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ABSTRACT: The use of bio-based polymers is a promising approach to reduce reliance on petrochemicals. In addition, depolymerization is 
attracting significant attention for the breakdown of polymers at their end-of-life or to achieve specific stimuli-responsive functions. However, 
the design of polymers incorporating both of these features remains a challenge. Herein, we report a new class of self-immolative polymers 
based on lignin-derived aldehydes via thiol-ene click polymerization. These polymers can be further used in polymer-polymer coupling to access 
block copolymers. Moreover, diverse responsive end-caps can be introduced through post-polymerization functionalization from a single pol-
ymer precursor. These bio-based self-immolative polymers undergo cascade degradation in response to specific stimuli through alternating 1,6-
elimination and cyclization reactions. 

Synthetic polymers with extraordinary properties shape our mod-
ern life.1 However, the current production of polymers, mostly de-
rived from fossil resources, follows an unsustainable model, over-
looking their adverse outcomes and their end-of-life fate.2, 3 An im-
mense and growing accumulation of polymer waste is leading to a 
global plastic pollution crisis, presenting serious health and environ-
mental concerns.4, 5 While enhanced waste management and recy-
cling  can contribute to addressing these pressing challenges, the de-
velopment of bio-based sustainable polymers derived from renewa-
ble resources with intrinsically embedded degradability can also play 
a crucial role.6-8 Carefully designed degradable polymers have been 
developed for advanced applications, such as controlled drug deliv-
ery, tissue engineering, and chemical recycling.9-11 To this end, the 
creation of bio-based polymers whose degradation can be selectively 
activated by external stimuli is of great significance. 12-17 

Over the past couple of decades, self-immolative polymers (SIPs) 
that undergo end-to-end depolymerization in response to specific 
stimuli, have been gaining increasing attention.18-22 Due to their se-
lective and amplified responses to stimuli, SIPs are currently recog-
nized as an emerging class of materials for a range of applications 
such as sensing,18, 23 nanolithography,24, 25 controlled release,26-29 and 
recyclable plastics.20, 30 Current syntheses of SIPs rely on either step-
growth polymerization of precursors containing self-immolative 
spacers (Figure 1a) or chain-growth polymerization to obtain back-
bones with low ceiling temperature.20, 22 With the exception of a re-
cent report from our group, 31 end-capping has typically been per-
formed in situ. Both synthetic approaches involve non-ambient con-
ditions (i.e., high or ultralow temperature), moisture sensitivity, and 
difficulty in modular end-functionalization.20, 22 Moreover, the step-
growth approach generally necessitates the use of protecting or acti-
vating groups within the monomers and thus generates side prod-
ucts, compromising atom economy (Figure 1a).20, 22 Therefore, it is 
highly desirable to develop highly efficient strategies to readily ac-
cess functionalizable SIPs under ambient conditions. 

 
Figure 1. (a) Construction of previously reported SIPs via step-growth 
polymerization and in situ end-capping; (b) bio-based SIPs via thiol-ene 
click polymerization and post-polymerization thiol-ene functionaliza-
tion with varying end-caps in this work.  After end-cap removal, depoly-
merization occurs by an alternating 1,6-elimination and cyclization cas-
cade. 

The radical-mediated thiol-ene addition reaction has emerged as 
a versatile click process for surface and polymer functionalization,32 
polymer and network synthesis,33-35 and the formation of complex 
materials and bioconjugates.36-38 For example, Hawker et al. de-
scribed the synthesis of dendrimers using thiol-ene click chemistry 
to construct the backbone and functionalize the peripheral groups.39 
Additionally, polythioethers were effectively constructed via thiol-
ene click polyaddition of α,ω-alkylene thiols.40-42 Motivated by these 
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designs and recent reports on self-immolative elimination to gener-
ate thiols,43-45 we report the synthesis of bio-based SIPs with varying 
stimuli-sensitive end-caps via thiol-ene click chemistry (Figure 1b). 
These SIPs exhibit selective depolymerization upon stimuli-medi-
ated end-cap removal.  
Scheme 1. (a) Syntheses of monomers M1-M4 and their corre-
sponding polymersa and (b) Structures of model compounds 
MC1-MC4.  

 
a Reagents and conditions: (i) allyl chloroformate or vinyl chlorofor-

mate, Et3N, THF; (ii) NaBH4, MeOH; (iii) MsCl, Et3N, THF; (iv) 
KSAc, acetone; (v) HCl, MeOH, reflux; (vi) DMPA (5 mol%), solvent, 
UV light. 

First, a polymer based on lignin-derived syringaldehyde was pre-
pared, with a three-carbon spacer between the thioether and car-
bonate. A bifunctional monomer, M1 with allyloxycarbonyl (Al) and 
benzyl thiol moieties was synthesized (Scheme 1). Then, UV-
actuated thiol-ene polymerization in the presence of photoinitiator 
2,2-dimethoxy-2-phenylacetophenone (DMPA) was conducted to 
generate polymer Al-P1, whose chemical structure was confirmed 
using 1H and 13C NMR spectroscopy (Figure 2a; Figures S9,S10). 
Size exclusion chromatography (SEC) in THF showed a number av-
erage molar mass (Mn) of  ~5.8 kg/mol  and a dispersity (Ð) of 2.84, 
typical for a step-growth polymerization(Figure 2b and Table 1). 
The high thiol end-group fidelity for Al-P1 was verified by the suc-
cessful polymer-polymer coupling with acrylate-terminated 
poly(ethylene glycol) (PEG-Acrylate) through thiol-Michael addi-
tion click reaction46 to afford Al-P1-b-PEG (Figure 2b; Figure S14).  

 
Figure 2. (a) Stacked 1H NMR spectra of monomer M1 and Al-P1. (b) 
Thiol-Michael addition click reaction between Al-P1 and PEG-Acrylate 
afforded block copolymer Al-P1-b-PEG.  

 
Table 1. Reaction conditions and molar mass data for thiol-ene polymerizations of M1 – M4a 

Entry Monomer Solvent [M]0 (mol/L) Time (h) Polymer Mn (kg/mol)b Ðb 
1 M1 CHCl3 2.0 1 Al-P1 5.8 2.84 
2 M2 THF 1.0 4 Vi-P2a 9.7 3.43 
3 M2 MeCN 1.0 4 Vi-P2b 5.9 2.44 
4 M2 DMSO 1.0 4 Vi-P2c 4.1 2.41 
5 M2 THF 2.0 4 Vi-P2d 10.3 3.26 
6 M3 THF 1.0 4 Vi-P3 7.7 5.20 
7 M4 THF 1.0 4 Vi-P4 ISc / 

a DMPA was used as an initiator (5 mol% relative to monomer) under UV light at 25 oC. b Determined by THF SEC calibrated using poly(methyl 
methacrylate) (PMMA) standards. c IS denotes insoluble.  
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With both Al-P1 and Al-P1-b-PEG in hand, their degradation 
profiles were evaluated upon end-cap cleavage of the allyloxycar-
bonyl with tetrakis(triphenylphosphine)palladium(0) (Pd(0)) 
under different conditions in the presence of N-methylaniline 
(NMA) as the allyl group scavenger47 and the base 1,8-diazabicy-
clo[5.4.0]undec-7-ene (DBU) to promote the deprotonation of 
generated thiol moieties. Note that nucleophilic NMA can also 
trap the reactive quinone methides generated during 1,6-elimina-
tion. However, the degradation of these polymers discontinued af-
ter removal of Al and only one 1,6-elimination with generation of 
one new thiol moiety, as revealed by 1H NMR spectroscopy, re-
gardless of the conditions (i.e., different fractions of D2O in 
DMSO-d6; Figures S15-S19). These results indicated that the cy-
clization reaction of the thiol group on the carbonate to obtain a 
six-membered ring product was unfavorable,48 impeding further 
depolymerization. Motivated by this observation and previous re-
ports on self-immolative linkers,48, 49 we synthesized small mole-
cule model compounds with two- and three-carbon spacers be-
tween sulfur and the carbonyl group (Scheme 1b) to elucidate the 
effect of spacer length on the cyclization reaction.  

Model compounds MC1 and MC2 with three- and two-carbon 
spacers between sulfur and carbonyl moiety, respectively, were 
synthesized (Schemes 1b, S3; note: 4-nitrophenyl carbamate is 
more stable than 4-nitrophenyl carbonate, which allows monitor-
ing of the degradation using NMR spectroscopy). When MC1 was 
subjected to Pd(0) in the presence of NMA and DBU, only the 
thiol intermediate was formed without generating reporter mole-
cule 4-nitroaniline, even 7 days (Figure S28). In contrast, MC2 
showed complete degradation, generating 4-nitroaniline quantita-
tively after 24 h under identical conditions (Figure S30). These re-
sults confirmed that the spacer length determines the propensity 
of cyclization and that the elimination-cyclization sequence pro-
ceeded efficiently for MC2. Cyclization presumably occurs much 
more rapidly with the two-carbon spacer due to the formation of 
the three-membered thiirane, in agreement with previous work 
(Scheme S10).48 Encouraged by these results, two additional 
model compounds MC3 and MC4 from lignin-derived vanillin 
and 4-hydroxybenzaldehyde, respectively, were prepared to probe 
the electronic effects on the elimination reactions (Schemes 1b, 
S4). The relative rates of liberation of 4-nitroaniline after Pd(0) 
triggering followed the order MC2>MC3>MC4 (Figures 
S30,S44,S46,S48), suggesting an acceleration effect from electron-
donating methoxy substituents, which could be explained by more 
favorable dearomatization to facilitate the 1,6-elimination.50-52 Fa-
vorably, MC2 and MC1 with two methoxy substituents also exhib-
ited the highest stability in the absence of Pd(0), which can be ex-
plained by the strong steric hindrance around the carbonate link-
age (Figures S29,S31,S45,S47,S48).  

We then sought to prepare a new class of SIPs containing the 
same structural units as MC2-MC4 to evaluate their depolymeri-
zation performance. Thus, three monomers, M2-M4 containing 
vinyloxycarbonyl (Vi) and benzyl thiol moieties were designed 
and synthesized (Scheme 1). Subsequently, photo-initiated thiol-
ene click polymerization was conducted to generate polymers 
(Scheme 1). Taking the polymerization of M2 as an example, dif-
ferent solvents and monomer concentrations were screened. THF 
was a good solvent to afford Vi-P2a with a Mn of 9.7 kg/mol when 
the initial concentration of M2 was 1.0 M (Table 1). A higher ini-
tial concentration of M2 (2.0 M) in THF led to formation of Vi-
P2d with a slightly higher Mn of 10.3 kg/mol, which is characteristic 
of step-growth polymerization (Figures S81-S83). The thermal 
properties of Vi-P2d were assessed by thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC). Vi-P2d had 
relatively high thermal stability with a decomposition temperature 
(Td, 5% weight loss) above 220 oC (Figure S87a) and a glass tran-
sition temperature (Tg) around 64 oC (Figure S87b). Thiol-ene 
polymerization of M3 in THF generated Vi-P3 with a Mn of 7.7 
kg/mol (Figures S84-S86). Multiple attempts to obtain thiol-ene 
polymer from M4 failed as only insoluble product was obtained, 
for reasons that are not clear at this time. A one-pot synthesis of a 
block copolymer was also attempted via thiol-ene polymerization 
of M2 in the presence of allyl ether-terminated PEG (PEG-Allyl 
ether),42 successfully producing Vi-P2e-b-PEG as confirmed by 
both 1H NMR and SEC characterization (Figures S90,S91).  
Scheme 2. Thiol-ene click end-functionalization toward vari-
ous triggerable self-immolative polymers. 

 
To obtain thiol-ene polymers from M2 and M3 with stimuli-re-

sponsive depolymerization capabilities, post-polymerization thiol-
ene modification was performed (Scheme 2). A fluoride ion-sensi-
tive tert-butyldimethylsilyl (TBS) ether end-cap was efficiently in-
corporated into both Vi-P2b and Vi-P3, affording TBS-P2 and 
TBS-P3, respectively. In addition, thiol-sensitive thioacetate (TA), 
reduction-sensitive 4-nitrobenzyl thioether (NB), and non-re-
sponsive control benzyl thioether (Bn) end-caps were also intro-
duced onto Vi-P2b to produce TA-P2, NB-P2, and Bn-P2 respec-
tively, suggesting the generalizability of this post-polymerization 
functionalization method. 1H NMR spectroscopy and SEC anal-
yses confirmed the resulting polymer structures (Figures S92 - 
S101). 
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Figure 3. DMF SEC traces for (a) TBS-P2 and (b) Bn-P2 upon incu-
bation with TBAF (3 equiv. relative to end-cap), DBU (3 equiv. rela-
tive to repeating units), and NMA (3 equiv. relative to repeating units) 
in DMF at 25 oC. The inset in (a) shows the reduction of Mn for TBS-
P2 in the presence of TBAF, DBU, and NMA. A polystyrene standard 
with Mn of 179 kg/mol was used as an inert reference for SEC analysis.  

We next sought to evaluate the triggered depolymerization pro-
files of the SIPs. SEC was first employed to probe the degradation 
of TBS-P2 in DMF upon treatment with tetra-n-butylammonium 
fluoride (TBAF) in the presence of DBU and NMA. A progressive 
shift from high to low molar mass was observed, and the Mn de-
creased to ~1.4 kg/mol after 48 h from the initial ~6.2 kg/mol 
(Figure 3a). The controlled degradation of TBS-P2 upon exposure 
to TBAF was also supported by 1H NMR analysis in DMF-d7 (Fig-
ure S102). Moreover, the proposed degradation product was 
clearly observed by ESI-MS analysis, showing a peak correspond-
ing to NMA-trapped quinone methide (Figure S103). To further 
confirm the effect of spacer length between sulfur and the carbonyl 
moieties on the depolymerization, TBS-P2 was dissolved in a mix-
ture of DMSO-d6 and D2O (10/1, v/v) and then treated with 
TBAF in the presence of NMA and DBU. With the exception of 
the stimulus, these are the same conditions that had been used in-
itially to evaluate the depolymerization of Al-P1. 1H NMR spectro-
scopic monitoring of the TBS-P2 depolymerization under these 
conditions clearly showed a decrease of backbone methylene sig-
nals and concomitant increase of small molecule products gener-
ated by trapping of the reactive quinone methide with NMA and 

water (Figure S104, see full details in the Supporting Information). 
This result contrasted with the hindered degradation of Al-P1 after 
triggering (Figures S15,S16), confirming the importance of the 
linker length.  

The desired degradation response is important, but the absence 
of nonspecific degradation is equally crucial. Thus, control poly-
mer Bn-P2 was exposed to TBAF in the presence of DBU and 
NMA in DMF. No degradation was detected after 48 h (Figure 3b), 
corroborating the specific depolymerization imparted by the reac-
tivity of the end-cap. In addition, TA-P2 and NB-P2 showed simi-
lar degradation profiles as TBS-P2 when actuated by β-mercap-
toethanol (βME) and reduction (Zn/HOAc), respectively (Fig-
ures S105-S107). TBS-P3 underwent rapid degradation under the 
conditions used to depolymerize TBS-P2 (Figure S108a). How-
ever, a very significant background degradation was also observed 
for the corresponding non-responsive control Vi-P3 (Figure 
S108a). These degradation results clearly highlight the importance 
of strong steric hindrance in stabilizing the syringaldehyde-derived 
SIPs (P2) against undesired background degradation, without 
compromising their desired stimuli-responsive depolymerization. 

In summary, bio-based polymers were synthesized via thiol-ene 
click polymerization of monomers derived from lignin-derived al-
dehydes. These polymers were used in polymer-polymer coupling 
to efficiently access block copolymers via thiol-Michael addition 
click reaction. Moreover, diverse thiol-containing stimuli-reactive 
end-caps were readily introduced into a single bio-based polymer 
precursor via thiol-ene click reaction, providing a general approach 
to access triggerable SIPs. The syringaldehyde-derived SIPs in par-
ticular underwent cascade depolymerization through alternating 
1,6-elimination and cyclization reactions upon selective removal 
of their end-caps, while exhibiting high stability in the absence of 
stimuli. Overall, this work opens a new avenue for designing bio-
based polymers with stimuli-triggered degradability via highly effi-
cient click reactions. The exploration of applications of these bio-
based SIPs are underway in our lab.  
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