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Abstract

Microkinetic models for catalytic systems require estimation of many thermody-

namic and kinetic parameters that can be calculated for isolated species and transition

states using ab initio methods. However, the presence of nearby co-adsorbates on the

surface can dramatically alter these thermodynamic and kinetic parameters causing

them to be dependent on species coverage fractions. As there are combinatorially

many co-adsorbed configurations on the surface, computing the coverage dependence

of these parameters is far less straightforward.

We present a framework for generating and applying machine learning models to

predict coverage dependent parameters for microkinetic models. Our toolkit enables

automatic calculation and evaluation of co-adsorbed configurations allowing us to sam-

ple 2000 co-adsorbed adsorbates and transition states (TSs) for a diverse set of 9 reac-

tions on Cu111, a challenging surface, with four possible co-adsorbates. This dataset

was then used to train subgraph isomorphic decision trees (SIDTs) to predict the sta-

bility and association energy of configurations. With which we were able to achieve

mean absolute errors (MAEs) of 0.106 eV on adsorbates, 0.172 eV on TSs, and due to

natural error cancellation in SIDTs for relative properties 0.130 eV on reaction energies

and 0.180 eV on activation barriers. We then explain how to use these models to pre-

dict coverage dependent corrections for arbitrary adsorbates and TSs and demonstrate

on H∗, HO∗ and O∗ comparing the generated SIDT model with an iteratively refined

version.

Introduction

Heterogeneous catalysis plays an incredibly important role in energy technologies and chem-

ical manufacturing. Catalytic systems involve many elementary reactions and are sensitive

to temperature, pressure, and the nature of the catalyst. In order to predict the behavior of

these systems at a range of conditions usually one would build and simulate a microkinetic

(MKM) or a kinetic Monte Carlo (KMC) model.
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Under low-coverage conditions it is often adequate to treat adsorbates and reactions as

if they are isolated on the surface, assuming an otherwise empty surface. However, in many

systems and under many conditions the surface has many adsorbates packed closely together.

In these co-adsorbed systems the lateral interactions between co-adsorbed species can very

significantly alter the thermochemistry and kinetics.1–9 However, brute force computation

of the minimum association energy of an adsorbate and co-adsorbates at a given coverage

requires one to compute the average binding energy of every conceivable configuration at

that coverage. Even just computing the minimum association energy of an adsorbate in the

presence of a single type of co-adsorbate is computationally very expensive. Consideration

of several co-adsorbates is even less computationally feasible, therefore, the effects are often

either ignored or approximated crudely. Furthermore, due to the additional challenges most

researchers do not attempt to compute the coverage dependence of transition state properties,

and instead use Brønstedt-Evans-Polanyi (BEP) relations.10,11

To tackle these challenges researchers have developed a variety of approaches. In one

approach, the dimensions of the periodic system are adjusted to achieve the desired cover-

age with the smallest system possible and reduce the computational cost.12 Additionally,

researchers have built models for predicting the energies of co-adsorbed configurations like

the cluster expansion (CE) model13 that decomposes the overall energy into contributions

from groups of N specific adsorbates to a given N .

However, these approaches have a number of weaknesses. Size reduced periodic cells

inherently assume that the minimum energy coverage pattern is periodic in the size of the

unit cell. In many cases lowest energy configurations cannot be captured with reduced size

unit cells.14 In fact, such reduced size cell configurations may not even be minima on the

potential energy surface of a larger cell. Consider a 1×1 cell with one O∗. The energy for the

reaction sequence 2 O∗ → O∗
2 → O2 + ∗ can be comparable to predicted lateral interactions

between two O∗.12,15 Given the highest barrier in this reaction sequence is usually not much

higher in energy than O2 +∗, it is very believable that at high coverage 2 O∗ → O∗
2 or O2 +∗
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could occur barrierlessly spontaneously, with the 2 O∗ state not being stable. However, in

the 1 × 1 periodic cell the distance between O∗’s is fixed making the stable configuration

with O’s bonded pairwise with each other unachievable, causing an optimization to find a

configuration that is unstable on any realistically sized slab.

CE parameters are particular to the adsorbates and interaction terms they were computed

for.16 Thus these models are primarily only useful for set interactions of adsorbates and co-

adsorbates they have been explicitly fit to and cannot be used to predict fit interactions with

new adsorbates or co-adsorbates. Additionally, due to the combinatorics it is rare to fit them

out to more than clusters of N = 3. So in practice this method may have some difficulties

at higher coverages.

In contrast to CE, machine learning techniques do not have the limitations of cluster

expansion methods. They can learn from diverse datasets and predict on interactions not

included in the training data. However, popular deep neural network (DNNs) based machine

learning requires large amounts of training data that can be computationally very expensive

to obtain. Additionally, DNNs are not interpretable making them difficult to analyze and

improve.

The subgraph isomorphic secision tree (SIDT) machine learning method provides an

alternative to DNNs and is free of the above weaknesses.17,18 SIDTs are decision trees made

up of nodes associated with molecular substructures represented as molecular subgraphs.

They are evaluated by descending a target graph structure down the tree to the nodes

with subgraphs it matches until it reaches the most specific matching node and making

a prediction based on either the nodes matched or the final node. SIDTs can be applied

to datasets too small for DNNs, they are straightforward to extend and retrain, and the

substructures in the tree are inherently visualizable making SIDTs easy to analyze and

interpret, and thus modify the generation process and tree itself to achieve desired outcomes.

Additionally, SIDTs have a property that enables unique inherent error cancellation on many

important chemical problems that DNNs do not. One such important case involves kinetics,
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where rate coefficients are not dependent on the absolute energy of any given configuration,

only on the energy differences between reactants and the transition state and reactants

and products which are used to compute the forward and reverse rate coefficients for a

given reaction. When the SIDT predicts the association energy of a reactant configuration

and that of a transition state or product configuration, most of the matched subgraphs

associated with interactions between adsorbates are unchanged, because only interactions

close to the reaction center are different in these structures. As a result, predictions on

unchanged interactions will cancel exactly in the SIDT and our error is only associated with

the subgraphs that are modified by the reaction, i.e., bond breaking and forming. This

property makes SIDTs significantly more accurate on the relative properties that actually

matter for kinetics than one would expect from a given level of absolute accuracy.

In this work we present a framework for automatically computing co-adsorbed configura-

tions and using machine learning to predict the coverage dependent energetics of adsorbates

and transition states and thus the coverage dependence of rate coefficients and thermochem-

istry. We automatically generate a training dataset of co-adsorbed adsorbates and transition

states on a 3x3x4 Cu111 slab, a challenging surface. The size of the slab is chosen to min-

imize interaction between periodic. We use the dataset to train a sequence of SIDTs to

predict whether a configuration is stable or not and to predict the association energy of

the configuration for both co-adsorbed adsorbates and transition states. We show the effec-

tiveness of the SIDT predictors and demonstrate the error-cancellation property discussed

above. We also show how to go from association energy predictions to coverage dependent

rate coefficients.
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Methods

Dataset Generation

We started our co-adsorbed calculations from a set of isolated calculations. We took the

lowest energy configurations for 12 adsorbates and 9 transition states on Cu111 calculated

by Johnson et al.19 using our software, Pynta. This set, listed in Table 1, includes transition

states for a range of different reaction classes, adsorbates consisting of H, C, O and N atoms

and one bidentate adsorbate. In this work we selected four adsorbates to be co-adsorbates

for purposes of sampling: H, N, and O atoms, and OH.

Table 1: Reactions on Cu111 considered in this work for lateral interactions.

Reaction
H∗ + O∗ ←−→ HO∗ + ∗

OCH∗ + ∗ ←−→ OC∗ + H∗

H∗ + ∗ ←−→ H∗ + ∗
OC∗ + O∗ ←−→ CO2 + 2∗
HO∗ + H∗ ←−→ H2O + 2∗

HOCH2
∗ + ∗ ←−→ CH3O

∗ + ∗
OCHO∗ + ∗ ←−→ CO2 + H∗ + ∗

H∗ + OCH2O
∗∗ ←−→ HOCH2O

∗ + 2∗
N∗ + CH3O

∗ ←−→ CH2O + NH∗ + ∗

All of our calculations were done using the same software, methods and parameters as

in Johnson et al. We used the BEEF-vdW functional20 with PBE-KJPAW pseudopotentials

and an energy cutoff of 40 Ry as implemented in Quantum Espresso21,22 for a 3x3x4 Cu111

slab with a 3x3x1 k-point grid. All geometry optimizations targeting wells were done in

two stages: first using the MDMin method implemented in the Atomic Simulation Environ-

ment (ASE) until fmax ≤ 0.5 eV/A and then using ASE’s BFGSLineSearch algorithm until

fmax ≤ 0.02 eV/A.23 Saddle point optimizations and intrinsic reaction coordinate (IRC)

calculations were done using Sella until fmax ≤ 0.02 eV/A and fmax ≤ 0.1 eV/A respec-

tively.24–26 Vibrational calculations were run using ASE’s vibrations module.23

Unless otherwise specified, all placements for optimization on the surface were done by
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copying the isolated configuration for the adsorbate or transition state and then placing

co-adsorbates on the selected sites using Pynta’s placement algorithm.19 3D configurations

are converted to 2D graphs automatically using a set of algorithms contained within Pynta.

These 2D representations are key to employing SIDT. For adsorbates this process is rela-

tively straightforward. ASE’s analysis tool was used to identify covalent bonds within the

adsorbates; possible surface bonds are identified by searching for the closest site within 2.5 Å

of the relevant adsorbate atom, and only considering sites on which the associated adsorbate

is stable under isolated conditions. We then complete the 2D description (the graph of the

system) by incrementing bond multiplicities to satisfy octet rule, with surface bonds having

the lowest priority.

For TSs we considered a number of additional factors. Reaction bonds that break/form

in the reaction are identified based on the original reaction template associated with the TS.

Since transition state atoms may be close to the surface without being properly associated

with a site, we included both reactant and product sites in the set of valid sites to determine

the 2D structure. Since the reaction bonds in the 2D representation do not have a well

defined order we cannot always satisfy the octet rule when we increment bonds. As a result,

we can end up with extra bonds to the surface that are artifacts of the process. To handle

this we removed surface bonds if they were a single bond and the associated atom already

had two reaction bonds. This covers most common cases and all reactions considered here.

TSs for diffusion type reactions, where one atom has two reaction bonds to different sites,

pose a further challenge for generating 2D representations, because we cannot simply form

the reaction bonds with the closest stable site. Instead, we seek a pair of sites that capture

the origin and destination of the diffusion process. To identify the right pair of sites we

considered five criteria. First, we required that the vector connecting the two sites and the

normal mode vector associated with the imaginary frequency are aligned well

| < vsites,vimagfreq > | ≥ 0.95 (1)
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where v denotes the associated vector or motion. Second, we required that the distance

between the sites is less than 3 Å. Third, we required that the distance between the adsorbing

atom of the adsorbate and any site, dsite be less than 2 Å. Fourth, we only considered sites

where the reactants or products were stable in the isolated calculations. Finally, we also

defined a measure, h, of how closely the atom is positioned to the halfway point between the

sites

h =
||u1 + u2||
||u1||+ ||u2||

(2)

where ui is the vector from site i to the atom. When more than one pair of sites fulfilled the

previous criteria, we chose the pair that maximizes 1/(dsite × h).

The techniques discussed above are sufficient to generate the 2D representations of TSs.

However, for TSs we also need to validate that the saddle point optimized in the presence

of the co-adsorbates still connects the reactants and products of the original reaction. We

found that two criteria were sufficient to separate correct from incorrect TSs in a 100 TS

subset of our data. We first required that the normal mode corresponding to the imaginary

frequency in the co-adsorbed case, vcoad, aligns with the isolated mode visolated

| < visolated,vcoad > | ≥ 0.7 (3)

We additionally required that any co-adsorbate atoms be more than 1.1 times the cova-

lent bond cutoff threshold from ASE away from any TS atoms that are involved in break-

ing/forming bonds.

One major challenge of sampling the co-adsorbed space is that many configurations one

might propose are not stable. Lateral interactions may prevent two adsorbates from being

placed next to each other, surface restructuring may affect the stability of old sites or create

new sites, and reactions that normally have a barrier may occur spontaneously at higher cov-

erages. We simultaneously mitigated this challenge and provided a useful base set of samples

by first calculating every unique and valid placement pairing between every adsorbate and
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every selected co-adsorbate that put them within a maximum distance of 3 Å. We analyzed

the results comparing the initial 2D graph and the 2D graph after optimization to determine

which pairwise configurations are stable.

Figure 1: Scatter of the dataset energies and number of surface bonds.

To generate a random, yet balanced set, we first chose either to sample an adsorbate or a

TS with equal probability. We then chose a single random co-adsorbate at 90% probability

and a random sample of mixed co-adsorbates at 10% probability. To determine the sampled

coverage fraction we drew a uniformly distributed sample from [0,1], which was then rounded

to an integer number of co-adsorbates to put on the slab. The co-adsorbates were distributed

randomly over the stable sites. Samples that involved sub-configurations that matched a

failed pairwise optimization were rejected. For all unique successful TS optimizations we

ran an IRC to find the reactant and product configurations and optimized and computed

frequencies for both. This enabled explicit sampling of activation barriers and reaction

energies.

Drawing and running calculations for 2,000 samples gave us 477 unique and valid co-

adsorbed adsorbate configurations and 207 unique and valid co-adsorbed TS configurations.
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Figure 2: Plot of the number of atoms bonded to the surface in dataset configurations by
element.

Figure 1 shows the energy of these configurations as a function of the number of surface

bonds, while Figure 2 shows the distribution of the elements bonded to the surface across

the whole dataset, i.e., including the adsorbing atoms of the central adsorbate or TS and

of the co-adsorbates. In general, H atoms tend to have weaker inter-adsorbate interactions

owing to its smaller size, making co-adsorbed configurations with H more likely to be stable

and optimize successfully. For this reason it is unsurprising that H has so many occurrences

in the dataset. The similar number of O occurences is unsurprising, given O and OH are

co-adsorbates and many of the adsorbate and TSs targeted involve bonds between O and

the surface. Given none of the co-adsorbates involve a bond between the surface and C

the significantly lower number of occurrences is unsurprising. However, the low number

of N occurences is unexpected. N does not occur in many of the isolated adsorbate and

TSs considered (see Table 1, but it is a co-adsorbate, so one would expect it to exist in at

least a quarter of proposed sample configurations. This seems to suggest that configurations

involving N in general have lower optimization success rates than O and OH on this surface.

In Figure 3 we examine the distribution of the differences between the activation barrier in
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co-adsorbed configurations and the corresponding isolated configuration for configurations in

the dataset. Differences can be quite large in both negative and positive directions and range

from approximately -0.8 to 1.0 eV. The center of the distribution for individual reactions

(Figure 3b) appears to differ significantly from zero in at least a few cases. The range for

individual reactions seems to always span at least about 0.5 eV, and HO∗ →H∗+ O∗ spans

approximately 1.5 eV.

Figure 3: Distribution of differences between the activation barrier of co-adsorbed config-
urations and the activation barrier of the corresponding isolated reaction (a) also shown
separated by reaction (b).

Machine Learning

Our goal is to predict the change in energetics of stable and TS surface configurations relative

to their isolated energetics due to the presence of co-adsorbates. We divided the prediction

process into two primary steps: 1) decide whether a proposed surface configuration is stable

and if so 2) predict the association energy of the configuration. For the former we use multi-

evaluation SIDT binary classifiers, and for the latter we use multi-evaluation SIDT regressors

as implemented in our software, PySIDT.27 Both of these SIDT algorithms decompose a

2D graph representation of the chemical configuration into a set of chemical substructures

contributing to the prediction. In the case of the classifier, each substructure is predicted to

either be locally stable or unstable, and in this application if any prediction is unstable the

11

https://doi.org/10.26434/chemrxiv-2024-36w9w ORCID: https://orcid.org/0000-0002-4624-2852 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-36w9w
https://orcid.org/0000-0002-4624-2852
https://creativecommons.org/licenses/by-nc-nd/4.0/


configuration is classified as unstable. In the case of the regressor, an energetic contribution is

predicted from each substructure and summing across all substructures gives the associated

energy.

For our 2D representation we represented the periodic slab in its entirety resolving each

site and adsorbate atom as nodes. Edges were included between all covalently bonded atoms,

each site and adsorbate atom bound to that site, and between neighboring sites as defined by

the ACAT software.28 We used RMG’s cheminformatics engine and molecular representation

software29 within PySIDT27 for all operations on this representation.

When selecting decompositions of the 2D graphs into subgraphs there are two primary

considerations: (i) we would like the set of decompositions to involve minimum redundancy

in chemical information and (ii) we would like the decompositions to locally include all

chemical information we need to make the prediction. The simplest decomposition one

might think of is to look locally at each individual atom and site in the configuration.

However, we are examining inter-adsorbate interactions so we would not necessarily expect

every atom or site to have a significant unique contribution to the energetics. Looking at

surface bonds should significantly reduce redundancy, however, since we study interactions

between adsorbates that may be far apart in the 2D representation, we need to consider

at least pairs of surface bonds. While pairs of surface bonds are sufficient to encode the

interactions between co-adsorbates we are interested in resolving, unlike many prior studies,

we have allowed co-adsorbates to be adsorbed at sites that do not correspond to their lowest

energy isolated configuration. Therefore, we also need to predict the energetics of moving

adsorbates between sites. For this reason our overall representation included both surface

bonds alone (to account for energetics of adsorbates binding to individual sites) and pairs

of surface bonds (to account for the lateral interactions). Triads of surface bonds (three-

body interactions) can be used as well. However, while we have found including triad-wise

interactions to be beneficial for learning coverage dependence in some cases, it did not

improve performance in this work. It should be noted that SIDT does not need triad-wise
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decompositions to learn triad-wise interactions since the pair-wise decompositions can be

grown to resolve more than two adsorbates in the learning processes.

To simplify and compartmentalize the training processes, we first train trees to predict

the single surface-bond interactions on isolated data from Johnson et al.,? including not

just the lowest energy, but all valid isolated structures. We then train a second tree on the

co-adsorbed datasets generated in this work to add the contribution from the interactions

of pairs of surface-bonds. For the classifier we only train the second tree on configurations

the single-surface-bond tree predicts to be stable, and for the regressor we do delta learning,

subtracting the single-surface-bond-tree prediction from the dataset before training. This

architecture is shown in Figure 4.

Figure 4: Diagram for computing the stability and energy of a given input surface configu-
ration.

Results

Stability Predictions for Co-Adsorbed Systems

Our dataset provided stability labels for 1720 unique and otherwise valid configurations. The

configurations included unstable configurations that were proposed and failed to preserve the
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original graph representation upon optimization, stable configurations that were proposed

and successfully optimized, and stable configurations that were found in failed optimizations.

Of these configurations, 91 were predicted to be unstable by the single surface-bond classifier,

75 of which incorrectly predicted to be unstable and 16 of which were correctly predicted to

be unstable. The pair surface-bonds classifier was trained using a 8:1:1 train:validation:test

split on the other 1629 configurations. Each iteration the SIDT computed the accuracy

on the validation set and at the end of the run it reverted to the tree from the iteration

with the best validation accuracy. The confusion matrix for the test set of the pair-surface-

bonds classifier is available in Table 2. This implies an accuracy (fraction of classifications

that are right) of 86% and a precision (fraction of predicted Trues that are correct) of

84%. Given the inherent challenge of determining the substructures that underlie all of the

many different kinds of stability in these systems this is good performance from a machine

learning perspective. From a more practical and problem oriented perspective, we do not

need extremely high levels of accuracy for the stability classifier because high association

energy predictions and instability are inherently correlated. A co-adsorbed configuration

that is unstable and cannot be occupied and a co-adsorbed configuration that is high in

energy relative to other configurations at identical coverage and thus has very low occupation

are both unimportant kinetically.

Table 2: Test set confusion matrix for stability of interactions between co-
adsorbates.

Predict True Predict False
Value True 91 9
Value False 14 49

Association Energy Predictions for Co-Adsorbed Systems

For association energy prediction, as noted earlier, we only have 477 + 207 = 684 valid

configurations. For this smaller dataset we trained on the full dataset and computed leave-

one-out errors for every training point. We first trained the tree out to 152 nodes only on
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configurations with two co-adsorbates and no TSs before training out to 475 nodes (targeting

470) on the full dataset.

The resulting comparison plot is available in Figure 5a and the associated uncertainty

calibration plot is available in Figure 5b. For a more detailed view, Figures 5c and 5d show

the parity plot for the adsorbates and the TSs separately. The error analysis gives an overall

MAE of 0.126 eV, a MAE on adsorbates of 0.106 eV and a MAE on TSs of 0.172 eV. The

uncertainty calibration shows that the model is slightly underconfident at small confidence

intervals and slightly overconfidence at large confidence intervals, but in general, the model

uncertainties appear to be a good representation of actual uncertainties. This is especially

encouraging given that it is challenging to predict accurate uncertainties for some of the

more unusual configurations in this dataset, especially for TSs.

Activation Barrier and Reaction Energy Correction Predictions for

Co-Adsorbed Systems

While lateral interactions are often discussed in terms of the energies of specific configura-

tions, this is not the most relevant quantity for kinetics, which, as discussed earlier, are only

sensitive to relative configuration energies: activation barriers and reaction energies rather

than the absolute energies. Our dataset offers a unique opportunity, allowing us to look di-

rectly at the relevant properties using the optimized endpoint configurations from the IRCs

for each unique TS. We present parity plots for activation barriers and reaction energies in

Figures 6a and 6b respectively. We achieve an MAE of 0.180 eV for activation barriers and

0.130 eV for reaction energy. Noting the MAEs of 0.106 eV and 0.172 eV for adsorbate

and TS energy predictions, the low MAEs of the relative quantities suggest significant error

cancellation. Assuming no correlation and normally distributed errors, one would expect

that

σ2
Ea ≈ σ2

TS + σ2
Ad (4)
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(a) (b)

(c) (d)

Figure 5: SIDT performance on absolute energies. (a) Parity plot for leave-one-out errors
in association energy for all configurations. (b) Uncertainty calibration plot for leave-one-
out and estimated errors in association energy for all configurations. (c) Parity plot for
leave-one-out errors in association energy for adsorbate configurations. (d) Parity plot for
leave-one-out errors in association energy for TS configurations.
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(a) (b)

Figure 6: SIDT performance on relative energies. (a) Parity plot for leave-one-out errors
in activation barrier corrections. (b) Parity plot for leave-one-out errors in reaction energy
corrections.

and

σ2
∆Erxn

≈ 2σ2
Ad (5)

where σ denotes the standard deviation of the property, TS denotes the transition state

energy correction, Ad denotes the adsorbate energy correction, Ea denotes the activation

barrier energy correction and ∆Erxn denotes the reaction energy correction. The above

equations imply that the error in the relative properties should be significantly larger than

the error in the absolute properties. However, for our model σ2
Ea/(σ2

TS + σ2
Ad) = 0.561 and

σ2
∆Erxn

/(2σ2
Ad) = 0.694, implying that for the relative energies our model is significantly

more accurate that one would expect from the the accuracy of the absolute predictions.

This demonstrates the power of natural error cancellation inherent in the structure of the

SIDT predictor.

In order to explain how the error cancellation occurs, let us consider inference for the pair

surface-bonds SIDT regressor used above. As discussed earlier, inference occurs by finding all

pairs of surface bonds, tagging the surface bonds in each, descending each down the SIDT

summing the contribution from each node touched in the descent and then summing the

contribution from each pair of surface bonds. With this in mind let us consider computing
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the difference in energy between a given reactant configuration and the corresponding TS or

product configuration. Only a handful of bonds are created or formed during a reaction so

the two configurations are usually not very different. Especially at higher coverages many of

the interactions may be unchanged and thus their contributions to the two configurations are

identical and cancel exactly removing any contribution to the variance from that interaction.

In many other cases the interaction is only slightly changed resulting in an SIDT descend

that only differs deep into the tree. In these cases the contributions from the upper nodes,

before the descents diverge, cancel exactly and only the nodes farther down the tree, where

the energy contributions should be much smaller, contribute to the variance. This natural

error cancellation allows our SIDT predictor to be much more accurate on these relative

properties that are actually important for simulations than one would expect from a given

level of absolute accuracy.

Coverage Dependence Corrections in Microkinetic Models

Simply considering the difference in energy between reactant, TS, and product configurations

is sufficient for KMC simulations. However, mean-field kinetics simulators30–32 do not resolve

the exact configurations of the co-adsorbates. For mean-field parameterizations we need to

predict energies as a function of average coverage. This is typically done for a given species or

TS by taking the lowest energy configuration at each coverage (corresponding to an integer

number of co-adsorbates).

To find the lowest energy configuration, we generate all unique stable 2D representations

at a given coverage, and then make energy predictions on them. We start with a list of all

stable isolated configurations of the target adsorbate or TS. For a given co-adsorbate we

iterate through all of the sites on the surface (here we always used a 3 × 3 slab). For each

configuration in our list, if the site is free and placing the co-adsorbate on the site results in a

configuration that our SIDT stability classifiers predict to be stable and is unique compared

to the configurations in our list, we add the new configuration to the list. Once we have
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iterated through all sites, we have a list of all feasible configurations. We then use our

SIDTs to predict the association energy of each configuration and find the lowest energy

corresponding to each integer number of co-adsorbates. One can also integrate association

energy predictions into the feasibility search and include an energy-based criterion to reduce

the number of feasible configurations generated, but we did not need to do so for the cases

discussed here.

For a given adsorbate or TS this algorithm gives us a minimum association energy at a

sequence of coverage values for the given co-adsorbate. We can then calculate the coverage-

dependent corrections based on

∆Espc,Ncoad
= Espc,Ncoad

− ENcoad
(6)

where Espc,Ncoad
is the predicted lowest association energy of the the adsorbate or TS species

and Ncoad co-adsorbates, ENcoad
is the predicted lowest association energy of Ncoad co-

adsorbates on the surface and ∆Espc,Ncoad
is the energy correction for the adsorbate or TS

energy with Ncoad co-adsorbates on the surface.

Given the combinatorial nature of the configurational space, computing the exact DFT

correction for a single adsorbate or TS with respect to one co-adsorbate species would have

required computational expense on par with generating the entire dataset in this work,

making it computationally too expensive to present parity plots. Instead, here we used a

simple iterative refinement procedure to analyze the accuracy of our predictions. In each

iteration we retrained the SIDTs and predicted the lowest energy stable configurations at

each coverage level according to the above procedure. We then took the predicted lowest

energy configurations and attempted to calculate their energy using DFT and added them

to the dataset for training the next iteration of the SIDT. We ran two refinement iterations

for each case presented here.

We show the average association energy,
ENcoad

Ncoad
, for H∗, O∗, and HO∗ in Figures 7a, 7b,
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(a) (b)

(c)

Figure 7: Average association energies for (a) O∗, (b) H∗, and (c) HO∗ as a function of
coverage of (a) O∗, (b) H∗, and (c) HO∗ based on an iterative refinement process along
with DFT calculations for the predicted lowest energy structures. Each SIDT refinement
iteration learns from the original dataset and all DFT calculations run for prior iterations.
Iter 1 corresponds to the original model. Coverages with no SIDT predictions indicate that
SIDT did not find any stable configurations. Coverages without DFT points indicate that
the lowest energy predicted configurations proposed by SIDT at that coverage were all found
to be unstable.
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and 7c respectively computed using the SIDT model at each iteration and from DFT at the

lowest energy configurations from the specified SIDT iterations. It should be emphasized

that the DFT calculations in these plots are the DFT calculations of the configurations

the associated SIDT predicts are the lowest in energy, not the true lowest energy DFT

configurations, which are, in fact, unknown for these systems.

To understand these plots it is useful to first look closely at the the predictions just above

0.4 coverage for Figure 7a. At this coverage there are three DFT calculations from the first

iteration, one of which is close to the SIDT energy predictions and the DFT calculation

from the second iteration and two of which are about 0.2 eV higher in energy. We know the

true DFT lowest energy configuration for this point is at or below the energy of the DFT

configuration from the second iteration (since it is the lowest energy DFT calculation at this

coverage) which agrees well with all of the SIDT predictions including the first iteration.

This suggests that SIDT is significantly better at predicting the energy of the lowest energy

configuration than it is at predicting the energy of a single given configuration.

Considering the entirety of Figure 7a we can see that the SIDT models all agree well

with the DFT at lowest energy from the second iteration within 0.05 eV. Interestingly the

second iteration model agrees exceptionally well with its lowest energy configuration DFT

calculations. In Figure 7b we benefit significantly from the fact that H∗ has weaker lateral

interactions, greatly increasing our success rate at optimizing higher coverage configurations

proposed by SIDT. While the second iteration SIDT seems to predict a steeper coverage

dependence allowing it to match the lowest energy DFT point from the first iteration at

about 0.9 coverage, the third iteration SIDT believes there is a lower energy configuration

at that coverage more inline with the earlier DFT points and the first iteration SIDT. From

the two second iteration DFT calculations between 0.4 and 0.6 coverage below the SIDT

lines we are able to tell that the SIDTs are slightly overpredicting in this range. However,

apart from the 0.9 coverage point, all lowest energy DFT calculations at each coverage agree

within about 0.02 eV with the first and third SIDT iterations. The SIDT predictions for
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the HO∗ case shown in Figure 7c look very similar to those for the O∗, likely because of

the similar size and chemical composition. While the predicted overall behaviour seems

physically plausible, especially compared with that of O∗, the DFT calculations in Figure

7c are appreciably above the SIDT predictions. It is unlikely these are the lowest energy

points as there should be analogous configurations to the lowest energy DFT calculations

from Figure 7a that offer comparable energies. However, it does seem likely that SIDT is

having significant difficulty predicting which configuration is the lowest energy in this case.

This could be a result of conformational effects associated with the orientation of the HO∗

adsorbates that are not possible for O∗.

(a) (b)

Figure 8: SIDT predicted O∗ coverage dependence of the (a) enthalpy of reaction at 298 K
and (b) activation barrier for the HO∗+H∗ → H2O +2∗ reaction on Cu111.

In Figure 8 we apply our model to estimate coverage-dependent properties of the HO∗+

H∗ → H2O +2∗ reaction on Cu111 using Equation 6 and the isolated properties of the

reaction from Johnson et al.19 In Figure 8a we examine the enthalpy of reaction at 298 K.

This reaction removes two adsorbates from the surface and the associated lateral interactions

so naturally we expect that a higher coverages where lateral interactions are more significant

the reactants will be higher in energy and thus the enthalpy of reaction will decrease, which

is in agreement with Figure 8a. The activation barrier shown in Figure 8b also decreases with

coverage as a result of the stronger lateral interactions in the reactants at higher coverages,
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however, it does so at a significantly slower rate because unlike the gas phase product,

the transition state for the reaction does have its own lateral interactions that cause the

transition state to increase in energy at higher coverages, albeit at a slower rate than that

of the reactants that are closer to the surface.

Discussion

The Cu111 Models

For general coverage-dependent property estimation on Cu111 we believe the presented

Cu111 models are sufficient for arbitrary adsorbates and transition states composed of H,

C, O and N atoms and co-adsorbed with H∗, O∗ or HO∗. While we did sample with N∗ as

a co-adsorbate, we had too few valid samples and did not find the model able to make good

predictions with N∗ as the co-adsorbate.

Calculation of Co-Adsorbed Configurations

We believe our presented approach to calculate and analyze co-adsorbed configurations is a

highly effective and efficient way to examine the co-adsorbed configurational space based on

combining direct DFT calculations with a low-data ML approach. One caveat of our current

approach is that it relies on the assumption that configurations that fail to optimize (to a

minimum or to a saddle) are unstable and do not exist. Failure to optimize a configuration to

a target well does not imply in general that the target well does not exist. If an initial guess

is too far from the target well a configuration may optimize to a different well. However,

configurations that fail to optimize, but do in fact exist are likely to be shallow, high energy

wells. Since these configurations are high in energy and we are in general interested in

and/or sensitive to the lowest energy configurations, the distinction between these edge case

configurations being stable and unstable is unlikely to be very important.
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Advantages of Using Subgraph Isomorphic Decision Trees

As discussed in the introduction and demonstrated here the SIDT approach to coverage

dependence presented here is significantly more flexible, automatic, and powerful than cur-

rent state of the art cluster expansion techniques. SIDT is able to predict on arbitrary

co-adsorbed configurations not just those adsorbates and co-adsorbates a CE scheme is fit

for, and is able to learn interactions CE has to be explicitly told how to resolve.

Simultaneously, SIDT is easier to apply, more flexible, and easier to interpret than pos-

sible DNN based approaches. Crucially, SIDT can be applied to much smaller datasets than

is feasible for DNNs and because of its interpretability it is much easier analyze results to

improve performance.

Conclusions

Coverage dependence of chemical reactions is a key, but often ignored aspect of microkinetic

model construction because of the computational expense and complexity that it requires

to determine the necessary parameters.14 Comparable challenges such as rate coefficient

pressure dependence33,34 in gas phase have readily available tools35–37 that are able to fully

automate high accuracy computations using ab inito methods. The framework and tools

presented here open the door for decreasing the barrier to include coverage dependence rou-

tinely in future microkinetic models. Here we used SIDT approach to construct a predictor

based on a fixed pre-generated dataset, however, it is easy to imagine using the workflow

within an active learning scheme that automatically identifies what configurations should

be calculated to improve the SIDT predictors. Moreover, our entire workflow is built to be

automatic using Pynta, running the necessary calculations and post-processing them.

However, higher-level generalizations, such as the ones built into software such as RMG29,38,39

allow for efficiently approximating kinetic parameters without any ab initio calculations for

instance for pressure-dependent reactions in the gas-phase.40,41 It is possible to imagine
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a similar, generalized approach, for instance for Cu111 using the model presented in this

work. However, in general it may be impractical to evaluate the SIDTs at every possible

2D configuration as done in this work. Doing so is unlikely to be strictly necessary, but the

scheme by which configurations are sampled must be considered carefully. Approximations

across arbitrary or even a range of metals, however, is much more challenging. Constructing

such a scheme might be best done by training a foundational SIDT model on one surface

across a wide range of adsorbates, transition states, and co-adsorbates and then (applying

delta learning) training correction SIDTs on much smaller datasets to predict the difference

between the foundational SIDT model and particular surfaces.

We have presented a framework for generating machine learning models and applying

them to predict coverage dependent kinetic parameters for microkinetic models. Our toolkit

enables automatic ab initio computation of co-adsorbed configurations and automatic post-

processing including identification of the optimized configuration and TS validity evaluation

for TSs. We demonstrate the training of SIDT on the generated dataset to predict the

stability and association energy of co-adsorbed configurations. Lastly, we explain how to

use the SIDTs to compute mean-field coverage dependent energy corrections for adsorbates

thermochemistry and reaction activation barriers.

On Cu111, a challenging surface, we are able to achieve association energy MAEs of 0.106

eV on adsorbates and 0.172 eV on transition states and due to natural error cancellation

in SIDTs on relative properties MAEs of 0.130 eV on reaction energies and 0.180 eV on

activation barriers. We hope to extend these techniques to enable high accuracy and efficient

calculation of coverage dependent kinetic parameters.
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Friendly Molecular Saddle Point Optimizer. Journal of Chemical Theory and Compu-

tation 2022,

(25) Hermes, E. D.; Sargsyan, K.; Najm, H. N.; Zádor, J. Accelerated Saddle Point Refine-
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through a geodesic approach to internal coordinates. The Journal of Chemical Physics

2021, 155, 094105.

(27) Johnson, M. S.; Pang, H.-W. zadorlab/PySIDT. https://github.com/zadorlab/

PySIDT.

(28) Han, S.; Lysgaard, S.; Vegge, T.; Hansen, H. A. Rapid and accurate mapping of reac-

29

https://doi.org/10.26434/chemrxiv-2024-36w9w ORCID: https://orcid.org/0000-0002-4624-2852 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-36w9w
https://orcid.org/0000-0002-4624-2852
https://creativecommons.org/licenses/by-nc-nd/4.0/


tion condition-dependent alloy phase diagrams via Bayesian evolutionary multitasking.

2022,

(29) Liu, M.; Dana, A. G.; Johnson, M. S.; Goldman, M. J.; Jocher, A.; Payne, A. M.;

Grambow, C. A.; Han, K.; Yee, N. W.; Mazeau, E. J. et al. Reaction Mechanism

Generator v3.0: Advances in Automatic Mechanism Generation. Journal of Chemical

Information and Modeling 2021, 61, 2686–2696.

(30) Johnson, M. S.; Pang, H. W.; Payne, A. M.; Green, W. H. ReactionMechanismSimu-

lator.jl: A modern approach to chemical kinetic mechanism simulation and analysis.

International Journal of Chemical Kinetics 2024,

(31) Goodwin, D. G.; Speth, R. L.; Moffat, H. K.; Weber, B. W. Cantera: An object-oriented

software toolkit for chemical kinetics, thermodynamics, and transport processes. 2021;

https://www.cantera.org.

(32) Ansys Chemkin-Pro — Chemical Kinetics Simulation Software. https://www.ansys.

com/products/fluids/ansys-chemkin-pro.

(33) Klippenstein, S. J. From theoretical reaction dynamics to chemical modeling of com-

bustion. Proceedings of the Combustion Institute 2017, 36, 77–111.

(34) Johnson, M. S.; Green, W. H. Examining the accuracy of methods for obtaining pressure

dependent rate coefficients. Faraday Discussions 2022, 238, 380–404.
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