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Abstract 
 

Zeolites are industrial catalysts and adsorbents whose synthesis usually employs specific 

molecules known as organic structure-directing agents (OSDAs). The OSDA’s templating 

effect is pivotal in determining the zeolite polymorph formed and its physicochemical 

properties. However, de novo design of selective OSDAs is challenging because of the diversity 

and size of the zeolite-OSDA chemical space. Here, a computational workflow powered by 

machine learning enables an exhaustive exploration of the OSDA space for known zeolites. 

Models were developed to predict molecule-zeolite binding energies and trained on hundreds 

of thousands of datapoints, the largest ever library of synthetically accessible, hypothetical 

OSDA-like molecules was enumerated from commercially available precursors, and nearly 

500 million zeolite-molecule pairs were screened. From these, two new OSDAs were identified 

and validated experimentally to template zeolites with unique compositions. The nearly 

exhaustive scale of the OSDA library and open-access data are expected to accelerate OSDA 

design for the entire field.  
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Introduction 
 

Zeolites are microporous, crystalline materials that are used in industrial separations1 and 

catalysis2. While some occur naturally as minerals, the majority are synthesized using 

hydrothermal processes, often requiring the presence of an organic structure directing agent 

(OSDA) molecule to facilitate the crystallization of specific zeolite frameworks3,4. OSDAs are 

crucial for selectively driving the synthesis of a particular framework against other polymorphs, 

and also for influencing the  density and placement of aluminum in aluminosilicate zeolites5,6, 

which act as Brønsted acid catalytic sites. The aluminum distribution then impacts the reactivity, 

selectivity and stability of zeolites in industrial and environment applications5,7.  

 

After decades of experimental efforts, about 1000 molecules have been reported in the 

synthesis of over 200 known frameworks.8,9 Finding new OSDAs is key to both synthesizing 

new zeolites and tuning the properties of known ones such as modulating the concentration or 

positions of heteroatoms like aluminum or germanium.4,5 In particular, increasing Si/Al ratios 

generally improves the hydrothermal stability of zeolites for catalytic applications10, while 

lowering Si/Al ratios (i.e. below 5) increases their cationic exchange capacity, which is useful 

in adsorption and catalytic processes requiring metal-exchanged catalysts5. General heuristics 

have been gathered for relating OSDA properties and the pore topology of the frameworks they 

template, but fully first-principles understanding of templating remains elusive because of the 

complexity of zeolite nucleation and growth.  

 

De novo design of OSDAs is thus challenging. A common strategy relies on performing 

relatively affordable force-field calculations of the binding energetics between fully formed 

zeolite pores and molecules, under the assumption that zeolite-molecule interactions provide a 

strong thermodynamic driving force during crystallization. Earlier instances of such 

approaches focused on very small molecular libraries and a single framework11–15, and often 

suffered from low predictive power since they ignored the possibility of forming secondary 

products. Larger-scale studies in recent years have progressed to encompass phase competition 

by considering multi-molecule and multi-zeolite selectivity metrics and resulted in highly 

predictive, experimentally validated OSDA-zeolite pairings9,16–18. 
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However, these selectivity-oriented studies have been limited in scale. Determining selectivity 

requires calculating the full interaction matrix of all molecules and all zeolites under 

consideration. Thus, existing work has been constrained to targeting known zeolites (~220) and 

repurposing molecules within the space of already-known OSDAs (~1000)9,17.  

 

In this work, we utilize machine learning (ML) to extend the paradigm of selectivity analysis 

into uncharted chemical space by evaluating the matching between all known zeolites (~220) 

and all possible ammonium OSDAs that can be made from commercial amines and halides 

(~2,000,000) (Fig. 1a). ML models were trained on framework-molecule binding affinities and 

used to evaluate hundreds of millions of framework-molecule pairs, from which OSDA 

candidates were filtered, confirmed by high-throughput simulations and validated in the lab. 
19,20 (Fig. 1b). The thorough nature of the enumerated library, the scale enabled by ML, and the 

open-sourced data and tools provide a comprehensive mapping of zeolite-OSDA selectivity for 

the broader community.  

 

Results 

Chemical space of hypothetical OSDAs 
 

While different OSDA families have been employed in the synthesis of zeolites4,21, ammonium 

cations are by far the most extensively used OSDAs. The scientific and patent literature show 

that ammonium OSDAs range from 50 to 650 Å3 in volume and must be soluble and stable 

during synthesis. These constraints allowed us to design a library of OSDA-like molecules 

using reaction-driven enumeration, which provides a baseline guarantee of chemical validity 

and synthesizability. We can then utilize high throughput screening to select OSDA candidates 

for targeted frameworks.  

 

We started by gathering a list of amines and halides from commercial suppliers (Supplementary 

Section 1.1). 543,174 monoquaternary and 1,793,915 diquaternary ammonium compounds 

were created using in silico nucleophilic aliphatic substitution reactions between the amines 

and halides (Fig. 2a; Methods). Both pools of molecules cover a wide range of synthesizability, 

cost, and novelty ranges (Fig. 2b-d; terms defined in Methods). The enumerated molecules are 

diverse, with the monoquaternary and diquaternary libraries containing 7,407 and 29,357 

distinct Murcko scaffolds22 respectively (Supplementary Figures 1-3).  
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Binding affinity prediction model 
 

The binding affinities between molecules and frameworks were estimated through three 

prediction tasks. The first task classifies whether a molecule can fit (binding, 𝑏 = 1) or not 

(non-binding, 𝑏 = 0) in a framework’s cavities. The second task predicts the difference in 

energies between the framework-molecule complex and the individual components,   

𝐸 = 	𝐸!"#$%&'( − 𝐸&'( − 𝐸!"#$(*)	. (1) 

𝐸 measures the strength of the interactions between molecules and frameworks as a proxy for 

the molecule’s ability to template the framework. Combining the binary classifier and energy 

regressor outputs gives the binding energy, which we denote as 𝐵𝐸 to differentiate from the 

predicted energy 𝐸: 

𝐵𝐸, = 𝑓(𝐸, , 	𝑏,)	. (2) 

𝑓 refers to the method of combining the 𝑏 and 𝐸 predictions. We tested all possible 𝑓 across 

both single model predictions and predictions from an ensemble of five models (𝑏: single 

model, min/mean/max logits, mode; 𝐸: single model, min, mean, max; 𝐵𝐸: single model, min, 

mean, max) and found that averaging an ensemble of 𝐵𝐸  predictions achieved the best 

performance (Fig. 2a-c, Methods and Supplementary Table 6). With Equation 2, both molecular 

fit and binding energetics are captured by a single scalar 𝐵𝐸. Using 𝐵𝐸 over 𝐸 alone improved 

the root mean squared error (RMSE) of predicted 𝐵𝐸 from 1.143 to 1.069 kJ/ mol Si and 

achieved excellent framework ranking per molecule (Fig. 2c-d, Supplementary Figure 7 and 

Supplementary Table 3). From 𝐵𝐸, the competition energy (𝐶𝐸) of each framework-molecule 

pair can be computed to measure phase competition (Methods). 

 

The last task is a multiclass classification of the molecule loading per unit cell, 𝑙-.. 𝑙-. 	allows 

for conversion of the binding energy to a per-molecule basis: 

𝐵𝐸	 1
𝑘𝐽

𝑚𝑜𝑙	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
9 = 𝐵𝐸 1

𝑘𝐽
𝑚𝑜𝑙	𝑆𝑖

9 ×
𝑁",
𝑙-.

	 , (3) 

which can be used as another measure of binding affinity. Separate models were trained for 

each task, since it was observed that a multitask model afforded lower performance.   

 

To screen a large chemical space, informative representations of both the framework and 

molecule are required. We curated a set of physically interpretable features (labelled as 
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“physical”) leveraging the geometric nature of the prediction tasks and consisting mostly of 

descriptors of the global molecular shape and flexibility (Methods). The information-dense and 

task-relevant “physical” framework and molecule feature sets gave the most consistent 

performance across all three tasks, compared to other, more abstract representations 

(Supplementary Figures 8-9). Based on SHapley Additive exPlanations (SHAP) analysis23, the 

models generally relied on molecular volume and correlated features such as surface area, in 

keeping with empirical observations (Supplementary Figure 11). For a given zeolite, the 

models were able to generalize accurately to novel, unseen molecules. However, the models 

did not generalize well across frameworks (Supplementary Figure 10). This is a common 

observation in the related field of substrate-ligand binding affinity prediction24 and arises from 

the difficulty of characterizing the “negative space” of the pore in comparison to featurization 

of molecular geometry. In addition, the dataset of zeolite frameworks is smaller and more 

heterogeneous. Further method development will be needed for extending the approach to 

novel zeolite frameworks. 

 

When using computations to guide experiments, quantifying the prediction uncertainty 

provides a measure of reliability. Using standard deviation 𝜎,,01  as a metric of uncertainty, we 

found that lower model accuracy generally correlated with higher uncertainty (Fig. 3f). The 

predictions also captured the opposite trend for dense frameworks, where the ease of predicting 

𝑏 = 0 increases with larger, more out-of-distribution (OOD) molecules. We also observed that 

our model captured meaningful regions of uncertainty. Boundary points exhibited higher 

epistemic uncertainty where the molecule has a very snug fit in the framework pores, due to 

dissenting predictions of 𝑏 (Fig. 3e, CHA). Aleatoric uncertainty was also higher for small 

molecules (Fig. 3e, LTA), reflective of the fact that each data point is a static snapshot of many 

possible packing arrangements on a relatively flat energy landscape.  

Zeolite-OSDA genome 
 

With a large dataset of predicted binding energies, we can construct a “binding energy 

fingerprint” from 𝐵𝐸 s to known OSDAs for each framework. Qualitatively, we observed 

experimental trends when we clustered these fingerprints by their relative similarity 

(Supplementary Figure 12). For instance, pairs of frameworks that are in phase competition 

with each other, such as MFI/MEL, ISV/BEC, and CHA/AEI, are close to each other in the 

dendrogram. KFI, which shares a molecule-occupiable lta cage with LTA, UFI and RHO but 
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contains a smaller molecule-occupiable pau cage, is separated from the latter three frameworks 

in the dendrogram (Supplementary Figure 12).  

 

We also evaluated the distribution of predicted binding energies for the hypothetical OSDA 

space. Different frameworks have different ranges of 𝐵𝐸 values, which can bias the model 

predictions. In the training data,	the best 𝐵𝐸 is -29.83 kJ/ mol Si for IRR, compared to -10.20 

kJ/ mol Si for DDR. Consequently, when counting the frequency of frameworks that are 

predicted to be the best framework for each molecule, only 9 and 22 unique frameworks were 

observed for the monoquaternary and diquaternary libraries respectively (Supplementary 

Tables 6 - 10). Unsurprisingly, most of these frameworks have training data points with 𝐵𝐸 

stronger than -20 kJ/ mol Si. Structurally, we observed that many of these frameworks require 

germanium or other heteroatoms, are zeotypes, or are not stable upon OSDA removal. The 

presence of specific composite building units (CBUs) did not explain why these frameworks 

have stronger 𝐵𝐸s than others in both predictions and ground truth (Supplementary Figures 

13-14). As our docking workflow carries out docking by packing multiple copies of a single 

conformer into a zeolite, we hypothesize that the frameworks with high 𝐵𝐸 points have pore 

geometries that allow energetically favorable packing of similar conformers. Furthermore, 

factors beyond 𝐵𝐸 influence synthesis outcomes, such as framework stability and framework 

interactions with inorganic cations25, which are not considered in this work. Other data nuances 

are discussed in Supplementary Section 4.1. In subsequent prediction and filtering steps, the 

down-selection filters are designed to account for these biases in our predictions (Methods).  
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Screening OSDAs for known frameworks 
 

We showcase two experimentally validated case studies that leveraged our de novo OSDA 

screening workflow to select OSDA candidates for templating two frameworks, ERI and 

CHA26,27, with new chemical compositions that break current synthesis limitations. 

High-silica ERI 
 

ERI is a small pore zeolite with large eri cavities (Fig. 4a) that is traditionally prepared using 

diquaternary OSDAs such as OSDA-ERI-1 and OSDA-ERI-2 (Fig. 4c) in the presence of K+ 

cations 28–30. It is well established that the OSDA and K+ cations stabilize the eri cavities and 

the can cages respectively30. The organic and inorganic cations introduce high positive charges 

that usually limit the final Si/Al ratios to 5-628–30 and thus zeolite stability under harsh reaction 

conditions. Using monoquaternary OSDAs would help to reduce the positive charges and 

increase the Si/Al ratio. For instance, Xie has achieved Si/Al ratios of 6.1-7.631 using 1,3-

dicyclohexylimidazolium (OSDA-ERI-3, Fig. 4c). 

 

With our workflow, we evaluated all hypothetical monoquaternary molecules on ERI and other 

frameworks. We used 𝐵𝐸 and 𝐶𝐸 cutoffs to reduce the initial library of 543,174 molecules by 

18-fold to 29,504 molecules (Fig. 4b). Synthesizability, stability, novelty and cost filters were 

then applied to maximize molecular stability and optimize for diversity and affordability 

(Methods). We limited the final pool to 50 molecules or less to make docking feasible. The 

selected pool of molecules (Fig. 4b) was docked and optimized, and re-ranked with the force 

field 𝐵𝐸 and 𝐶𝐸 (Supplementary Figure 17). Mol-ERI-1 (Fig. 4d), which to our knowledge has 

never been reported for use in zeolite synthesis before, displayed the best metrics for ERI 

(Supplementary Figure 17). To compare, variants of Mol-ERI-1 were also docked 

(Supplementary Figure 18). We verified that Mol-ERI-1 was the best performing molecule, 

implying that the screening workflow was able to discern 𝐵𝐸 differences from small changes 

in the molecular structure. We further found that Mol-ERI-1 has stronger energies than OSDA-

ERI-3 (Supplementary Figure 18), potentially suggesting a larger synthesis window. 

 

Based on these results, we attempted synthesis of ERI using Mol-ERI-1, as well as Mol-ERI-4 

for comparison (Fig. 4d). For both molecules, we obtained well-crystallized ERI materials (Fig. 

4e; Methods; Supplementary Section 6-8 and Supplementary Figure 29a), but the synthesis 
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window was larger for Mol-ERI-1 than Mol-ERI-4 (Supplementary Figure 27). The resultant 

ERI(Mol-1) zeolite has a Si/Al ratio of 12.3, higher than both traditional diquaternary OSDAs 

that template ERI (5-6) as well as ERI(Mol-4) (7.7), which corroborated with the computed 

𝐵𝐸s and 𝐶𝐸s (Supplementary Table 11).  

 

To evaluate how increasing Si/Al ratios can improve stability, we used selective catalytic 

reduction (SCR) of NOx as a model reaction. Cu-containing, high-silica small pore zeolites are 

intensively used as catalysts to reduce NOx gases in light-duty diesel applications32,33. These 

catalysts need to be stable at high temperatures in the presence of steam. We compared 3 wt.% 

Cu-exchanged ERI zeolites made from OSDA-ERI-1 and Mol-ERI-1 for SCR applications. 

Both fresh Cu/ERI materials initially showed high SCR performance for most reaction 

temperatures, but Cu/ERI(Mol-1) presented significant resistance against catalyst deactivation 

compared to Cu/ERI(OSDA-1) when subjected to severe ageing treatments in 10% steam at 

750°C for 13 h (Fig. 4g). 

Al-rich, Na-free CHA 
 

CHA is another small pore zeolite containing cha cavities (Fig. 5a). Contrary to ERI, 

monoquaternary OSDAs are typically used to produce CHA with Si/Al ratios above 10. The 

signature OSDA is N,N,N-trimethyladamantammonium34  (OSDA-CHA-1 in Fig. 5c), 

although simpler molecules have also been used (OSDA-CHA-2 and OSDA-CHA-3 in Fig. 5c) 
9,35 . In recent years, Al-rich compositions with low to intermediate Si/Al ratios of 4-6 have 

been desired as catalysts in NOx emissions control in heavy-duty diesel applications32,36–38. 

However, a Si/Al ratio of 5 indicates two Al species per cha cavity, requiring both alkali Na+ 

cations and monoquaternary OSDAs to balance the 2+ charge36–38. Post-synthetic treatments 

are then necessary to remove the alkali cations as they adversely affect catalytic performance 

in metal-containing zeolites39,40. We sought to find a diquaternary OSDA that would eliminate 

the use of Na+ and enable simpler, one-pot syntheses of metal-containing, Al-rich CHA. 

 

We used the same workflow as with ERI, although the exact 𝐵𝐸, 𝐶𝐸 and molecular volume 

thresholds were determined via CHA’s characteristic 𝐵𝐸 − 𝑉2(3 plot (Fig. 5b). Filtering for 

strong 𝐵𝐸 and 𝐶𝐸 reduced the initial library of 1,793,915 diquaternary molecules by 768-fold 

to 2,333 molecules. The remaining filters produced 27 molecules (Fig. 5b). Based on force 

field energies, we first selected Mol-CHA-3 and Mol-CHA-6 as representative molecules 
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containing 2/3-C aliphatic and piperazine scaffolds respectively (Fig. 5d and Supplementary 

Figure 19). Mol-CHA-6 in particular has been described for CHA synthesis, but in a dual-

OSDA system combined with OSDA-CHA-1, and always with Na+ 41. Under the single-OSDA 

synthesis conditions we explored, both molecules were found to degrade during synthesis 

(Supplementary Figure 28).  

 

We then selected Mol-CHA-13, which not only showed competitive 𝐵𝐸 and 𝐶𝐸 (Fig. 5b and 

Supplementary Figure 18), but also contains a rigid bicyclic octahydropyrrolo[3,4-C]pyrrole 

scaffold that could prevent molecule degradation under synthesis conditions. With Mol-CHA-

13, we were able to synthesize Al-rich CHA under Na+-free conditions (Supplementary Figure 

28) with an Si/Al ratio of 4.9. Both zeolite crystallinity (Fig. 5d) and OSDA stability (Fig. 5e 

and Supplementary Table 11) were confirmed. The successful synthesis then motivated one-

pot synthesis of metal-containing, Al-rich CHA zeolite under Na-free conditions. We used Mol-

CHA-13 and ~1 wt.% Fe to synthesize Fe/CHA(Mol-13) (Supplementary Section 7.2.3), 

obtaining tetrahedrally-coordinated Fe species as measured by UV-Vis spectroscopy (Fig. 5g-

h). To compare, we prepared Fe/CHA(OSDA-1) with OSDA-CHA-1 and Na+ in a one-pot 

synthesis with the same Fe content (Supplementary Section 7.2.4). In their fresh forms, both 

Fe/CHA catalysts worked well for SCR of NOx with NH3, but Na-free Fe/CHA(Mol-13) 

displayed substantially improved performance over all reaction temperatures after ageing with 

steam at 600°C for 13 h (Fig. 5g). We surmised that the degraded performance in 

Fe/CHA(OSDA-1) was due to the presence of Na+, which facilitated excessive Fe 

oligomerization to form large, inactive iron oxide species, as indicated by a broad shoulder in 

the UV-Vis spectrum at and above 300 nm for the aged Fe-CHA(OSDA-1) sample42 

(Supplementary Figure 32b). 

 

The success in finding OSDA candidates for CHA and ERI from an enormous library of 

ammonium compounds demonstrates the strength of the screening workflow. At the same time, 

the synthesis outcomes of Mol-CHA-3 and Mol-CHA-6 showed that the suitability of OSDA 

candidates requires consideration of other factors such as their stability under synthesis 

conditions. We encourage the community to leverage and build on our data and tools to screen 

OSDA candidates for targeted frameworks (Supplementary Section 5.3).  
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Discussion 
 

Computational cost and lack of data have traditionally limited OSDA design. In this work, we 

have created an exhaustive database of OSDA-like molecules and executed the largest ever 

computational screening for OSDAs. Our end-to-end computational workflow incorporates 

domain expertise and a suite of open-source computational tools, and was experimentally 

validated with two case studies. We have described nuances in our results to guide the 

community in interpreting and utilizing our open-sourced tools and predictions.  

 

Future development of the workflow will focus on the zeolite representation to extend the 

predictive models towards more novel zeolites in a reliable manner in a data-efficient manner. 

Where more data is required, intelligent methods of sampling the unexplored chemical space 

will help to speed up the development time of improved models.  

 

Currently, the timescale of experiments limits the scope of framework-molecule pairs we can 

test in the lab. As the community moves towards more high throughput experimentation 

methods, the data gained from screening multiple OSDAs selected through rational design will 

be valuable for improving existing tools and informing about the framework-molecule 

matching problem. Meanwhile, other components of the synthesis recipe also require rational 

design, which recent work has started to address8.  

 

With progress in synthesis planning methods and data, we will also move towards better, 

quantitative understanding of the role OSDAs play in zeolite crystallization. Further data 

analysis could reveal insights into whether it is factors such as OSDA solubility and cost that 

hinder synthesizability of a new framework, or if the laws of physics play a greater role. Our 

work is another step towards tackling the long-standing challenge of finding synthesis recipes 

for zeolites that have never been made before.  

 

Methods 
OSDA enumeration 
 

We reacted amines and halides together using SMILES arbitrary target specification (SMARTS) 

language to form monoquaternary and diquaternary ammonium compounds. Azines were 
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removed due to instability under synthesis conditions. Molecules with more than 24 heavy 

atoms were also removed due to solubility limitations. Following previous work9, we 

enumerated all possible stereoisomers, since different stereoisomers can have different shapes 

and volumes. 

 

We then computed both model inputs and molecular properties (synthesizability, novelty and 

cost) used for down-selection (see Screening section below) for each molecule. To characterize 

the molecules’ synthesizability, we computed the SA Score as proposed by Ertl43. The 

synthesizability score penalizes molecular fragments that are not widely observed in PubChem, 

thus favoring molecules that have been synthesized before. As a measure of novelty, we 

computed the maximum Tanimoto similarity between 1024-bit Morgan fingerprints of the 

hypothetical molecule and all known OSDAs as a similarity score. The lower the similarity 

score, the higher the novelty. The cost per mol of each molecule was naïvely computed by 

adding up stoichiometric ratios of the amines and halides used to form them. While the cost 

can act as a proxy for synthesizability (as does the SA Score), we note that it involves several 

simplifications. The cost does not take into consideration alternative, cheaper reagents and 

reaction pathways, other reagents costs, and separation costs. The prices are also not indicative 

of bulk amount prices nor the country of origin.  

 

Docking pipeline 
 

The docking pipeline was used to both generate data for training the models, and for refinement 

of predicted binding affinities from screening of the hypothetical molecules. Following 

previous work9,44, we used RDKit45 to generate molecular conformers, relaxed the conformers 

with the MMFF94 force field46, and docked them in frameworks with the VOID library19. Two 

framework-molecule poses for each of the top 5 loadings for each framework-molecule pair 

were saved and optimized with the Dreiding force field47 in GULP48, assisted by the GULPy 

library49. The binding energy between the docked molecules and the framework was then 

computed using the frozen pose method, which has been described and benchmarked in 

previous work20.  
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Binding affinity prediction models 

Data 
 

We curated a dataset of 614,263 framework-molecule pairs, using 2,974 molecules from 

literature9 and generative models in previous work16, and 216 experimentally known 

frameworks. 353,593 pairs are binding, which means that 1) the molecule was able to dock 

within the framework and 2) the binding energy computed was negative but above -35 kJ/mol 

Si. The lower bound is used to exclude unphysical systems where molecules formed unphysical 

bonds with the framework atoms during optimization. Preliminary tests found that models 

trained on only the poses from the Voronoi docking algorithm tended to underestimate the 

binding affinities. As such, we supplemented the dataset with poses from Monte Carlo docking, 

choosing the lowest energy pose regardless of docking algorithm for each pair. The molecule 

loadings were normalized by unit cell, and each discrete value was assigned to a class for 

classification. We used 46 classes to categorize loadings 𝑙-. ranging from 0 to 19 

(Supplementary Table 2).  

 

This dataset was split 8:1:1 by stereoisomers into the training, validation and test datasets. The 

five models in the ensemble were trained by varying the data within each training and 

validation datasets such that each model sees a completely different validation dataset. The test 

dataset is held constant across all five models. Supplementary Table 1 and Figures 4-5 describe 

the distribution of labels for each model and task. 

 

We also curated two other datasets based on random selection of 2,293 hypothetical 

monoquaternary and 3,692 diquaternary molecules docked in randomly selected frameworks. 

The test, hypothetical monoquaternary, and hypothetical diquaternary datasets were used to 

investigate OOD performance of the models.  

 

Molecule and framework representations 
 

For the molecules, physical, WHIM50, and GETAWAY51,52 descriptors as well as Morgan 

fingerprints were generated using RDKit45 and averaged across all generated conformers (with 

a maximum of 20 conformers generated per molecule).  
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For the frameworks, Zeo++53 was used to compute the physical descriptors as well as the pore 

size distribution (PSD) and stochastic ray tracing histograms (“Ray”). Some of these features 

are sensitive to the probe radius. As the prediction tasks concern pores and channels large 

enough to fit molecules, computations requiring a probe radius as input followed Jones’ 

recommendation of probe radius = 1.0 Å to exclude molecule-inaccessible spaces but capture 

subtleties in pore geometries sufficiently54. Observing that no peaks appear in the PSD above 

30.0 Å for all considered frameworks, all PSDs were truncated at 30.0 Å and normalized to the 

same total number of counts across frameworks.  

Model development 
 

XGBoost55 and multilayer perceptron (MLP) models (feedforward neural networks) were 

considered during preliminary studies to compare tree-based and deep learning methods. As 

MLPs both performed better and allow continuous training for future applications, they were 

used in subsequent model training (Supplementary Table 3 and Figure 6). Separate MLP 

models were trained on each of the 3 prediction tasks, with the loss functions described below. 

Both binding energies and input features were scaled using standard scaling.  

 

A preliminary hyperparameter tuning with baseline physical feature sets for both molecules 

and frameworks was used to determine suitable architectures for each task. The 

hyperparameters were then fixed during feature set selection. Hyperparameter tuning was done 

with Bayesian optimization using SigOpt56. With the “physical” molecular and “physical” 

zeolite feature sets selected from feature selection, inference over and analysis of the 

hypothetical molecules were performed with an ensemble of five models for each prediction 

task using the splits described above. 

 

The loss function for the energy regression task used a mean squared error (MSE): 

𝐿1 =
1
𝑁45

BC𝐸,,56'7 − 𝐸,,86-'D
9

:!"

,;<

			 , (4) 

where 𝑁45 is the number of framework-molecule binding pairs and 𝑖 is a specific framework-

molecule pair. The binary classification task used binary cross-entropy loss as a loss function:  

𝐿4,=>6? =
1

𝑁5>,6@
B 𝑏, logC𝑝4,=7,=*D + (1 − 𝑏,) logC1 − 𝑝4,=7,=*D

:"#$%&

,;<

, (5) 
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where 𝑏 = 0  for non-binding pairs and 𝑏 = 1  for binding pairs. For the loading 

multiclassification task, the labels were a one-hot encoding of the classes. Hence, a mean 

squared error (𝐿A"1) was added to the usual cross-entropy loss (𝐿B1) to train the model to 

predict loadings closer to the real loading than further away: 

𝐿3(>7,=* = 𝐿B1 + 𝛼𝐿A"1 , (6) 

where 

𝐿B1 =	
1
𝑁45

NB B 𝑙,C,.3>@@ logC𝑝,CD
A'(#&&)&

C;<

:!"

,;<

O (7) 

and 

𝐿A"1 =
1
𝑁45

BQ𝑙,C,.3>@@ − argmax
C

C𝑝,CDV
9

,

:!"

,;<

(8) 

 

where 𝑙,C,.3>@@ is the true class label and equates 1 for a molecule-framework pair 𝑖 with loading 

class 𝑗 and 0 otherwise. 𝛼 is a hyperparameter, and a value of 0.1 was found to work well for 

stable training and loss minimization.  

 

The competition energy 𝐶𝐸  was computed by subtracting the 𝐵𝐸  of the second-best 

framework from the 𝐵𝐸 of each framework for a given molecule. Hence, for a given molecule, 

the best performing framework has 𝐶𝐸 < 0 kJ/ mol Si, the second-best framework has a 𝐶𝐸 =

0 kJ/ mol Si, and all other frameworks have a positive 𝐶𝐸. We computed 𝐶𝐸 over the 216 

frameworks considered in this work.  

 

After investigating ensembling methods (see Results and Supplementary Table 6), we chose to 

use Equation 4 with an ensemble of five models to predict 𝐵𝐸: 

𝜇01$ =
1

𝑁2(7'3@
	 B C𝐸,C 	× 	𝑏,CD
:*+,)(&

C;<

		 , 𝑗 = 1,… ,𝑁2(7'3@	, (4) 

where 𝑖 is a framework-molecule pair and 𝑗 is the 𝑗-th model. The ensemble uncertainty of a 

framework-molecule pair can be approximated by the standard deviation of 𝐵𝐸, as 

𝜎,,01 = \
1

𝑁2(7'3@
B C𝐵𝐸,C − 𝜇01$D

9
:*+,)(&

C;<

		, 𝑗 = 1,… ,𝑁2(7'3@. (5) 
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Screening 
 

The following filters were applied for both case studies: an upper threshold of -10 kJ/ mol Si 

for 𝐵𝐸 and 4 kJ/ mol Si for 𝐶𝐸, molecular volume cutoffs based on minima in the framework-

characteristic 𝐵𝐸 − 𝑉2(3 plots, a maximum number of 5 rotatable bonds, a similarity score of 

0.8 or lower (lower scores indicate greater novelty), a synthesizability score of 5 or lower 

(lower scores indicate higher synthesizability), and exclusion of molecules with functional 

groups that are unstable under synthesis conditions or difficult to synthesize (such as 3- and 4-

membered rings, aromatic nitrogens, double bonds and stereocenters). An additional price filter 

of 50,000 USD/ mol was used to reduce the pool of molecules to a size amenable to docking 

for CHA, while a more stringent filter of 100 USD/mol was needed for ERI to achieve a 

sufficiently small pool of molecules. 

 

Experiments  

High-silica ERI 
 

Synthesis of ERI with Mol-ERI-1 and Mol-ERI-4 were carried out under conditions described 

in Supplementary Sections 6-7. The formation of well-crystallized ERI was confirmed with 

powder X-ray diffraction (PXRD) (Fig. 4d and Supplementary Figure 29a). Si/Al ratios were 

determined through inductively coupled plasma (ICP) spectroscopy. Elemental analysis of 

ERI(Mol-1) indicated a C/N molar ratio of ~15, suggesting occluded Mol-ERI-1 molecules 

within the as-prepared ERI(Mol-1) sample remained intact after crystallization (Supplementary 

Table 11); this is further confirmed by 13C MAS NMR spectroscopy (Fig. 4f). The 27Al MAS 

NMR spectra of the as-prepared ERI(Mol-1) sample showed the exclusive presence of 

tetrahedrally-connected Al species, as indicated by the sole signal centered at ~50 ppm 

(Supplementary Figure 30). The quantification of the occluded Mol-ERI-1 molecules by 

combining thermogravimetric and elemental analyses indicated an average encapsulation of ~1 

Mol-ERI-1 molecule per eri cage (Supplementary Table 11). 

Al-rich CHA 
 

Synthesis of CHA with Mol-CHA-13 was carried out under conditions described in 

Supplementary Sections 6-8. The formation of well-crystallized CHA was confirmed with 

PXRD (Fig. 5e). Si/Al ratios were determined through ICP spectroscopy. Elemental analysis 
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of CHA(Mol-13) indicated a C/N molar ratio of 5.1 (Supplementary Table 11); this is further 

confirmed by 13C MAS NMR spectroscopy (Fig. 5f). The 27Al MAS NMR spectra of the as-

prepared CHA(Mol-13) sample showed the exclusive presence of tetrahedrally-connected Al 

species, as indicated by the sole signal centered at ~50 ppm (Supplementary Figure 30). The 

quantification of the occluded Mol-CHA-13 molecules by combining thermogravimetric and 

elemental analyses indicated the average encapsulation of ~1 Mol-CHA-13 molecule per cha 

cage (Supplementary Table 11). 

 

Data availability 
 

The code for developing the machine learning models, analyzing predictions and screening can 

be found at https://github.com/learningmatter-mit/zeobind. All training and validation data, 

experimental data, hypothetical molecule data as well as predictions made over the entire 

known zeolite – hypothetical molecule space, can be found at Materials Data Facility57.  
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Extended data figures  

 
Fig. 1: a) Matrix of zeolite frameworks – molecule pairs (not drawn to scale) showing the 
difference in chemical space size between known OSDAs and unexplored hypothetical 
ammonium compounds. b) Schematic of computational workflow for OSDA screening. 
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Fig. 2: a) Example of reaction scheme to form an ammonium compound. b) Plots of 
synthesizability score (SA Score) (left) and cost of hypothetical molecules (right) against 
similarity score (lower similarity scores indicate greater novelty). c) Six cheapest 
monoquaternary molecules with similarity score < 0.55. d) Six cheapest diquaternary 
molecules with similarity score < 0.55. e) Distributions of predicted 𝐶𝐸s of best-performing 
framework per molecule for hypothetical monoquaternary (above) and diquaternary molecules 
(below). f) Principal component analysis (PCA) plots of different sets of molecules. The train, 
validation and test sets are split by stereoisomers and scaffolds. Hyp.: Hypothetical; 1+: 
Monoquaternary; 2+: Diquaternary. 
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Fig. 3: Performance of the ensemble of NNs. a) Parity plot of predicted against true 𝐵𝐸 for the 
test set. b) Distribution of per-molecule Spearman rank correlation coefficients, which 
measures how well the model ranks frameworks for a given molecule. The dotted line indicates 
the mean value. c) Performance metrics of best ensembling method on the test set (see Results 
and Supplementary Table 6 for comparison of ensembling methods). d) (Above) True 
distribution of 𝐵𝐸. (Below) Distributions of predicted 𝐸 and 𝐵𝐸. e) 𝐵𝐸 − 𝑉2(3 plots for the 
LTA (left) and CHA (right) frameworks, colored by the prediction uncertainty (𝜎01). f) Error 
(left) and uncertainty (right) across increasingly out-of-distribution (OOD) sets of molecules, 
categorized by framework pore sizes in two ways. The first method is through the largest 
included sphere diameter (𝐷DE"): very small sphere: < 4 Å; small sphere: (4 Å, 6 Å); medium 
sphere: (6 Å, 9 Å); large sphere: > 9 Å. The second method is through largest ring size of the 
framework: small ring: < 8 T sites; medium ring: 8 – 10 T sites; large ring: > 10 T sites. 
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Fig. 4: Schematic for OSDA screening for ERI. a) 3-D diagrams of the validated OSDA 
(Mol-ERI-1) occluded inside the eri cage. b) Predicted 𝐵𝐸 − 𝑉2(3 plot, colored by predicted 
𝐶𝐸. ML = Machine learning predictions. Dataset = training, validation and test datasets. 
Hypothetical = hypothetical monoquaternary molecules with predicted 𝐵𝐸 < -10 kJ/ mol Si 
and predicted 𝐶𝐸 < 4 kJ/ mol Si. Selected = Hypothetical monoquaternary molecules selected 
for docking and optimization. c) Known OSDAs that template ERI. d) Experimentally tested 
hypothetical molecules for the synthesis of ERI. Molecules from both c) and d) are colored 
by common scaffold (see Supplementary Figure 17 for the full pool of ML-selected 
molecules and their labels). e) PXRD diffractogram of as-synthesized ERI prepared with 
Mol-ERI-1 as OSDA. f) 13C MAS NMR and liquid 13C NMR of the as-prepared ERI(Mol-1) 
zeolite and Mol-ERI-1 molecule. g) NO conversion for the NH3-SCR of NOx reaction using 
Cu/ERI(Mol-1) (purple triangles) and Cu/ERI(OSDA-1) (blue squares) catalysts in their fresh 
form (filled symbols) and after ageing at 750°C in steam (empty symbols). 
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Fig. 5: Schematic for OSDA screening for CHA. a) 3-D diagrams of the validated OSDA 
(Mol-CHA-13) occluded inside the cha cage. b) Predicted 𝐵𝐸 − 𝑉2(3 plot, colored by 
predicted 𝐶𝐸. ML = Machine learning predictions. Dataset = training, validation and test 
datasets. Hypothetical = hypothetical diquaternary molecules with predicted 𝐵𝐸 < -10 kJ/ 
mol Si and predicted 𝐶𝐸 < 4 kJ/ mol Si. Selected = Hypothetical diquaternary molecules 
selected for docking and optimization. c) Known OSDAs that template CHA. d) 
Experimentally tested hypothetical molecules for the synthesis of CHA. Molecules from both 
c) and d) are colored by charge and common scaffold (see Supplementary Figure 19 for the 
full pool of ML-selected molecules and their labels). e) PXRD diffractogram of as-
synthesized CHA and Fe-CHA prepared with Mol-CHA-13 as OSDA. f) 13C MAS NMR and 
liquid 13C NMR of the as-prepared CHA(Mol-13) zeolite and Mol-CHA-13 molecule. g) NO 
conversion for the NH3-SCR of NOx reaction using Fe-CHA(Mol-13) (purple triangles) and 
Fe-CHA(OSDA-1) (blue squares) catalysts in their fresh form (filled symbols) and after 
ageing at 600°C in steam (empty symbols). 
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