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Abstract

We present a novel integration of the ANI neural networks into the Amber soft-

ware suite, offering a sophisticated machine learning/molecular mechanics (ML/MM)

framework. The implementation is designed as a general-purpose tool for the sim-

ulation of neutral organic molecules, requiring no additional training for its use be-

yond the initial setup. The framework leverages a new ANI potential that accurately

predicts geometry-dependent atomic partial charges at the Minimal Basis Iterative

Stockholder (MBIS) level, enhancing the modeling of electrostatic interactions within

ML/MM systems. Additionally, we incorporate a polarization correction to address

the distortion effects on the ML subsystem from MM point charges. Our approach is

validated through simulations of solvation profiles, vibrational spectra, and torsion free

energy profiles of small molecules in aqueous environments, as well as protein-ligand

interactions. Our findings demonstrate that this ML/MM framework can approximate

QM/MM electrostatic embedding with significantly reduced computational demands,

paving the way for more efficient and accurate simulations in computational chemistry.
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1 Introduction

The 2013 Nobel Prize in Chemistry was awarded to Karplus, Levitt, and Warshel for their

pioneering development of a method to model interactions between a quantum mechanics

(QM) subsystem and a molecular mechanics (MM) subsystem, giving rise to the innovative

hybrid QM/MM theory.1–5 At the heart of QM/MM coupling is electrostatics, which could

be the critical component in the development of new machine learning6–12 (ML) molecular

mechanics frameworks (ML/MM).

Hybrid ML/MM models have emerged as a promising solution to integrate the high ac-

curacy of ML in predicting energy and forces13–22 of isolated systems at the QM level with

the computational efficiency of MM force fields adept at describing larger systems. Despite

being faster than QM methods, ML models are still slower than classical force fields and

often employ local descriptors23,24 with a cutoff radius, which neglects long-range interac-

tions and challenges their scalability. This limitation has catalyzed extensive research into

ML/MM frameworks, which can be divided into three main categories. The first25–27 em-

ploys a mechanical embedding strategy similar to early QM/MM methods,28 in which the

coupling energy is computed assigning a set of fixed partial charges to the ML atoms (or

any other way to approximate the electrostatic potential) and calculating the coulombic in-

teraction between those charges and the MM subsystem. The second category29–34 address

the influence of external potentials in the ML predictions by incorporating information of

the MM subsystem as an extra input of the ML model. These methods have proven to

be highly reliable in comparisons with QM/MM methods, although they require training

on data specifically derived from QM/MM level simulations, which restricts their broader

application. Finally, the third category of ML/MM methods35–37 proposes an intermediate

approach, using the ML model to predict the in vacuo energy of a system while adjusting

for environmental effects through a posteriori corrections to both ML/MM and pure ML

energy (and forces) calculations. These methods seek to achieve the sophistication of elec-

trostatic embedding,28 representing the most widely used QM/MM implementations, while
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maintaining transferability.

In a previous work37 we examined various approaches for integrating ML models with

classical molecular mechanics, specifically focusing on the use of in vacuo predicted atomic

charges38–42 within ML/MM frameworks. Our findings demonstrated that employing min-

imal basis iterative stockholder43 (MBIS) atomic charges derived in vacuo, coupled with a

simple polarization correction using fixed atomic polarizabilities, achieves excellent agree-

ment with the reference coupling energies observed in QM/MM simulations utilizing elec-

trostatic embedding.

The straightforward method to calculate MBIS charges in vacuo necessitates a fully

converged ground-state electronic density associated with the geometry of interest. Using an

ab initio method such as density functional theory (DFT) to obtain this electronic density

would, however, defeat the purpose of our proposed ML/MM scheme, since this step would

constitute the bottleneck of the method. In view of this, we decided to leverage the known

capability of the ANI13–16 architecture to accurately reproduce atomic charges,40 and trained

a novel neural network model, which we will refer to as ANI-MBIS-q, that directly predicts

MBIS charges from the local chemical environment (coordinates and atomic numbers) of

each atom, bypassing the need for the electronic density.44

The ANI-MBIS-q model was trained on precalculated MBIS charges from structures in

the ANI-2x dataset,16,45 which correspond to electronic densities converged at the ωB97X/6-

31G* level of theory46 (we note however that MBIS charges have been shown to be largely

independent of the basis set used).43 Furthermore, since ANI-MBIS-q is implemented in Py-

Torch,47 it can leverage its autograd mechanism to produce also the gradients of the atomic

charges with respect to the coordinates, which is fundamental for enabling the implementa-

tion of our ML/MM scheme.

In this work, we present and showcase the implementation of a ML/MM scheme that takes

advantage of the capability of the ANI-MBIS-q model to predict accurate atomic charges

and charge-gradients, together with that of the ANI-2x model of producing fast and accurate
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energies and forces at the ωB97X/6-31G* level of theory, by combining both together into

a single model, ANI-MBIS, and embedding it in the context of a previously thoroughly

validated ML/MM coupling approach. In addition, we introduce an interface that allows us

to use ANI-style neural networks implemented in the TorchANI15 framework, as calculators

for the QM region in QM/MM simulations performed in SANDER, the molecular dynamics

(MD) engine provided in AmberTools,48 one of the leading software-suites for biomolecular

simulations. This implementation, which is planned for inclusion in the next AmberTools

release, is efficient, in that it avoids the cost that would incur from the naive approach of

calling into Python code for every model evaluation. It also requires no familiarity with the

internals of PyTorch, or any other machine learning framework from prospective users, and

can be seamless called through the SANDER engine. We finally note that, the ANI models

being general-purpose models that perform well for a wide range of systems, our scheme can

be used without the need to train models from scratch.

This article is organized as follows: We first discuss the theory and implementation

details of our ML/MM scheme. Next, we evaluate the performance and accuracy of our im-

plementation for obtaining accurate MD simulations by the calculation of solvation profiles,

vibrational spectra, and torsional free-energy profiles of small molecules in aqueous solu-

tion. Finally, we assess our ML/MM approach’s capability to generate a physically accurate

description of protein-ligand interactions.

2 Theory

Similar to the additive QM/MM scheme,1,2,28 the total energy in our ML/MM framework,

where the ML method predicts properties in vacuo, is expressed as:

E = Evac
ML(R

ML) + ED
ML(R

ML,RMM) + EMM(R
MM) + EML/MM(R

ML,RMM) (1)

In this expression, RML and RMM represent the nuclear coordinates of atoms in the ML
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and MM region. Evac
ML is the in vacuo energy for the ML region, ED

ML represents the dis-

tortion energy that accounts for the cost of polarizing the ML region, EMM is the energy

of the MM region, and EML/MM denotes the interaction energy between the ML and MM

subsystems. This interaction energy includes a non-electrostatic contribution utilizing pre-

determined Lennard-Jones parameters for ML atoms, alongside an electrostatic component,

Eelec
ML/MM, calculated as follows:

Eelec
ML/MM =

∑
i∈MM

∑
j∈ML

qiq
vac
j (RML)

|RMM
i −RML

j |
+ EP

ML/MM(R
ML,RMM) (2)

Where qi and qvacj are the atomic partial charges of the ith MM atom and the jth ML

atom, respectively, while RMM
i and RML

j are their coordinates. The dependency of qvacj on

the coordinates of the ML atoms is indicated explicitly, as well as their in vacuo nature. The

MM qi charges, on the other hand, are fixed parameters. EP
ML/MM is the polarization energy,

adjusted for the influence of surrounding dipoles using an effective dielectric constant ε and

the polarizability of isolated atoms αfree
j :

EP
ML/MM(R

ML,RMM) = −1

ε

∑
j∈ML

αfree
j |EMM(R

ML
j ,RMM)|2 (3)

Here, we assume that each ML atom functions as an independent isotropic polarizable

center, with its associated induced dipoles being proportional to the electric field evaluated

on its coordinates, EMM, which is generated exclusively by the MM point charges.1,37 The

distortion energy, ED
ML, is then calculated as half the negative value of the polarization

energy.49–52

The only parameters that need to be assigned beforehand to the ML atoms are the

atomic polarizabilities (and Lennard-Jones ones, but this is a common practice in QM/MM

simulations, and are usually taken from MM force fields). Based on a previous study,37 the

in vacuo atomic charges for the ML region are MBIS charges, the atomic polarizabilities
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are taken from the recommended53 values of static scalar dipole polarizabilities for neutral

atoms and ε is set to 2.

3 Methodology

3.1 ANI Neural Networks

The ANI family of atomistic neural network potentials are based off the Behler-Parrinello23

architecture, with modified element-specific descriptors named Atomic Environment Vectors

(AEVs). Three previously published and validated models in this family (each consisting of

an 8 network ensemble) are available out of the box in the TorchANI library. In this article

we focus on the ANI-2x model, which can predict energies and forces for neutral molecules

with elements in the set H, C, N, O, F, S, Cl.

Directly interleaving calls to the TorchANI15 library with SANDER’s Fortran code would

be inefficient and prohibitively expensive. This is due to each call to the ML calculators need-

ing to either load the models from scratch, or communicate with a concurrent Python process.

Additionally, the Python interpreter itself introduces overhead in between each PyTorch op-

erator call, which is an extra cost on top of the usual PyTorch dispatch mechanism. To get

around this issues we decided to implement the interface as a dynamic shared object that

consists of a C wrapper over the underlying LibTorch intermediate representation executor.

Previous work40 has shown that the ANI architecture is can be extended to the prediction

the of atomic properties. Here, we use the ANI-MBIS-q model for the prediction of atomic

charges of the ML subsystem on-the-fly. This model was trained on MBIS atomic charges

corresponding to ωB97X/6-31G* electron densities, using the loss function

J (θ) =
1

M

∑
m∈D

1

Nm

∑
i

(
qi(ri, Zi, . . . , θ)− qrefi

)2
,

where M is the number of conformations in the data set D, Nm the number of atoms in
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each conformation, θ is the full vector of parameters of the model, ri, Zi, . . . represents the

dependence of the predicted atomic charge on the coordinates and atomic number of atom i

and all atoms surrounding it within a given cutoff distance (5.2 Å for the model considered

in this article), and qrefi is the corresponding reference atomic charge. This loss function

is minimized using the AdamW54,55 optimizer, with default parameters, and a per-layer

weight-decay analogous to the one used in the training procedure for the ANI-2x model.16

The network architecture and descriptor parameters are the same as those used in ANI-

2x,.16,40 The output value output from the final layer of the network, which we will call q∗i ,

is not used directly in the loss function; it is instead normalized by multiplying it with a

factor fi(q
∗
m) that depends on all values output by the atomic networks for a given molecule,

and guarantees that the sum of the atomic charges is equal to the charge of the QM region

(neutral in all the results we present in this article). We found a normalizing factor given by

fi =
(wiq

∗
i )

2∑
i (wiq∗i )

2 ,

where wi = χZ/ηZ , and χ, η are the atomic number dependent electronegativity and hardness

of atom i, taken from reference data,56 ensured good stability when training.

To further improve the efficiency and modularity of our the implementation, we took

advantage of the fact that both models that run in parallel, namely ANI-2x and ANI-MBIS-

q, use AEVs with the same parameters, and we calculate them a single time and reuse

them. The calculation of the AEVs is the bottleneck both in terms of memory usage and

computational cost, so this optimization helps the model perform with a similar cost as a

single ensemble.

3.2 Implementation of the ML/MM interface in Amber

The ML/MM framework is integrated into the extensible QM/MM SANDER interface,57

which allows the user to invoke an ML/MM simulation with ANI serving as the ML calcu-
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lator. If the ANI-MBIS model is selected, the ML/MM coupling is performed within the

embedding theory discussed above. The other ANI models (ANI-1x, ANI-2x, ANI-1cxx)

only work at the mechanical embedding level, in which the atomic charges for the ML region

are read from the topology file, and nor distortion nor polarization corrections are included.

We will focus here in the use of the ANI-MBIS model.

Figure 1 delineates the implementation pipeline and its application to perform MD sim-

ulations. The parameters for the simulation correspond to those of the topology file plus the

polarizabilities of each atom from the ML region. SANDER constructs the neighbor list for

the ML region based on the ML/MM cutoff specified by the user. The interface receives the

element and coordinates of all the ML atoms, as well as the charges and coordinates of all

MM atoms within the cutoff radius. The selected ANI model is initialized at the start of the

simulation.

At each simulation step, the ANI-MBIS model computes the energy and MBIS atomic

charges, predicting these at the ωB97X/6-31G* level of theory. The corresponding forces and

gradients are obtained by back-propagation. The ML/MM electrostatic coupling term and its

associated forces are computed by the interface, ensuring that the gradients of the predicted

MBIS charges are considered to maintain energy conservation. The interface gathers this data

and communicates with SANDER’s main code for the propagation of the nuclear coordinates.
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Figure 1: Implementation Pipeline of the ML/MM Framework in Amber’s SANDER Interface. This dia-
gram illustrates the workflow from input parameters through the molecular dynamics simulation process,
highlighting the integration of the ANI-MBIS model. Key steps include the initialization of the ANI model,
computation of energies and MBIS charges, and the subsequent calculation of forces.

3.3 Simulation Details

3.3.1 Case studies

The selection of problems was made based on popular applications of QM/MM simula-

tions, covering for example studies in aqueous solution,58,59 spectroscopy60,61 and drug dis-

covery.62,63 Specifically, we tested our ML/MM model in the following systems in aqueous

solution: (i) The solvation structure and vibrational spectra of phenol; (ii) torsion free en-

ergy profile of N-methylacetamide; (iii) The 2-dimensional free energy surface of the central

Ramachandran angles of the capped alanine tetrapeptide; and (iv) two protein-ligand com-

plexes: enzyme FKBP12 bound to an FK506 analogue64 and avidin65 bound to a biotin

analogue; the existence of both complexes is supported by experimental data,64,65 and we

chose these analogues instead of the natural ligands for being neutral compounds.

The ML subsystem was integrated by the solute in cases (i) to (iii), and by ligands in
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the case of the protein-ligand complexes.

3.3.2 General Procedures

ML/MM simulations were performed employing different embedding schemes: the polariz-

able mechanical embedding using the ANI-MBIS model (equation (2)), a mechanical em-

bedding scheme using the ANI-MBIS model without polarization and distortion correction

(but MBIS charges predicted on-the-fly), and the actual mechanical embedding with ANI-

2x, using fixed charges for the ML region, obtained from the corresponding force field (as

specified below). QM/MM reference simulations were performed using the ωB97X/6-31G*

level of theory to match the level of theory that the ANI models were trained on.

Each simulation was performed in a truncated octahedral box with about 3000 TIP3P66

water molecules for non-protein systems, and about 13000 for protein-ligand systems. The

cutoff for the MM interactions was 8.0 Å, in every case. The cutoff for ML/MM and QM/MM

interactions was 18.0 Å, for the simulations of phenol and 15 Å, for all the other systems. We

employed GAFF67 parameters when modeling phenol, N-methylacetamide and both ligands

at the MM level, using RESP68 charges from HF/6-31G* electron densities. The alanine

tetrapeptide and the two proteins where modeled using the ff19SB69 force field. Lennard-

Jones parameters used were the ones corresponding to each MM force field. In the case of

the avidin complex the starting structure corresponded to the Protein Data Bank Identifier

1AVD,70 for the FKBP complex it was 1FKH.64 The initial ligand structures were achieved

in both cases by simply removing atoms from the original ligands, this approach is validated

by the high structural similarities between the ligand-analogue pairs (both analogues be-

ing smaller than the ligands) and has been used before for these same complexes.71 Missing

hydrogen atoms were added in Modeller,72 ensuring the ligand remained neutral. All simula-

tions were performed with our ML/MM and ANI codes integrated in AmberTools24, and the

QM/MM simulations employed the existing interface with Gaussian09.73 The system prepa-

rations were made with LEaP,74 antechamber, and parmchk275 tools from AmberTools24.
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Dynamics visualizations and molecular drawings were performed with VMD,76 version 1.9.3.

3.3.3 Systems preparation

For the non-protein systems, a step-wise protocols was employed to relax the system, con-

sisting on a short minimization followed a 20 ps long thermalisation to 300 K in the NVT

ensemble (constant amount of substance, volume and temperature), and a 50 ps long MD

simulation in the NPT ensemble (same as NVT but constant pressure instead of volume,

set to 1 bar) to reach a stationary density value. In the case of the protein complexes, the

heating was performed in 2 ns, and the NPT MD simulation was 4 ns long. These relaxation

simulations were performed using the Berendsen thermostat and barostat.77 All simulations

were run using the SHAKE algorithm78 for keeping the bonds involving hydrogen still, with

the exception of the full MM phenol simulations. In all the cases, the heating and equili-

bration protocols were performed treating the whole system at the MM level. Production

runs were performed in the NVT ensemble using the Langevin thermostat,79 with a collision

frequency of 5 ps−1. The ML/MM production runs were performed starting from the last

frame of the equilibration protocol. In the case of phenol, the time step was 0.5 fs and the

system was also simulated in vacuo, for further comparison. The ML/MM simulations of the

N-methyl-acetamide, the alanine tetrapeptide and the protein complexes used a time step

of 1 fs, and the corresponding MM simulations a time step of 2 fs. In every case in which

QM/MM simulations were performed for comparison, the time step was the same as in the

ML/MM case.

3.3.4 Radial distribution functions and vibrational density of states

Solvation profiles were obtained as radial distribution functions (RDF) from 50 ps long

NVT simulations of phenol in water, at the MM, ML/MM and QM/MM levels, using CPP-

TRAJ.80 The temporal trace of the O-H distance was also obtained with CPPTRAJ for

further analysis. Vibrational density of states (VDOS) were computed to determine the O-H
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stretching wavenumber by computing the Fourier transform of the derivative of the C-O

distance temporal trace, using https://github.com/JonathanSemelak/VDOS.

3.3.5 Umbrella sampling simulations

The torsion free energy profile of N-Methylacetamide C-C-N-C dihedral angle was obtained

by performing umbrella simulations at the MM, ML/MM and QM/MM levels, using 50 ps

long NVT simulations (300 K) for every case but the QM/MM simulations (for which 5 ps

long ones were used). Starting structures for each window were obtained from a steered

molecular dynamics simulations. A force constant of 200 kcal/(mol rad2) was used in each

case and windows were spaced by 5 degree each.

For the alanine tetrapeptide, the 2-dimensional free energy surface corresponding to its

central Ramachandran angles was obtained. Windows were separated by 6 degrees. The

starting structures for each window were obtained starting from a previously equilibrated

structure by performing a short MD simulation with a force constant of 50 kcal/(mol rad2).

Sampling on each window used a 125 kcal/(mol rad2) force bias. Simulations were performed

both at the MM and ML/MM levels using 50 ps long NVT simulations. No QM/MM

simulations were performed in this case due to the prohibitive amount of QM simulations

needed in order to obtain the free energy surface.

The final free energy profile and free energy surfaces were obtained with the umbrella

integration method (UI).81,82

3.3.6 Analysis of protein-ligand interactions

The performance of our ML/MM implementation for modeling protein-ligand interactions

was evaluated by comparing 2 ns long ML/MM and MM trajectories for the FKBP12 com-

plex, in terms of complex stability and the presence of relevant protein-ligand interactions.

For the avidin complex, given the smaller size of the ligand in comparison with the FKBP12

complex, we evaluated the accuracy of the predicted protein-ligand interaction energy by
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comparing it to actual QM/MM calculations. Single point QM/MM calculations were per-

formed on frames took from a 10 ns long ML/MM production run, and the electrostatic

coupling energy (i.e. the electrostatic protein-ligand interaction), was compared to that ob-

tained at the ML/MM level. For comparison, the interaction at the MM level was computed

for the same structures. The non-electrostatic component of the interaction was omitted in

the analysis since its values are equal for all methods.

4 Results and discussion

4.1 Solvation and vibrational spectrum

We begin by presenting the simulation of a single phenol molecule in aqueous solution (Fig-

ure 2, panel A). Phenol was chosen because its -OH group participates in hydrogen bonding,

offering a simple yet informative solvation structure, along with a vibrational spectrum that

is particularly sensitive to its environment.

Panel B illustrates the solvation structure through radial distribution functions. The

first solvation shell peak is accurately reproduced at the QM/MM level only when the full

ML/MM embedding is used, incorporating on-the-fly predicted MBIS charges with distortion

and polarization corrections. In contrast, the MM/MM simulation (i.e. fully MM) shows

a lower and broader first solvation shell peak, centered at larger distances. The radial

distribution function from the ML/MM simulation using force field charges for the ML/MM

region (labeled ML/MM (ME) in the figure) closely resembles that of the MM/MM case.

These results underscore the importance of precisely predicting the electrostatic potential

of the ML region for capturing solute-solvent interactions. Since solvation patterns beyond

the first solvation shell may require longer simulations, our comparison is limited to the first

shell.

Panel C presents the vibrational spectrum obtained from the vibrational density of states

of the O-H stretching mode. Results for an isolated, in vacuo, molecule are also shown to
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assess the ML/MM implementation’s ability to capture the characteristic red shift of phenol

in an aqueous environment. This diagnostic feature was chosen because the peak positions

in vibrational spectra reveal subtle properties of the potential energy surface, particularly

its curvature around local minima.

For the O-H stretching peak, the QM and ML simulations (in vacuo) place it around

∼3800 cm−1, consistent with prior reports of the ANI-2x model’s accuracy in reproducing

organic molecule vibrational modes. The introduction of water shifts the peak to lower energy

(red shift) by ∼400 cm−1 at the QM/MM level, indicating a decrease in the curvature of

potential energy surface along the O-H mode. While subtle, this shift is still captured by

our ML/MM implementation. The agreement is semi-quantitative, showing a ∼300 cm−1

red shift, but it surpasses the performance of the ML/MM (ME) level. In contrast, the full

MM simulations exhibit the O-H stretching peak around ∼3000 cm−1 for both the isolated

and solvated cases.

4.2 Free energy

Thermodynamic information is often derived from MD simulations based on the ergodic

hypothesis, which assumes that a sufficiently long simulation will sample a representative

population of states. From these, free energy differences can be inferred by analyzing the

probability of the system occupying each state. To demonstrate that our ML/MM implemen-

tation can accurately reproduce realistic phase spaces (and thus realistic free energy land-

scapes) we computed the free energy profile for the C-N bond rotation in N-Methylacetamide

(Figure 3, Panels A and B) and generated Ramachandran plots for the alanine tetrapeptide

in water (Figure 3, Panels C and D).

For N-Methylacetamide, both the ML/MM implementation relying on MBIS charges

and the simpler ML/MM (ME) approach showed good agreement with reference QM/MM

simulations (Figure 3, Panel B). Even though longer simulations may be necessary for the

QM/MM case for a more accurate comparison, the differences in barrier heights and free
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Figure 2: Solvation analysis and vibrational spectrum of phenol in water. (A) Snapshot of a phenol molecule
in aqueous solution. (B) Radial distribution functions illustrating the solvation structure around the -OH
group. Results are shown for QM/MM, full MM, and ML/MM simulations with different embedding schemes.
(C) Vibrational density of states (VDOS) for the O-H stretching mode, comparing simulations of phenol in
solution to the isolated molecule (in vacuo). The red shift observed in the aqueous environment is captured
at the QM/MM and ML/MM levels, with differences in accuracy between embedding methods.

energy changes between the methods were within ∼2 kcal/mol. We hypothesize that the

absence of significant deviations at the ML/MM (ME) level may be due to minimal changes

in solvation patterns throughout the process. However, the free energy profile obtained from

the MM/MM simulations was notably different.

Ramachandran plots depict the free energy landscape associated with the φ and ψ dihe-

dral angles of peptides, which are critical in evaluating conformational changes in proteins.

Since these conformational shifts are largely governed by dihedral angle changes, accurately

modeling the free energies of these angles is essential for reliable protein simulations. In our

study, we explored the free energy surface corresponding to the central Ramachandran angles
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of the alanine tetrapeptide in water (Figure 3, Panel D), comparing ML/MM and MM/MM

results. We selected alanine tetrapeptide as it was one of the peptides used in parametrizing

the Amber ff19SB force field, which was also applied here. Remarkably, the key secondary

structure minima were consistent across the ML/MM and MM/MM surfaces. These minima

include: right-handed α-helix, left-handed α-helix, polyproline II and β-strand, as showed

on Figure 3.

Due to the relatively large size of alanine tetrapeptide, the extensive sampling required

for a 2-dimensional umbrella sampling at the QM/MM level was not feasible. To verify

whether the identified minima align with those from QM/MM, we conducted 1 ps long

QM/MM simulations, treating the tetrapeptide at the QM level and starting from each

identified minimum. These simulations confirmed that the structures remained stable near

their respective minima, indicating that these minima are also present in the QM energy

landscape. Furthermore, similar profiles obtained for alanine dipeptide at the same QM/MM

level36 show reasonable agreement with our ML/MM profiles.

4.3 Protein-ligand interactions

The use of MD-based methods for predicting protein-ligand interactions is a common practice

in computational biology. A key challenge in these approaches is balancing accuracy and

computational efficiency, especially since drug screening is one of the primary applications.

Binding energy is largely influenced by changes in the ligand’s conformation due to its

interaction with the protein environment, as well as the interaction energy between the

protein and ligand. To assess the performance of our ML/MM implementation for mod-

eling protein-ligand interactions, we conducted both MM and ML/MM simulations of the

FKBP12 enzyme (a cis-trans peptidyl-prolyl isomerase) in complex with a FK506 related

ligand (Figure 4, panels A and B).

Both ML/MM and MM/MM simulations exhibited stable root mean square deviation

(RMSD) values throughout the simulation, with the ML/MM system showing slightly greater
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Figure 3: Free energy profiles and conformational analysis of N-Methylacetamide and alanine tetrapeptide
in water. (A) Snapshot of a N-Methylacetamide molecule in water. (B) Free energy profile for the rotation
of the C-N bond in N-Methylacetamide at the QM/MM, ML/MM, and MM/MM levels. The ML/MM
and ML/MM (ME) methods show good agreement with the reference QM/MM profile, with differences in
barrier heights and free energy changes within ∼2 kcal/mol. (C) Snapshot of the alanine tetrapeptide in
water. (D) Ramachandran plot displaying the free energy surface for the φ and ψ dihedral angles of the
alanine tetrapeptide, with ML/MM and MM/MM simulations showing consistent locations of key secondary
structure minima, including right-handed α-helix, left-handed α-helix, polyproline II, and β-strand.
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flexibility (not shown). We focused on 13 key protein-ligand contacts identified from previous

studies.71 Hydrophobic contacts were defined for three regions of the ligand: the pipecolyl

ring, the phenyl ring, and the tertiary pentyl fragment (Figure 4, panel A). A contact was

considered present if the distance between these regions and the side chain of the correspond-

ing amino acid was 4 Å or less. For hydrogen bonds, a distance of 3 Å or less between the

acceptor and the donor hydrogen was used as a cutoff.

We analyzed uncorrelated frames from both ML/MM and MM simulations to identify

hydrophobic contacts between the tertiary pentyl fragment and Ile56, Leu97, Tyr82, and

Ile90; between the phenyl ring and His87, Ile56, and Tyr82; and between the pipecolyl ring

and Phe46, Tyr26, Trp59, and Phe99. Additionally, we identified hydrogen bond interactions

between O1 and O4 with Ile56 and Ile91, respectively. Hydrogen bonds were observed in

nearly all frames, and the number of hydrophobic contacts was similar across both trajecto-

ries (Figure 4, panel B).

In the case of the avidin complex (Figure 4, panel C), we quantitatively evaluated the ac-

curacy of our ML/MM implementation for protein-ligand interaction energies. From the 10

ns ML/MM simulation, 200 uncorrelated frames were extracted for single-point energy cal-

culations at the MM/MM and QM/MM levels. The electrostatic interaction energy between

the protein and ligand, Eelec
PL , was calculated at the ML/MM level as Eelec

ML/MM + ED
ML. For

the QM/MM level, this was obtained by subtracting the energy of a mechanical embedding

calculation from that of an electrostatic embedding calculation, accounting for interactions

between the electronic density and MM point charges as well as distortion effects. At the

MM/MM level, a simple coulombic interaction was used. As shown in Figure 4, panel D, the

ML/MM electrostatic interaction energies aligned more closely with QM/MM results than

with MM/MM calculations.

These findings indicate that our ML/MM approach can produce stable simulations while

offering a physically accurate representation of protein-ligand interactions, highlighting its

potential for use in in-silico drug design experiments.
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Figure 4: Protein-ligand interaction analysis for FKBP12 and avidin complexes. (A) A snapshot of the
FKBP12 complex (excluding water molecules for clarity) in complex with the FK506-related ligand, highlight-
ing the ligand fragments (pipecolyl ring, phenyl ring, and tertiary pentyl fragment) involved in hydrophobic
interactions. (B) Histogram of hydrophobic contacts between key ligand fragments and surrounding amino
acids from the ML/MM and MM simulations. (C) Snapshot of the avidin complex. (D) Electrostatic inter-
action energies between the protein and ligand in the avidin complex, calculated at the ML/MM, QM/MM,
and MM/MM levels from 200 uncorrelated frames extracted from the 10 ns ML/MM MD simulation.
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5 Conclusions

In this work, we introduced a novel ML/MM framework that integrates ANI neural networks

with the AmberTools software suite, enabling accurate simulations of molecular systems

with significantly reduced computational cost compared to traditional QM/MM approaches.

Our method exploits the ANI-MBIS model for the on-the-fly prediction of MBIS atomic

charges and incorporates polarization and distortion corrections, allowing for a more accurate

representation of electrostatic interactions within the ML/MM systems. The implementation

within the AmberTools software suite ensures seamless integration into existing workflows.

Our results demonstrate that this framework can effectively reproduce free energy profiles,

solvation structures, and vibrational spectra in aqueous environments, showing good agree-

ment with QM/MM simulations. Additionally, the method successfully captures key features

in protein-ligand interactions, with ML/MM predictions aligning closely with QM/MM cal-

culations for electrostatic energies, particularly in the avidin complex.

The ML/MM framework presented herein is designed as a general-purpose tool for the

simulation of neutral organic molecules, requiring no additional training for its use beyond

the initial setup. This feature makes it highly accessible and versatile for a wide range of ap-

plications in computational chemistry. Furthermore, we anticipate that this implementation

will serve as a foundation for future developments in ML models, with potential extensions

to simulate charged species and chemical reactions in ML/MM frameworks.

Data Availability Statement

The software developed for this work will be available in future AmberTools releases.
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