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Abstract 

We evaluate the ability of machine learning to predict whether a hypothetical crystal structure can be synthesized 

and explain those predictions to scientists. Fine-tuned large language models (LLMs) trained on a human-readable 

text description of the target crystal structure perform comparably to previous bespoke convolutional graph neural 

network methods, but better prediction quality can be achieved by training a positive-unlabeled learning model 

on a text-embedding representation of the structure. An LLM-based workflow can then be used to generate human-

readable explanations for the types of factors governing synthesizability, extract the underlying physical rules, 

and assess the veracity of those rules. These text-based models can be adapted to specialized cases where less data 

exists by transfer learning, demonstrated for the case of perovskites. 

 

Introduction 

Advancements in computational chemistry and machine learning (ML) have enabled the design and 

engineering of promising materials with desired properties.1-10 While the discovery of promising virtual materials 

has accelerated, the success in experimental validation remains time-consuming.11,12 To bridge this gap, research 

has been conducted to limit the exploration to synthesizable materials during the material design process.13-17 In 

the field of inorganic materials, thermodynamic energy-based predictions for synthesizability and stability have 

long been used as crude estimations.18-23 However, these energy-based predictions often miss many metastable 

candidate materials and fail to account for materials that are energetically stable yet remain unsynthesized. This 

indicates that such predictions do not adequately reflect the various complex factors influencing synthesizability. 

Recently, data-driven approaches based on accumulated synthesized materials have been investigated.24-29 These 
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studies have aimed to address the issue using positive-unlabeled (PU) learning, with considering synthesized 

materials as positive and not-yet-synthesized materials as unlabeled data.30,31 Notably, in the domain-specific 

perovskite structures, transfer learning has been effectively employed to achieve accurate synthesizability 

predictions.32,33 

However, these data-driven methods have the limitation that the underlying chemical insights used by 

the machine to predict synthesizability cannot be well understood.34 Understanding the crucial factors that 

contribute to synthesizability, rather than simply making predictions, can significantly aid in more feasible 

materials design. In the field of computer vision, several explainable AI (XAI) techniques have been proposed to 

understand machine’s reasoning for their predictions.35,36 However, in the field of materials chemistry, such studies 

are challenging to implement, requiring the need for further research into deep explainability. 

Most recently, large language models (LLMs) trained on extensive bodies of literatures have been 

actively employed to address a variety of chemistry and materials science tasks.37-45 One powerful approach is to 

customize pre-trained, general purpose foundation models by fine-tuning them on a small number of examples of 

a specific task.46 Recent work has shown that fine-tuned LLMs can achieve performance comparable to existing, 

complex, bespoke machine learning models for a variety of tasks in organic47-49 and inorganic50,51 chemistry, and 

is the subject of recent comprehensive benchmarking studies.52,53 

Previously, we showed how fine-tuned LLM could be used to predict inorganic synthesizability and 

synthesis precursors given only compositional information.50 However, different structures of the same 

composition (i.e., polymorphs) can have vastly different properties, and in most cases, the goal is to synthesize a 

particular polymorph. Here, we extend the previous work to consider the synthesizability of specific inorganic 

crystal structures. We compare fine-tuned LLMs which use a text description of the target crystal structure, models 

constructed using the LLM-embedding representation of that text, and the latest bespoke graph-neural network 

ML models for this task. We show how to use the LLM to generate explanations of the synthesizability for 

individual target structures, as well as summarize key factors that generally contribute to synthesizability, and 

show how to assess the model confidence of those claims. Additionally, we demonstrate the effectiveness of 

transfer learning techniques, using the specific example of perovskite structures, thereby extending the training 

and fine-tuning methodologies within the LLM field. 

 

Results and Discussion 

General synthesizability prediction 

For given general inorganic structural information, the task is to determine whether a structure is 

synthesizable or not. This is a positive and unlabeled (PU) problem, where we know already-synthesized (positive) 

and not-yet-synthesized (unlabeled) structures. We closely followed the previous work24,50 and began with the 

Materials Project (MP)54 crystal database retrieved in March 2024, which consists of 60,959 synthesized structures 
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and 94,402 hypothetical structures. To convert these CIF-formatted structural data into textual data which can be 

readable as LLM input prompts, we used Robocrystallographer,55 an open-source toolkit for generating text-based 

descriptions of crystal structures. Some examples of this conversion are shown in Figure S1 in the Supporting 

Information. In this work, we used MP30 data (where the number of unique atomic sites in a unit cell is ≤ 30 in 

the entire MP data) to prevent the text descriptions from becoming too lengthy and exceeding the maximum token 

limit for LLM input. Similarly, we discarded data where the string length of the text description exceeded 10,000 

characters. Accordingly, a total of 100,195 text-described structural data, which consists of 38,347 synthesized 

and 61,848 hypothetical materials, were prepared, and 20% of the positive and unlabeled data were sampled as a 

hold-out test dataset for assessing model performance. 

We fine-tuned the OpenAI GPT-4o-mini model for the general synthesizability prediction task, following a 

strategy similar to our previous work.50 Detailed descriptions of the model, prompt, and fine-tuning process are 

in the Supporting Information. (We also performed parallel experiments using the previous GPT-3.5 base model, 

but the results were inferior in all cases; see Table S3 and Table S4.) We designed two types of fine-tuned LLM: 

StructGPT is provided with stoichiometric formula information with structural description, and StoiGPT contains 

only stoichiometric information and no structural description. (The general principles of the latter model were 

described in our recent paper,50 but here it is retrained and tested on the current dataset with a new GPT base-

model.)  We compared this to two-types of binary PU-learning classifiers methods: The PU-CGCNN model uses 

a previously graph-based crystal representation;24 this was retrained with the current dataset. The PU-GPT-

embedding model first converts the text description of the structure into a 3072-dimensional vector representation 

using the text-embedding-3-large model56, and then uses that representation as input to train a binary PU-classifier 

neural network model. The main difference between these two methods is the input representation. Details about 

model constructions and representations are described in the Supporting Information. For model evaluation, 

only the true positive rate (TPR) or recall can be used as a precisely calculated metric, due to the lack of true 

negative data in the PU problem. However, the precision (PREC) and the false positive rate (FPR) can be 

approximated by α-estimation, as discussed in prior works.57,58 We adopted the same method for model evaluation 

and comparison in all cases. 

As shown in Figure 1, the fine-tuned model, StructGPT-FT, outperformed non-fine-tuned GPT model, 

demonstrating that fine-tuning is crucial for the synthesizability prediction task. (StoiGPT-FT outperformed the 

StructGPT-FT because a stoichiometry is considered synthesizable if at least one of its various polymorphs has 

been successfully synthesized, so it is easier to be correct.) StructGPT-FT slightly outperforms the bespoke PU-

CGCNN model, indicating that a fine-tuned LLM using the text description of a structure is as powerful as a 

traditional graph-based learnable representation. This suggests that heuristic decisions in the conventional crystal 

graph construction, such as limiting edge connection to the 8-12 nearest atoms and omitting geometric angles, 

insufficiently represent the relevant details of real crystal structures. Even better performance is achieved by 

combining LLM-based input representation with traditional PU-learning methods. Specifically, the PU-GPT-

embedding model outperforms both the StructGPT-FT and PU-CGCNN models, indicating that using a dedicated 

PU-classifier model is better than using the LLM as a classifier and that GPT-embeddings are more effective than 
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traditional graph-based representations of structure, respectively. This is our first significant result. 

We previously demonstrated the value of fine-tuning to make synthesizability predictions based solely 

on composition,50 and the results here demonstrate the added value of including structural information. Recent 

preprints by Alampara et al.59 and Song et al.51 have explored the role of crystal structure descriptions in fine-

tuned LLM prediction of solid properties.  

Our results support all of these prior claims, and improves upon them by demonstrating the value of 

using a pre-trained embedding model to generate the representation from the structure as input to a PU-classifier. 

In addition to the performance benefits, this can also reduce costs. To give a rough approximation, as of Aug 2024, 

the cost to compute the text-embeddings is $0.065/M tokens (the PU-classifier can be trained and run locally with 

modest resources which we assume to be free), whereas for the fine-tuning model, the cost is $3/M for fine-tuning 

and $0.150/M for inference, a saving of 98% and 57%, respectively.  

The text-embedding-3-large is a hierarchical embedding (also known as Matryoshka embedding, by 

analogy to Russian nested dolls) model, where earlier dimensions correspond to more significant coarse 

descriptions and later dimensions correspond to increasingly fine-grained features of the text.56,60 To test whether 

this is true for structure descriptions, we retrained the PU-GPT-embedding model with inputs that were truncated 

from the original 3072-dimensions to 2048, 1024, 512 and 256-dimensions. The performance monotonically 

decreases as the vectors are truncated (Table S8), consistent with the loss of precision. Additionally, while the 

predicted probabilities are sharply peaked near 0 and 1 for the full vector input, truncating the input causes the 

distributions to be broadened to intermediate values (Figure S9), indicating that the model is more uncertain about 

its predictions. Together, these results indicate that the PU-model uses the full vector embedding description to 

make its prediction. The successful use of these embeddings for prediction suggests their use for determining the 

similarity of different crystal structures. Whereas previous methods of comparing inorganic crystal similarity have 

relied primarily upon electronic structure61,62 or on structural encodings,63 here the representation comes from a 

text-description of the structure. This in turn can be used to retrieve similar compounds from a database, which 

may be useful for LLM-based retrieval augmented generation (RAG) or general discovery by chemical analogy.64 

A full exploration of this is outside the scope of the current article. 
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Figure 1.  Comparison of model performances for the general synthesizability prediction. FT indicates fine 

tuning and PUL indicates positive-unlabeled learning. (All calculated metrics are tabulated in Table S1.) 

 

Explanation / Inference for general synthesizability 

Using the synthesizability predictions made above, we then used the pre-trained GPT-4o model to 

generate physical explanations for these results.  The user prompt was: “Explain why an inorganic 

compound with the following structural information is (not) synthesizable: 

[Structural description]”. (The “(not)” is included depending on the prediction of our model.)  The 

system prompt was: “Return only output of the following format for each reason, and no 

other information: ### Reason 1. **[Keyword of reason]** [Detailed description], ### 

Reason 2 …”. Using this prompt, we provided GPT-4o with a total of 15,855 structure-prediction pairs, where 

the predictions of all three models (StructGPT-FT, PU-CGCNN, PU-GPT-embedding) were identical as either 

positive or negative, to extract the hidden relations and identify the detailed descriptive reasons along with their 

associated keywords. GPT-4o usually answered the explanation with 4 or 5 reasons (Figure S6). The Supporting 

Information contains examples of these explanations and the URL for the complete set of explanations. 

What physical principles does GPT-4o use in these generated reasons? We accumulated all the keywords 

of reasons for the 15,855 structures, clustered similar words (see the detailed keyword items in the Supporting 

Information), and plotted a bar histogram of the 10 most relevant reasons (Figure 2a). It is generally 

acknowledged that thermodynamic stability alone is an insufficient factor for material synthesizability. In our 

results, explanations for about 14% (2,178/15,855) of structures included thermodynamic stability as a reason for 

their synthesizability. The text-embedding-3-large roughly captures the relationships between these categories. 

We generated the embedding vectors of the detailed description for each type of reason, and plot the results using 

t-SNE dimensionality reduction in Figure 2b, coloring each point by the relevant keyword. The detailed 

descriptions are separated and clustered by similar keywords, with geometry-related reasons to the right, bond 

length-related reasons to the bottom, symmetry-related reasons to the top, and thermodynamic /composition 
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compatibility-related reasons to the left. We can also take this same t-SNE plot and color code each point based 

on its synthesizability (Figure 2c). The explanations are clearly divided according to their predictions across the 

four partitioned regions. This supports the common-sense notion that all of these factors contribute to 

synthesizability. 

 How do these different factors contribute to the synthesizability prediction of our fine-tuned models?  

We performed an ablation study, using gpt-4o-mini to rewrite the input Robocrystallographer structure description 

texts, removing specific types of information or to arbitrarily changing specific details (e.g., changing the space 

group or geometry information). (See section VI.1 Text elimination and perturbation test in the Supporting 

Information.) We then provided this modified text as input to the unmodified StructGPT-FT model; results are 

shown in Table S6. Removing or changing the symmetry and element type information caused the largest 

degradation in model performance; removing or changing bond-length information had the smallest effect (only 

reducing the performance by 2-3 percentage points). This is consistent with prior work on structure-based 

representations in bidirectional LLMs, in which numerical data was entirely omitted from the input text 

description.65 Interestingly, while geometry and bond-length are the most commonly invoked reasons by the model, 

they actually have less impact on the final prediction. 
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Figure 2.  (a) 10 most relevant reasons for general synthesizability. (b) t-SNE for detailed explanation. Each 

point is colored by its relevant keyword, using the same color scheme as Figure 2a. (c) t-SNE for detailed 

explanation. Each point is colored by its synthesizability for understanding the reasons across the four 

partitioned regions. 
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Figure 3.  The results of assessing the whole explanations based on the log-probability. Since GPT-4o usually 

answered the explanation with 4 or 5 reasons per 1 material (Figure S6), we combined (a) each explanation 

probability by (b) geometric mean of probabilities and (c) arithmetic mean of probabilities. 

 

Are the explanations reasonable? Each generated reason typically consists of a header describing the 

general type of factor, a sentence describing specific properties of the crystal (copied or paraphrased from the 

Robocrystallographer input text), and a sentence describing how those specifics relate to stability and 

synthesizability (or instability and difficulty of synthesis); see examples in the Supporting Information Section 
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V.  We developed a four-step approach for extracting the underlying claim and testing the model’s confidence in 

that claim. First, we separate the reasons, removing the header. Second, for all of the sentences that explain the 

reason, we pass them into a gpt-4o-mini model with the user prompt "In one sentence, describe an "if-

then" rule based on the underlying principle used by this explanation, which could 

be applied to a new compound: [reason text]” .  For example, the input text “The uniform Sc(1)-

Ir(1) bond lengths of 2.78 Å indicate a regular and stable bonding environment. Uniform bond lengths generally 

correspond to lower internal strain in the crystal, suggesting a synthesizable compound." returns “If a new 

compound exhibits uniform bond lengths, then it likely has low internal strain, indicating that the compound is 

stable and synthesizable.”. We call these outputs rules. Third, we pass each rule as a user prompt into gpt-4o, 

along with the system prompt “You are provided with a statement of unknown veracity. Return 

only True or False and nothing else depending on the veracity of the statement.”. The 

gpt-4o model returns the log-probabilities of each possible response token (“True” or “False”), which allows us 

to evaluate the probability that the model would answer “True” or “False” (in this case, the model temperature 

setting is irrelevant). While the associated probabilities of returning “True” or “False” are not strictly the truth of 

the statement, but they do reflect the model’s consensus about the training corpus. Stated another way, a rule for 

which the model has a high probability of returning “True” is likely to be a principle that is common in the 

chemistry textbooks and other resources that comprise the training corpus, and thus are a proxy for what the 

literature would say. Prior work by Kadavath et al. has found that pre-trained LLMs provide well-calibrated 

true/false self-evaluation on factual questions.66 Finally, by the classical logical Principle of Non-Contradiction,67 

a statement and its negation cannot both be true. This allows us to generate an internal consistency test, where we 

have gpt-4o rewrite the original rule by the user prompt “Rewrite the following sentence so that it 

would become false: [reason]”.  Our above example gets rewritten as “If a new compound exhibits 

uniform bond lengths, then it likely has high internal strain, indicating that the compound is unstable and 

unsynthesizable.” We then evaluate the veracity as above. 

As shown in Figure 3a, the probability of being “True” for most if-then rules is close to 1, while for 

counterfactual rules, the probability of being “True” is close to 0, indicating that most individual explanations are 

self-evaluated as reasonable by gpt-4o. Since each material has 4 to 5 explanations, to evaluate the veracity of 

these combined explanations, we calculated the probability distribution which was aggregated using the geometric 

mean (Figure 3b) and the arithmetic mean (Figure 3c) of each individual rule. The results also confirmed that the 

combined explanations for a material exhibit a high degree of reasonability. Furthermore, by calculating the 

truthiness/falseness confusion matrix between if-then rules and counterfactual rules (Figure S10e), we confirmed 

that there is internal consistency in gpt-4o's veracity evaluation (when the if-then rule is true, the counterfactual 

rule becomes false). In this regard, most reasons provided by gpt-4o use principles that are generally well-attested 

by the training corpus and are internally consistent. 
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Perovskite synthesizability prediction 

To investigate the effectiveness of LLM in a domain-specific material space, we selected perovskite 

structures as the target space. Given perovskite structural information, the task is to determine whether a structure 

is synthesizable or not. The data preparation and model construction are similar to those in the General 

synthesizability prediction section. As a result, we constructed a total of 1,533 synthesized and 13,276 

hypothetical perovskite structures, and 20% of them were sampled as a hold-out test dataset for assessing model 

performance. For model construction, we prepared pretrained GPT-4o-mini and fine-tuned versions (StructGPT 

and StructGPT-FT) for perovskite synthesizability prediction, along with StructGPT-base, which was fine-tuned 

on general inorganic structures. Since transfer learning has been widely used for solving domain-specific problems 

in conventional ML field, we adopted it to LLM; we are not aware of previous investigations of this in the chemical 

LLM fine-tuning literature. Using transfer learning (TL), we refined StructGPT-base on the perovskite dataset 

(StructGPT-base-FT). For comparison, we also developed PU-GCNN-TL,32 and PU-GPT-embedding-TL models 

with transfer learning. All models were evaluated on a hold-out perovskite test dataset. Detailed processes are in 

the Supporting Information. 

As shown in Figure 4, StructGPT-FT outperformed the non-fine-tuned version, highlighting the 

importance of fine-tuning for perovskite synthesizability prediction. However, StructGPT-base, fine-tuned only 

on the general inorganic structures, performed poorly in this domain-specific task. After applying transfer learning, 

StructGPT-base-FT surpassed StructGPT-FT, showing the effectiveness of TL for LLMs, expanding the training 

and fine-tuning methodology in the LLM field. Despite this, PU-GCNN-TL still outperformed StructGPT-base-

FT, suggesting that dedicated PU-classifier models with TL are more effective for perovskite prediction. 

Additionally, unlike in the case of General synthesizability, PU-GPT-embedding-TL performed slightly worse 

than PU-GCNN-TL. We speculate that this is related to the relatively simple structure of perovskites. These results 

are further analyzed in the Representation capturability section below. 

 

 

Figure 4.  Comparison of model performances for the perovskite synthesizability prediction. DSL indicates 

domain-specific learning and TL indicates transfer learning. (All calculated metrics are tabulated in Table S2.) 
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Explanation / Inference for perovskite synthesizability 

Perovskite materials have been commonly evaluated for synthesizability using heuristic rules, such as 

the Goldschmidt tolerance factor,68,69 which estimates synthesizability based on ionic radii (t = (rA + rB) / (√2(rB + 

rC))). Traditionally, perovskites are considered synthesizable if 0.7 < t < 1.0. However, as discussed in previous 

study,32 this rule-based screening tends to be overly generous in determining synthesizability in comparison to 

data-driven machine learning models, since many perovskite materials in the 0.7 < t < 1.0 range still not being 

synthesized. We also observed this tendency by comparing this rule to machine learning models (StructGPT-base-

FT and PU-GCNN-TL). As shown in Figure 5a, the Goldschmidt rule showed the highest recall (98.8%) for 170 

hold-out positive perovskites (which satisfy the conditions ABC3, where C is in [O, Se, F, Cl, Br, and I], B is 

octahedral site, and ABC3 is charge neutral compound), whereas two machine learning models showed more 

modest recall (65.9% and 68.2%). For comparison, the recall for the whole 307 hold-out positive perovskite was 

74.3% and 77.2% by StructGPT-base-FT and PU-GCNN-TL, respectively, as shown in Figure 4. It also produced 

a much higher positively predicted ratio among the 1,618 hold-out unlabeled cases (93.2%) compared to the ML 

models (7.8% and 7.3%), suggesting many potential false positives (Figure 5b). This can be attributed to the fact 

that Goldschmidt screening relies solely on the ionic radii factor with its simplicity. 

To better understand these differences, we analyzed 1,331 hold-out hypothetical perovskites predicted 

as synthesizable (positive) by the Goldschmidt rule but non-synthesizable (negative) by all three ML models. 

Assuming that the negative predictions for the latter materials are more reasonable predictions since all three 

machine learning models consistently predict them as negative (while Goldschmidt predicts otherwise), we aim 

to explore using GPT-4o the explanation of why these materials are not synthesizable. Conducting the same 

analysis for the latter 1,331 cases as described in the above Explanation / Inference for general synthesizability 

section, GPT-4o analysis (Figure 5c) show that the atomic radii and bond related features are indeed the most 

important aspects in predicting the synthesizability of perovskite, but also additionally suggest that factors beyond 

ionic radii—such as coordination geometry, compositional compatibility, and thermodynamic stability—are 

crucial in determining synthesizability. These analyses suggest possible directions to improve the Goldschmidt 

rule in future works. 

To assess the explanation veracity, we also conducted same evaluation manner, as discussed in the above 

Explanation / Inference for general synthesizability section. We provided GPT-4o with a total of 2,679 

perovskite structure-prediction pairs, where the predictions of all three models (StructGPT-base-FT, PU-GCNN-

TL, PU-GPT-embedding-TL) were identical as either positive or negative to extract their explanations. The results 

were also confirmed that the explanations for a perovskite material exhibit a high degree of reasonability and their 

internal consistency (Figure S11 in the Supporting Information). 
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Figure 5.  (a) Recalls and (b) positively predicted ratios of the Goldschmidt-based screening and the machine 

learning models (StructGPT-base-FT and PU-GCNN-TL) for (a) 170 hold-out positive and (b) 1,618 hold-out 

unlabeled perovskites (ABC3; C is in [O, Se, F, Cl, Br, and I], B is octahedral site, and ABC3 is charge neutral 

compound). (c) 10 most relevant not-synthesizable reasons for 1,331 false positive perovskite cases (synthesizable 

by the Goldschmidt-based screening but not-synthesizable by all three machine learning models). 

 

Representation capturability 

As shown in Figure 1 and Figure 4, the two bespoke ML models, PU-GPT-embedding and PU-CGCNN, 

exhibited different performance superiority. For the general synthesizability, GPT-embedding showed better 

representation capturability than the graph-based one, whereas for the domain-specific perovskite synthesizability, 

the opposite trend was observed. To investigate these contrasting results, we plotted the distribution of text 

description length (number of characters) for general inorganic crystal structures and perovskite structures, as 

shown in Figure 6a. As depicted in Figure 6a, perovskite structures mainly consist of much shorter description 

lengths due to their simpler formula (ABX3) and high structural symmetry. In contrast, general inorganic crystals 

exhibit diverse structures, resulting in a wider range of description lengths. This data discrepancy between general 

inorganic and perovskite structures contributed to the opposite performance trend. 

Based on this observation, we further evaluated both the PU-GPT-embedding and PU-CGCNN models 

for the general synthesizability prediction across different description length divisions (<1000, 2000, 3000, …, 

10000) of the hold-out-test dataset, as shown in Figure 6b. The result demonstrated that the representation 
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capturability of the two models varied as description length increases. This suggests that the representation 

capturability for inorganic structures can be influenced by structural complexity. For simpler structures, graph-

based representation well captures the relations, whereas for more complex structures, GPT-embedding vectors 

are more effective structural representations. Therefore, we suggest that the appropriate structural representation 

in model development should be carefully chosen to enhance the model performance depending on the structural 

complexity of the target system. 

 

 

Figure 6.  (a) Paired histogram of structural description length for the general inorganic crystal structures and 

the perovskite structures. (b) Model performances of PU-GPT-embedding and PU-CGCNN depending on the 

description length divisions of the hold-out-test dataset. 
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Conclusion 

We utilized LLMs for structure-based general synthesizability prediction and domain-specific 

perovskite synthesizability prediction, along with their explanations. Fine-tuned LLMs and LLM-embedding-

based bespoke ML models showed promising performance compared to the traditional bespoke ML models. 

Furthermore, LLMs can provide explainability by inferring the reasons for determining the synthesizability. 

Explanations can be easily obtained through a simple prompt. Unlike recent work on using LLMs for materials 

structure-property explainability,70 these explanations are applied to model predictions, rather than requiring 

literature examples. 

Based on these explanations, we can specify the detailed and essential aspects related to general 

synthesizability determination. By employing this strategy for non-synthesizable materials, we can identify the 

factors contributing to their low synthesizability. We anticipate that these explanations can guide chemists in 

modifying or optimizing non-synthesizable hypothetical structures to make them synthesizable. 

To develop an effective LLM for the synthesizability of perovskite structures, we adopted transfer 

learning technique to LLMs. The result showed that transfer learning can be effectively applied to LLMs, 

broadening the training and fine-tuning methodologies within the LLM field. LLM explanations for determining 

perovskite synthesizability showed some relativeness to the conventional heuristic rule-based screening but also 

encompassed much broader factors, reflecting the complexity of materials chemistry. 

In comparing the graph-based model with the LLM-embedding-based model, we analyzed the 

representation capturability for inorganic crystal structures. The result showed that LLM-embedding vectors can 

serve as a more effective structural representation in the case of complex structures compared to the conventional 

graph-based formulation. 

However, there are limitations that should be addressed in future works: 

(1) Our prediction-explanation strategy is a disjointed approach, unlike most other explainable AI (XAI) 

methods35,36 that are based on input, output, and the model. That is, we used a baseline LLM to infer explanation 

for fine-tuned LLM. As a result, the explanation might be derived from the general chemical knowledge that were 

used to pretrain the baseline LLM. 

(2) Since this model highly relies on existing material database, the prediction (even the transfer-learned model) 

could be biased by the distribution of already-synthesized materials.71-73 Other results suggest that LLM-based 

methods may be less transferable to out-of-domain problems than conventional methods, due to the lack of hard-

coded inductive biases74 

(3) In this study, we focused on inorganic crystal structures that are well-crystallized and did not consider defects 

or disordering. However, various levels of defects and disordering often occur in real world materials,75 indicating 

the need for future research that can address these aspects as well. 
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(4) We used the off-the-shelf embeddings, pre-trained Matryoshka embeddings, without additional training or 

fine-tuning embedding models. However, there is still potential to fine-tune the embedding model using sentence 

transformers for RAG to explore more advanced LLM embeddings.76,77 Alternatively, introducing material-

specific latent vectors through unsupervised learning of text taken from abstracts in the materials science 

literature,78,79 Robocrystallographer structure descriptions,80,81 or directly on the text of CIF files82 could be further 

approaches. 

As our goal was to propose the approach of leveraging LLMs for predicting structure-based 

synthesizability and inferring its chemical explanation, there are many possible ways to improve the performance. 

In the future, more advanced LLMs can be utilized for developing fine-tuned LLMs, as we demonstrated through 

the performance comparison between fine-tuned GPT-3.5 and fine-tuned GPT-4o-mini. Designing detailed 

prompts or combining external functional tools could also contribute to further development. Finally, we hope 

that ongoing rapid advancements in LLMs will enhance performance. 
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