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Abstract

De novo prediction of reticular framework structures is a challenging task for chemists

and materials scientists. Herein, a computational workflow that predicts a list of pos-

sible reticular frameworks based on only the connectivity and symmetry of node and

linker building blocks is presented. This list is ranked based on the occurrence of topolo-

gies in known structures, thus providing a manageable number of structures that can be

optimized using density functional theory, and inform future experiments. This work-

flow is broadly applicable, correctly predicts known reticular materials, and furthermore

identifies heretofore unknown phases for some systems. This workflow is available online

at https://rationaldesign.pythonanywhere.com/.
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Introduction

The computational generation and prediction of reticular frameworks, such as metal-organic

frameworks (MOFs) and covalent organic frameworks (COFs), is a highly active field in

chemistry and materials science.1–5 Although efforts have focused on leveraging neural net-

works, machine learning methods,6–8 and high-throughput techniques to generate extensive

datasets of structures,9–13 significant manual effort is still required.14 Furthermore, while

many approaches can accurately predict known MOF structures that are related to exist-

ing databases, they have comparatively limited utility with fundamentally new frameworks.

This is because generative automated approaches, based on neural networks, face challenges

such as uncertain synthesizability and difficulties in accurately assessing connectivity and

topology which lead to a low rate of correctly predicted structures. The high computational

cost and still limited success in the MOF/COF research field of these methods highlight

the need for more effective approaches that integrate chemistry principles alongside machine

learning models, rather than solely relying on training off of existing data.8,15–19

On a positive perspective, the high demand of data has led to the generation of databases

containing either curated experimental structures refined via density functional theory (DFT),

and/or computationally generated hypothetical structures (i.e. Materials Project,9 CSD

MOF Collection,20,21 ARC database,12 MOFX-DB database,10 CoRE-MOF database,11 ReDD-

COFFEE database,13 TopCryst database22). Such collections of structures and their proper-

ties are providing valuable data to base exploratory research and to evolve the field. However,

a workflow which predicts candidate structures based on fundamental principles of frame-

works components would both liberate predictions from known databases and also enable

the prediction of fundamentally new structures.23–26

These challenges inspired us to investigate a new approach, where the generation of novel

frameworks is based on the fundamental feature of the building blocks: their symmetry.

We then envisioned comparing possible structural solutions with how often their symmetry

features appear in existing databases to narrow down likely candidate structures. In this way
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the crystallographic information associated with a reticular framework is generated only for a

small amount of potential structures; to allow for DFT calculations on this reduced set. While

traditional machine learning models are trained on existing datasets, this approach focuses

on high-quality de novo predictions by leveraging the structural properties of linkers and

nodes to design new MOFs, without depending on pre-existing patterns. Machine learning

algorithms can infer symmetry from known MOF structures, but this often fails for novel

MOFs due to limited training data. In contrast, symmetry remains universally applicable,

making it a more reliable principle for predicting new MOFs. This workflow aims to create a

foundation for a suite of computational tools that ultimately can deliver broad predictivity

without high computational costs.

Results and Discussions

Workflow

The workflow is designed to make the generation of frameworks easier and more rational by

following symmetry and structural rules. It starts with the identification of the node and

the linker of choice, followed by the creation of a list of potential topologies that can be

accessible using those building blocks. The workflow is shown in Figure 1.

Figure 1: Workflow schematics including the current working modules.

A general description is provided herein, which is subsequently expanded with examples

of MOF and COF structures taken from the literature. The node and linker structures

chosen by the user are inputted as secondary building units (SBUs) in XYZ file format. To
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Figure 2: Ranking of topologies from ARC-derived (top), and experimental (bottom)
datasets. The top plot shows the 25 most frequent topologies from the ARC-derived dataset
with the 17 most frequent repetitions of at least 1000 times highlighted in purple. The bot-
tom plot shows the 25 most frequent topologies from the experimental dataset with the 15
most frequent repetitions of at least 100 times highlighted in purple

make such SBUs the user builds, on their computer, the building blocks and optimizes them

preferably at the DFT level, or otherwise they can be taken from curated SBU structures

present in public databases. Each SBU has the ligating atoms capped with ghost atoms

(X). Therefore, the building blocks have to be modified accordingly, by the user, to set the

position of the new connection points substituting some atoms with X. (See Supporting

Information for full description).
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Using the number of connections (X atoms) in the SBUs, a list of potential topologies

is provided. At this stage, state of the art high-throughput techniques optimize and rank

the structures based on their relative energies (or free energies), typically using force-field

methods. However, force-field optimized structures are less accurate than those optimized

with DFT. The key innovation in this approach is that, rather than optimizing all generated

structures, only a selection of them is chosen based on the symmetry of the building blocks,

and topological occurrence data from previously synthesized structures in the literature.

This reduces the list to a more manageable set of potential structures that can be accurately

optimized at the DFT level. In contrast, standard high-throughput techniques consider every

structure that fits the connectivity, and neural networks are limited to data of previously

existing reticular frameworks.

The workflow algorithm determines the symmetry group of the building blocks and uses

it to refine the initial list which is based only on connectivity numbers. To perform this

selection the data from the Reticular Chemistry Structure Resource database (RCSR) is

used.27 The RCSR database provides valuable topology information extracted from synthe-

sized frameworks. In the present workflow, these pieces of information are used in the other

way around to build frameworks based on building blocks and their structural match with a

known topology. Indeed, every framework topology entry in RCSR provides, among others,

details on the number of nodes and linkers present in the framework, and their symmetry.

The symmetrization module is a fundamental piece of this workflow. In the current

implementation of the code the symmetry group of each SBU is considered, together with its

related higher and lower symmetry groups, for up to three symmetry groups per SBU. This

is based on the fact that when the building blocks that form a framework are assembled,

they can be slightly stretched, compressed, or twisted, and therefore their symmetry can

increase or decrease compared to the isolated building blocks.

To further refine the selection process, an additional criterion is employed: the frequency

of each topology from synthesized MOFs; this is obtained by analyzing and cleaning the ARC
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database (See Supporting Information).12 This ARC-derived dataset contains the topology

name of each structure and its frequency of occurrence. In addition a fully experimental

dataset was created with the frequency of occurrence of topologies from CoRE MOF11 and

CSD databases20,21 (See Supporting Information). Each entry of the final topology list from

the workflow is ranked accordingly to the ARC-derived dataset primarily, with insights from

the experimental dataset.

Analyzing the ARC-derived dataset, 61 topologies appear with at least 100 repetitions

(pcu – cdz). Among these, 17 are repeated at least 1000 times (pcu – acs highlighted in

purple) Figure 2. The experimental dataset provides a different topology order of frequencies

of occurrence: 15 topologies appear at least 100 times and only one more than 1000 times

(pcu) Figure 2. Overall, pcu is always the most common topology, together with nbo, pts,

bpq, lvt, cds, and tbo which are on the high end of the occurrence frequency number.

The ARC dataset has been chosen even though it collects hypothetical MOF structures to

get a wide collection of underlying net topologies. Our concept aims at leveraging stable

computational calculated structures which can still be porous after optimization without

amorphization, beyond simple proof of their existence. The experimental dataset is used to

support the actual existence of such topologies and to weight for the experimental frequency

of occurrence. Both datasets are still unbalanced towards common topologies and are thus

prone to be biased always towards the most frequent topology; improving the predictive

power for less common structures is an ongoing area of research for this project.

The workflow has seven steps. The first two are based on user preferences while the

others are performed automatically:

1. Geometry optimization of node and linker building blocks at any computational level,

preferably DFT

2. Definition of connectivity of the building blocks to create the final SBU (see Supporting

Information)
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3. Detection of symmetry group of each SBU

4. Listing of potential framework topologies based on the connectivity number

5. Exclusion of items from 4 based on symmetry of SBUs

6. Ranking items in 5 based on occurrence from the literature

7. Output of topologies names

Validation

To validate the workflow, a series of MOF and COF structures have been selected from the

literature and blindly rebuilt starting from their components. This series includes UIO-66,28

MOF-808,29 PCN-6’,30,31 NU-50,32 MOF-841,29, MOF-801,29, MOF-802,29, MOF-812;29 and

COFs such as LZU-30633 and LZU-11134,35. We showcase here MOF-841, PCN-6’, NU-50,

and LZU-111, while the other examples are presented in the SI.

MOF-84129 is formed by the node Zr6O4(OH)4( CO2)8 which has 8 connections (CN = 8),

and the linker H4MTB (4,4’,4”,4” ’-methanetetrayltetrabenzoic acid) which has 4 connections

(CN = 4) (Figure 3). Considering solely the connectivity number, there are 15 potential

topologies: crd, crs-d, csq, fla, flu, hcp-d, jus, ken, nin-d, scu, sqc, xax, xbi, xbm,

xbt. However, 15 topological frameworks can be a lot to be explored with DFT. Additionally,

it is likely that some of these frameworks cannot be constructed based on the symmetry of

the node and the linker, D4h and Td, respectively in Schönflies notation. Following the

concept that only certain symmetry groups belong to a space symmetry, among the initial

15 topologies we identify those with the space symmetry that incorporates both the node

and linker symmetries. None are found in this case. The symmetry refinement step of the

workflow also considers the higher and lower symmetry groups associated with both the

node and linker. This adjustment allows the node to be considered also as D4 and Oh, and

the linker as T and Oh. Every pair combination is inspected to see if it matches one of
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the topologies present in the initial list. The final result provides only flu as a topology

with node symmetry Oh and linker symmetry Th, which can now be used to build the MOF

structure, in agreement with the experimental topology of MOF-84129. This is then followed

by DFT geometry optimization to obtain a final reliable structure. (See Computational

Details section in Supporting Information) For this example, the experimental PXRD pattern

of MOF-841 is in good agreement with the PXRD pattern computed for the DFT optimized

structures following this workflow (Figure 3).29

The second example is PCN-6’30,31, which is formed by the node Cu2( CO2)4(H2O)2 with

4 connections (CN = 4), and the linker TATB (4,4‘,4“-s-triazine-2,4,6-triyltribenzoate) with

3 connections (CN = 3) (Figure 4). Based on the connectivity numbers of each building

block, there are 72 possible topologies (See Supporting Information). Exploring all of them

would be computationally prohibitive, even with classical simulations. The symmetry groups

of the DFT optimized node and linker are D4h and D3h, respectively (See Supporting In-

formation). This pair of symmetry groups does not belong to any of the above topologies,

thus both symmetries can be augmented and reduced providing the node with the additional

symmetries D4 (lower), and Td (higer), and the linker with C3h (lower), D6h (higher). Cou-

pling these symmetry groups and search for their existing combination in the previous list

provides a refined list of potential topologies that can be ranked based on the occurrences

in the ARC-derived, and experimental datasets: tbo (node: D4, linker: C3h. 39905 and 144

occurrences), pto (node: D4, linker: C3h. 694 and 38 occurrences), bor (node: D4, linker:

D3h. 9 and 2 occurrences). This analysis provides tbo as most probable, followed by pto,

and bor; this result is in agreement between the two datasts and most importantly with

the literature, where tbo was the assigned topology.30,31 Possible PCN-6’ MOFs with these

four topologies were optimized using DFT (See Computational Details). The tbo and pto

topologies differ in electronic energy only by 0.4 kcal/mol, suggesting the possibility that

the topology might change with some synthetic modifications (i.e. solvent, temperature,

pressure, etc.).
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Figure 3: MOF-841 in topology flu optimized at DFT level with PBE-D3BJ functional.36,37

Experimental PXRD pattern (red line) taken from previously published data from
reference29. Computational PXRD pattern calculated in this work (black lines). Color-
code: Zr blue, O red, C green, H white.

Next, we considered MOF NU-5032 with In(III) node (from InCl3) and H4TBAPy linker

(1,3,6,8-tetrakis(p-benzoic acid)pyrene), each with a connectivity number of 4 which provides

241 possibilities (See Supporting Information for full list). The symmetry groups of node and

linker are D2d and D2 respectively, giving no potential topologies. However, by symmetry

relaxation, symmetry groups D4h (higher), and D2 (lower) are available for the node, and

D2h (higher) and C2 (lower) for the linker. This provides, after pairwise combination, the
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Figure 4: PCN-6’ structures with topologies tbo and pto optimized at DFT level with
PBE-D3BJ functional[36, 37] (top); and related computational PXRD pattern (bottom).
Colorcode: Cu gold, N blue, O red, C green, H white.

topologies (ordered by frequency of occurrence): pts (D2d and D2h, 30461 and 262), ssb

(D2 and D2, 1765 and 13), pth (D2 and D2, 297 and 9), and ssa (D2 and D2, 108 and 3).

According to this ranking, pts is the most likely topology for this MOF (from both datasets)

which is in agreement with experiment. This also shows the importance of considering

higher and lower symmetries for the node and linker. We note that other topologies from

this ranking could be used to generate related NU-50 MOFs ; ssb, pth, and ssa. MOF

structures with these four topologies were DFT optimized with the PBE-D3BJ36,37 functional

(see SI for full Computational Details). To balance the framework charges one Na+ per

node has been added in its proximity before full geometry optimization. The pts and pth

structures have similar electronic energies, with the latter 2.0 kcal/mol lower (Figure 5). ssb

is about 12.8 kcal/mol higher than pts (See Supporting Information). These results provide
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valuable insights, particularly regarding the experimental observations that the framework

exhibits structural deformation after thermal activation and solvent removal, leading to

pore contraction that does not revert to the pristine structure even after reactivation by

submersion in water.32 We propose that this behavior may be related to a thermally accessible

pth morphology which could potentially be present post-activation. The probe-occupable

available volume (POAV) of these two structures (pts, and pth) measured using Zeo++38

fortifies this suggestion. pts-NU-50 POAV is 2.5 cm3/g with the largest included sphere of

13.8 Å, while pth-NU-50 shows some shrinkage with POAV is 2.1 cm3/g with largest included

sphere of 11.0 Å. In addition, the computed PXRD for both pts and pth MOFs (Figure 5)

shows a trend consistent with experimental findings.32 The green PXRD pattern, both in

the experimental and computational panel, corresponds to the pts-NU-50 structure and the

red PXRD pattern to the activated structure, computationally associated with pth. The

highest experimental peak shifts from 8° to 10°; the computed PXRD peak shifts from 6° in

pts-NU-50 to 7° in pth-NU-50, mirroring the experimental trend. Therefore, computations

suggest that the pth topology is a reasonable assignment for the activated NU-50 structure.

The final example is COF LZU-11134,35 with topology lon-b and a 3-fold interpenetra-

tion. lon-b is a rare topology due to the use of two nodes rather than the more common lon

(38 repetitions in our experimental database) which contains only one node. In this case the

workflow predicts pts as the most favorable topology. Calculating the suggested topology

reveals a discrepancy when comparing the PXRD patterns. pts has the most intense peak

at 4° and a pair of peaks at 5° with a lower intensity, instead lon-b shows the first and less

intense peak positions at 5° followed by the most intense peak positions at around 6°. In

Figure 6 both PXRD patterns from calculations are shown together with the related COF

structures. The COF LZU-111 case also shows the need to implement the interpenetration

feature which is very common in COF structures. In fact, COF LZU-111 has been manually

made also at non- and 2- fold and structurally optimized via DFT (See Supporting Infor-

mation). From the optimized structures the related PXRD patterns have then been plotted
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Figure 5: NU-50 structures with topologies pts and pth optimized at DFT level with PBE-
D3BJ functional[36, 37] (top); related computational PXRD pattern (bottom right) showing
the peak shift with potential relation to post-activated structure deformation; and experi-
mental PXRD pattern (bottom left) from reference [32] added for comparison. Colorcode:
In pink, Na yellow, O red, C green, H white.

showing the 3-fold structure to be quite different than both the 2-fold and the none-fold (See

Supporting Information). Therefore, even though the workflow would have had guessed the

correct topology, the missing two folds prevent it from generating the correct structure.

More examples are described in the Supporting information in the same fashion as the

case studies described here.
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Figure 6: COF LZU-111 structures with topologies lon-b 3-folded interpenetrated, and pts
optimized at DFT level with r2SCAN+rVV10 functional[39, 40] (top), and related computa-
tional PXRD pattern (bottom) showing for comparison. Colorcode: Si gray, N blue, O red,
C green, H white.

Conclusion

We presented a comprehensive and unique workflow for the generation of MOF or COF struc-

tures from building blocks. The implementation of this workflow is available at https://

rationaldesign.pythonanywhere.com. The workflow has been tested on molecular frame-

works already reported in the literature, confirming its reliability. Additionally, it has pro-

vided insights into alternative topologies that can be formed through post-synthetic pro-

cesses. Finally, one case where the workflow fails is described, to highlight the necessity of

more balanced structural databases as well as the need to implement a module that con-

siders interpenetration, a common feature of molecular frameworks. This workflow will be

extended to 2D structures and rod-MOFs. The method presented is a powerful tool for the

prediction of new MOF or COF structures, particularly those featuring novel building blocks
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that have not been previously explored.
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