Available 

DeepMGT-
DTI [28] 

Molecule 
Attention 
Transformer 
(MAT) 

[59] and Drugbank 
(12,496 molecular 
structures), KEGG (5,462 
target sequences), and 
PubChem (21,158 DTIs). 

AUC, AUPR, 
F1, 
sensitivity, 
accuracy, 
specificity, 
and precision. 

Available 
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MHTAN-DTI 
[29] 

Metapath 
instance-level 
transformer, 
with single and 
multi-semantic 
attention layers. 

Dataset on interactions 
by [30], DrugBank, 
HPRD, and Comparative 
Toxicogenomics. (708 
drugs, 1,512 proteins, 
5,603 diseases, and 4,192 
side effects). 

AUROC, and 
AUPR. 

Available 

DrugormerDTI 
[31] 

Graph 
transformer 

C. elegans (2,504 
proteins, 1,434 
compounds, 6,728 DTIs), 
Human (852 proteins, 
1,052 compounds, and 
7,786 DTIs), Davis (379 
proteins, 68 compounds, 
and 25,772 DTIs), and 
GPCR (356 proteins, and 
5,359 compounds). 

AUC, and 
AUPR. 

Available 

 

Helix encoder 
[32] 

Proteins 
sequences 
encoder 

GPCR dataset 
constructed from 
Compound-protein 
Interactions (CPI) in 
GLASS database 
(743,031 DTIs of 707 
proteins and 316,814 
compounds). 

AUC, and 
ROC. 

Available 

MCL-DTI [33] Transformer; 
encoder, 
decoder, 
feature fusion 
module, and a 
classifier. 

Davis (64 drugs, and 379 
targets), C. elegans, 
Human, and Biosnap 
(9,648 drugs, and 81,194 
samples). 

AUROC, and 
AUPRC. 

Available 

FOTF-CPI 
[34] 

Transformer BindingDB (10,665 
drugs, 1,413 proteins), 
Davis (68 drugs, 379 
proteins), Biosnap (4,510 
drugs, 2,181 proteins), 
and DUD-E (22,886 
drugs, 102 proteins). 

AUC, PRC, 
sensitivity, 
specificity, 
F1, and cost. 

Available 

DLM-DTI 
[35] 

Dual-encoder 

transformer 

(the target 

encoder is a 

teacher-student 

model). 

Davis (68 drugs, 379 

proteins, and 11,103 

DTIs), BindingDB 

(10,665 drugs, 1,413 

proteins, and 32,601 

DTIs), and Biosnap 

(4,510 drugs, 2,181 

AUROC, 
AUPRC, 
sensitivity, 
and 
specificity. 

Available 
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proteins, and 27,482 

DTIs). 

ULDNA [8] LSTM-
attention 
network, and 
three 
unsupervised 
language 
models 
embeddings. 

PDNA-543 (9549 
binding, 134,995 non-
binding), PDNA-41 (734 
binding, 14,021 non-
binding), PDNA-335 
(6461 binding, 71,320 
non-binding), PDNA-52 
(973 binding, 16,225 
non-binding) and PDNA-
316 (5609 binding, 
67,109 non-binding). 

Sensitivity, 
specificity, 
accuracy, and 
MCC. 

Available 

iNGNN-DTI 
[36] 

interpretable 
Nested Graph 
Neural 
Network 
(iNGNN), with 
an attention-
free 
transformer. 

KIBA (2,068 drugs, 229 
proteins, and 118,254 
DTIs), Davis (68 drugs, 
442 proteins, and 30,056 
DTIs), and Biosnap 
(4,510 drugs, 2,180 
proteins, and 13,817 
DTIs). 

AUROC, 
AUPRC, 
sensitivity, 
and 
specificity. 

Available 

 

Masked Language Models 

A comparative analysis of performance and methodologies of Masked Language Models 

(MLMs) is listed in Table 5. 

 

Table 5: Comparative Analysis of Performance and Methodologies of Masked Language 

Models 

Masked 
Language 
Model 

Architecture Used training 
datasets / Size 

Performance 
evaluation metrics 

Source code 
and data 
availability 

DeepLigBuilder+ 
[9] 

SE (3)-
Equivariant 
transformer 

Pharmacophore-
ligand pairs 
synthesized 
from PDBBind 
ligands. 

Mean and SD for 
MW, LogP, and 
QED, Wasserstein 
distance, MMD, 
RMSD value, 
Smina docking 
scores, distribution 
of shape and 
pharmacophore 
similarity, and 
reward value for the 
best molecule 
found. 

 Not available 
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[37] Based on the 
Bidirectional 
Encoder 
Representations 
from 
Transformers 
(BERT) 

Enamine REAL 
database 
augmented with 
a previously 
trained language 
model / 3.6 * 
1010 molecules. 

Mutation rate, drug-
likeness, 
synthesizability, 
and number of 
generations. 

Available 

 

Variational Auto-Encoders 

A comparative analysis of performance and methodologies of Variational Auto-Encoder 

(VAE) Models with DD tasks is listed in Table 6. 

 

Table 6: Comparative Analysis of Performance and Methodologies of VAEs with DD tasks 

Model Architecture Used training 
datasets / Size 

Augmented 

parameters 

Performance 
evaluation 
metrics 

Source 
code and 
data 
availability 

[38] VAE and 
CNN with 
attention 
mechanisms. 

Davis dataset (68 
drug molecules 
and 442 proteins), 
BindingDB 
dataset (39,747 
+ve samples and 
31218 -ve 
samples), 
C.elegans and 
Human dataset 
(1,767 drug 
molecules, 1,876 
protein, and 7,786 
+ve and -ve 
samples), and 
KIBA dataset 
(2,111 drug 
molecules and 229 
proteins). 

Drugs 
molecules 
features and 
proteins 
sequences 
features. 

ACC: (Davis: 

0.85↓, KIBA: 

0.841↑), 

AUC (Davis: 

0.705↑, 

KIBA: 

0.813↑). 

  

BindingDB 

(AUC: 0.913 

(suboptimal), 

precision: 

0.888↑, 

recall: 

0.822↓, and 

F1: 0.854 

(suboptimal))

. 

 

C.elegans 

(AUC: 0.925 

(suboptimal), 

precision: 

0.927 

Available  
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(suboptimal), 

recall: 0.897 

(suboptimal), 

and F1: 0.912 

(suboptimal))

. 

  

Human 

(AUC: 

0.914↓, 

precision: 

0.934↓, 

recall: 

0.862↓, and 

F1: 0.897↓). 

SGVAE 
[39] 

Modified 
Grammar 
VAE with 
supervised 
environment. 

Modified 
Quantum-
chemistry QM9 
(~130,127 
molecules), QM7-
X, and 
PubChemQC PM6 
(random 100,000 
molecules of 
approximately 50-
SMILES 
character). 

-------------- Re-
construction 
ACC 
(60.93%↑), 
prior validity 
(12.29%↑), 
novelty 
(72.66%↑), 
and 
uniqueness 
(93.06%↓). 

Available 

PMN, 
TargetVAE
[10] 

Novel Protein 
Multimodal 
Network 
(PMN) 

PBDBind v2020. Primary 
structure 
sequences, 
and 3D 
structure 
residue-level 
graph and 
geometry. 

RMSE 
(0.035↓), 
MAE 
(0.032↓), 
pearson 
(0.01↑), 
spearman 
(0.016↑), R2 
(0.022↑), and 
CI (0.006↑). 

Available 

 

 

LLMs for Binding Affinity Prediction 

A comparative analysis of performance and methodologies of LLMs for Drug-Target Affinity 

(DTA) prediction is listed in Table 7. 

 

Table 7: Comparative Analysis of Performance and Methodologies of LLMs for Drug-Target 
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Affinity (DTA) Prediction 

Model Architecture Used training 
datasets / Size 

Augmented 
parameters 

Performance 
evaluation 
metrics 

Source 
code and 
data 
availability 

DTITR [40] End-to-End 
transformer 
with cross 
attention 
layers. 

Davis (31,824 

interactions of 

72 kinase 

inhibitors and 

442 kinase 

proteins), 

corresponding 

protein 

sequences 

were obtained 

from UniProt 

(of length 264-

1,400 residue), 

and SMILES 

(38-72 long) 

from 

PubChem. 

Protein 

sequences 

and 

SMILES 

strings. 

MSE, RMSE, 
CI, R2, and 
spearman. 

Available 

GSATDTA[41] Novel triple-
channel 
model; graph-
sequence 
attention and a 
transformer. 

Davis (68 

drugs, 442 

targets, and 

30,056 DTIs, 

Affinity 

values: 5-

10.8), and 

KIBA (2,111 

drugs, 229 

targets, and 

118,254 DTIs, 

Affinity 

values:  up to 

17.2). 

Graph 

information 

and 

sequences. 

CI, MSE, and 
R2. 

Not 
available 

TEFDTA [42] Combined 
transformer-
encoder and 
morgan 
fingerprint 
representation. 

Non-covalent 
interactions 
databases; 
BinidingDB 
(80,324 drugs, 
5,561 proteins, 
and 1,254,402 

MACCS 
fingerprint 
(converted 
from 
SMILES), 
and FASTA 
sequences. 

MSE, CI, and 
R2. 

Available 
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DTI data), 
KIBA (2,111 
drugs, 229 
proteins, and 
118,254 DTA 
values), and 
Davis (68 
drugs, 442 
proteins, and 
30,056 DTA 
values), and 
fine-tuned on 
CovalentInDB 
(4,511 
covalent 
inhibitor; 68 
of them are 
approved 
drugs, and 57 
reactive 
warheads of 
280 protein). 

 

 

LLMs for Drug Repurposing 

A comparative analysis of performance and methodologies of LLMs for Drug Repurposing is 

listed in Table 8. 

 

Table 8: Comparative Analysis of Performance and Methodologies of LLMs for Drug 

Repurposing 

Model Architecture Used training 
datasets / Size 

Augmented 

parameters 

Performance 
evaluation 
metrics 

Source 
code and 
data 
availability 

RHGT 
[43] 

Relation-
aware 
Heterogeneo
us Graph 
Transformer 

CTD and TTD. Drugs-
genes-
diseases 
consecutive 
embedding 
modules. 

TTD: 
AUROC 
(0.7342), F1 
Score 
(0.7611), and 
precision 
(0.7543). 
CTD: 
AUROC 
(0.7809), F1 
score 
(0.7754), and 

Available 
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precision 
(0.7957). 

[11] Two 
augmented 
transformers; 
StAR 
transformer 
model and 
HittER 
transformer 
model. 

PubMed (4.5 billion 
words), and PMC 
full articles (13.5 
billion words).  

Structural 
information 
and 
semantic 
information 
of the name 
and 
description 
of drugs. 

Test set 
compared to 
individual 
modules 
performance: 
Mean Rank 
(MR) 
(4,502.62↓), 
Mean 
Reciprocal 
Rank (MRR) 
(27.19↑), and 
Hits@1,3,10, 
and 100 
(18.18↑, 
33.23↑,43.17
↑, and 
50.11↑). 

Not 
available 

WMAGT 
[44] 

Augmented 
graph 
convolutional 
network and 
graph 
transformer. 

F dataset (313 
diseases form 
OMIM, and 553 
drugs from 
DrugBank), C 
dataset (663 drugs 
from DrugBank, and 
409 diseases from 
OMIM), LRSSL 
dataset (763 drugs 
for DrugBank, 681 
diseases from MeSH, 
and 3,051 validated 
drugs-diseases 
associations). 

Drug–drug 
similarity, 
disease–
disease 
similarity, 
and drug–
disease 
associations. 

ACC, Area 
Under the 
Precision-
Recall Curve 
(AUPR), 
Area Under 
the Receiver 
Operating 
Characteristic 
Curve 
(AUC), F1 
score, 
precision, 
and recall. 

Available 

 

LLMs with Contrastive Learning for Drug-Target Interaction Prediction 

A comparative analysis of performance and methodologies of LLMs with contrastive learning 

for Drug-Target Interaction (DTI) prediction is listed in Table 9. 

 

Table 9: Comparative Analysis of Performance and Methodologies of LLMs with Contrastive 

Learning for DTI prediction 

Model Architecture Used training datasets / Size Performance 
evaluation 
metrics 

Source 
code and 
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data 
availability 

ConPlex 

[45] 

Pre-trained 
Language 
Model 
(PLM), 
morgan 
fingerprint, 
and co-
embedding 
layers. 

BindingDB, DUD-E, STRING 

(15,816 proteins 50-800 amino 

acids long), and ChEMBL 

(1,533,652 compounds). 

Average and 
standard 
deviation of 
AUPR, 
DUD-E 
evaluation 
sets, Pearson 
Correlation 
Coefficient 
(PCC), and 
in-vitro 
evaluation. 

Available 

CLAPE 
[14] 

PLM 
(ProtBERT), 
4-layers 1D-
CNN, and a 
contrastive 
learning 
function. 

Dataset1 (646 proteins with 15,636 
DNA-Binding sites and 298503 
non-binding sites) by [60], and 
Dataset2 (573 proteins with 14,479 
DNA-Binding residues and 
145,404 non-binding residues) by 
[61] extracted from [62]. 

Specificity, 
recall, 
precision, F1 
score, MCC, 
AUC, AUPR, 
and amino 
acids 
composition 
statistical 
analysis. 

Available 

 

Activity Prediction Models 

A comparative analysis of performance and methodologies of LLMs with contrastive learning 

for activity prediction models is listed in Table 10. 

 

Table 10: Comparative Analysis of Performance and Methodologies of Activity Prediction 

Models 

Model Architecture Used training 
datasets / Size 

Augmented 
Parameters 

Performance 
evaluation 
metrics 

Source 
code and 
data 
availability 

SYN-

FUSION 

[46] 

GNNs, and a 
transformer. 

BBBP (2,039 

molecules), 

Tox21 (7,831), 

ClinTox 

(1,476), HIV 

(41,127), 

BACE (1,513), 

SIDER 

(1,427), and 

Global 

structure of 

molecules, and 

atoms’ 

characteristics. 

AUROC, 
RMSE, and 
MAE. 

Not 
available 
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MUV 

(93,087). 

[47] LLM with 3D 
structure 
numerical 
embeddings. 

Structural T-

Cell Receptor 

Database from 

ProteinDB 

(325 human 

files, and 155 

mouse files, 

sequences are 

109-1,074.38 

long, on 

average 5,415). 

Structural and 

sequential 

information. 

Avg ACC, 
precision, 
recall, 
AUROC, 
weighted F1, 
macro F1, 
and training 
runtime. 

Available 

R-MAT 
[48] 

Novel graph 
transformer, 
with 3D 
representation 
and self-
attention 
mechanisms. 

Large hyper-
parameter 
budget: ESOL, 
and FreeSolv. 
 
Small hyper-
parameter 
budget: BBBP 
and Estrogen-
B. 

----------------- Only 
changing the 
learning rate, 
as in [63]. 

Available 

 

Molecular Optimization Models 

A comparative analysis of performance and methodologies of molecular optimization models 

is listed in Table 11. 

 

Table 11: Comparative Analysis of Performance and Methodologies of Molecular Optimization  

Models 

Model Architecture Used training 
datasets / Size 

Augmented 

parameters 

Performance 
evaluation 
metrics 

Source 
code and 
data 
availability 

GraphGPT 
[49] 

Generative 
Pre-trained 
Transformer 
(GPT) 

GuacaMol (1.6 
million 
molecules 
abstracted from 
ChEMBL 24), 
and MOSES 
(1.9 million 
lead-like 
compounds 

Molecular 
properties, 
and 
SMILES. 

Synthetic 
Accessibility 
Score (SAS), 
Quantitative 
Estimation of 
Drug-likeness 
(QED), 
lipophilicity 
(logP), 

Available 
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abstracted from 
ZINC DB). 

Topological 
Polar Surface 
Area (TPSA), 
Standard 
Deviation (SD), 
and Mean 
Absolute 
Deviation 
(MAD). 

DrugAssist 
[12] 

Transformer Constructed 
MolOpt-
Instructions 
dataset 
(utilizing 
1,000,000 
molecules from 
ZINC DB). 

SMILES Success rates 
(solubility, blood 
brain barrier 
permeability 
(BBBP, and 
optimizing 
simultaneously)), 
validity, and 
average 
similarity before 
and after 
optimization. 

Available 

SGPT-RL 
[50] 

GPT 
(decoder- only 
transformer) 
with 
Reinforcement 
Learning 
(RL). 

ProteinDB 
1R4L, ZINC 
(1.9 million 
lead-like 
molecules), 
ExCAPEDB 
(8,036 unique 
anti-DRD2 
molecules, and 
56 unique 
ACE2-
inhibitors). 

SMILES Similarity to 
Nearest 
Neighbour 
(SNN), validity, 
uniqueness, and 
novelty. 

Available 

[51] Transformer Matched 
Molecular Pairs 
(MMPs) from 
ChEMBL 
(12,365 random 
molecules). 

Properties 
information. 
and 
SMILES. 

RMSE, and 
LogD. 

Not 
available 

TSMMG 
[52] 

Teacher-
Student LLM 

Teacher models 
were depended 
on. 

SMILES Validity, 
novelty, 
diversity, and 
uniqueness. 

Available 

 

Discussion 
This section discusses the findings that have been noted through this survey and focuses on the 

most followed trends through the ongoing publications on LLMs in DD. 
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LLMs for de novo Drug Design 
The first LLMs aiding the DD process where on de novo drug design tasks, depending on protein 

sequences as input to transformers. However, incorporating 3D structure information was 

noticed to enhance the quality of generated molecules. 

In Figure 2, some insights of noted trends in LLMs for de novo drug design are presented: 
 

 

Figure 2: LLMs for de novo DD trends 

 
LLMs for Drug-Target Interaction Prediction 
The most abundant publications of LLMs for DD were on DTI prediction. However, they varied 

in their adopted architecture; between encoder transformers, graph transformers, and LSTMs. 

In Figure 3, most important details in the timeline of LLMs for DTI prediction are presented: 
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Figure 3: LLMs for DTI prediction trends 

 
Masked Language Models in DD 
There were two models that depended specifically on masking strategies; one performed 

stepwise masking, while the other was random. In both cases, they resulted with better drug-

likeness and synthesizability scores. 
 
Variational Auto-Encoders in DD 
VAEs has been utilized in several models, were the best performance, producing proteins with 

customized features, and high-synthesizability was achieved when multiple information was 

provided; not depending solely on sequences. 

In Figure 4, most important details in the timeline of VAEs in DD are presented: 
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Figure 4: VAEs in DD trends 

 
LLMs for Binding Affinity Prediction 
LLMs with DTA prediction have a superior advantage over general DTI prediction models; they 

are able to differentiate types and strength of interactions, resulting with more profound 

predictions that are more likely to continue the process of DD successfully. 

 
In Figure 5, details in the timeline of LLMs for DTA prediction are presented: 
 

 

Figure 5: LLMs for DTA prediction trends 
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LLMs for Drug Repurposing 
Drug repurposing is one of the most efficient approaches that accelerates finding cure while 

minimizing costs and efforts by utilizing pre-existing resources and finding new relations. 

In Figure 6, noted details in the timeline of LLMs for drug repurposing are presented: 
 

 

Figure 6: LLMs for drug repurposing publications 

 
LLMs for Activity Prediction 
Models trained on augmented sequential and structural information yielded products of higher 

quality, even when datasets were of a smaller scale. 

In Figure 7, noted trends in publications on LLMs for activity prediction are presented: 
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Figure 7: LLMs for activity prediction trends 
 

LLMs for Molecular Optimization Tasks 
Recently, a great milestone was achieved with the ability to generate customized and novel 

molecules with desired properties pre-defined. 

In Figure 8, details of publications on LLMs for molecular optimization tasks are presented: 
 

 

Figure 8: LLMs for molecular optimization tasks trends 
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LLMs with Contrastive Learning for Drug-Target Interaction Prediction 
The introduction of contrastive learning into DTI prediction models resulted with very efficient 

improvements while only depending on protein sequences for training the models.  

In Figure 9, most important details in the timeline of LLMs with contrastive learning for DTI 

prediction are presented: 
 

 

Figure 9: LLMs with contrastive learning for DTI prediction trends 

Conclusion 
This survey is one of the first in literature to present a comprehensive review on available Large 

Language Models (LLMs) in the Drug Discovery (DD) domain. It first differentiated the various 

tasks they serve and classified the models based on that. Then, it investigated their approaches, 

methodologies, performances, and the uniqueness of each model. Following that, there was a 

comparative analysis on their architecture, used training datasets and their size, augmented 

parameters, performance evaluation metrics, and the availability of source code and data. This 

survey is an evident that LLMs are of great potential to further advance the DD process and yield 

more efficient results. However, we must be aware that the scope is large and there are many 

areas of influence that can be contributed to in future work, with a superior advantage for models 

that succeed to integrate multiple parameters, resulting with more reliable predictions. 
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