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Abstract 
Engineering artificial nanozymes as substitutes for natural enzymes presents a significant 
scientific challenge. High entropy alloys (HEAs) have emerged as promising candidates for 
mimicking peroxidase (POD) activity thanks to their unique properties and versatility. However, 
designing or discovering HEAs that surpass the catalytic efficiency of natural horseradish 
peroxidase involves complex challenges, often hindered by the multidimensional nature of 
HEAs’ compositional variability and the intricate interplay of enzymatic behaviours. Therefore, 
an intelligent and efficient approach to accelerate this discovery is crucial. In this study, we 
address these challenges by deploying a robotic artificial-intelligence chemist equipped with 
theoretical calculations, machine learning, Bayesian optimization, and on-the-fly data analysis 
by a large language model (LLM). Our approach centres on a physics-informed, multi-
objective optimization framework that simultaneously optimizes multiple desirable properties 
of nanozymes, including maximum reaction rate and substrate affinity, ultimately optimizing 
catalytic efficiency. By integrating an auxiliary knowledge model based on physical insights 
and collaborative decision-making enabled by LLM-in-the-loop into Bayesian optimization, 
we enhanced the data-driven discovery workflow. Our physics-informed approach, with instant 
LLM-in-the-loop feedback, significantly outperformed both random sampling and standard 
Bayesian optimization. Consequently, we efficiently explored a vast chemical space and 
identified HEAs with enzymatic properties that significantly exceed those of the most effective 
catalysts based on HEAs or single atoms reported in the literature, as well as the natural enzyme. 
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Main 
The engineering of artificial nanozymes as substitutes for natural enzymes has long been a 
forefront topic in enzymatic catalysis research.1–3 Nanozymes are nanomaterials with 
enzymatic properties, which often exhibit advantages over natural enzymes in environmental 
tolerance, long-term stability, and manufacturing costs.4,5 Nanozymes mimicking peroxidase 
(POD) have been extensively studied as alternatives to the natural enzyme horseradish 
peroxidase (HRP). POD mimics catalyse the conversion of hydrogen peroxide into hydroxyl 
radicals and have widespread applications in biosensing, disease treatment, and 
immunoassays.6,7 The discovery of the POD-mimicking properties of Fe3O4, by Gao et al.,8 
marked the beginning of a series of studies on noble metals,7,9,10 alloys,11,12 metal oxides,13 and 
metal sulfides14 for their POD-mimicking capabilities. The detailed structural elucidation of 
natural HRP, revealing a bioactive centre featuring a FeN4 configuration, catalysed the 
development of single-atom nanozymes as HRP mimics.15–19 Engineering such bioactive 
centres requires atomic-scale insights into the structure and catalytic behaviours of 
nanomaterials. Thus, computational studies, particularly density functional theory (DFT) 
calculations, have been conducted to help rationalize experimental findings and investigate 
possible structure-function relationships that inform the design of nanozymes.20–22 
 
Despite extensive research into POD nanozymes, surpassing the catalytic efficiency of HRP 
remains a challenge. Most mimics reported to date have been either discovered serendipitously 
or designed as close variants or derivatives of previously known working systems. While 
establishing structure-function relationships for POD mimics has proven helpful—for instance, 
in predicting the catalytic activity of single-atom nanozymes—such relationships often fail to 
capture the essence of HRP's biocatalytic strategies, which are multifaceted and multifactorial, 
spanning multiple length and time scales. This is evident in cases where, even though the local 
molecular and electronic structures of a mimic's active centre may resemble that of HRP, the 
mimic still fails to achieve equivalent catalytic efficacy. 
 
Natural enzymes possess highly evolved active sites that ensure a strong binding affinity 
towards the substrate and high catalytic activity. The Michaelis-Menten kinetics model,23 
widely used in biochemistry, describes the rate of enzymatic reactions and elucidates how 
various factors influence the efficiency and rates of these reactions. This model hinges on the 
formation of an enzyme-substrate complex as an intermediate step in the reaction process, 
leading to product formation while the enzyme is regenerated. At its core, the model features 
two critical parameters quantifying the enzyme-catalysed reaction: the maximum reaction rate, 
Vmax, achieved by the system at saturating substrate concentration, and the Michaelis constant, 
KM, which is the substrate concentration at which the reaction rate is half of Vmax, reflecting 
the enzyme's affinity for the substrate. 
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According to the Michaelis-Menten model, a highly active enzyme exhibits several key 
characteristics that enhance its ability to efficiently catalyse reactions.24 Firstly, it should have 
a low KM value, indicating high affinity for its substrate, allowing it to bind effectively even at 
low substrate concentrations. This is particularly important in environments where substrate 
availability is limited. Secondly, a high Vmax value is essential, signifying that the enzyme can 
efficiently convert substrate to product once enzyme-substrate complexes are formed, 
processing substrate molecules into products as rapidly as its active site allows. Thirdly, a high 
Vmax/KM ratio, reflecting catalytic efficiency, suggests that the enzyme can achieve high 
reaction rates even with low substrate concentrations. Some other properties, while not 
described by the Michaelis-Menten model, such as stability and specificity, are also important 
and contribute to an enzyme's effectiveness in complex biochemical contexts. 
 
While natural enzymes seemingly perform their functions with ease, it has proven to be a 
significant challenge for nanozymes to simultaneously optimize the Vmax, KM, and Vmax/KM 
properties, which are crucial for achieving the catalytic efficiency of natural enzymes.25,26 On 
one hand, achieving a high Vmax necessitates not only an abundance of accessible catalytic sites 
but also a rapid conversion of substrate to product. However, the often-limited availability 
and/or accessibility of catalytic sites of nanomaterials lead to suboptimal substrate conversion 
rates, posing a fundamental challenge to enhancing Vmax. On the other hand, attaining low KM 
values, indicating strong substrate affinity, requires high specificity and affinity akin to natural 
enzyme-substrate interactions. This is difficult to achieve in nanomaterials as it demands 
precise control over the nanozyme's surface chemistry and the microenvironment around its 
active sites. Furthermore, optimizing the Vmax/KM ratio, indicative of catalytic efficiency, 
necessitates a careful balance between increasing Vmax and reducing KM. Enhancements in Vmax 
often lead to higher KM values due to a loss of substrate specificity, a consequence of attempts 
to increase the reactivity of catalytic sites. Conversely, strategies aimed at reducing KM by 
enhancing substrate affinity and specificity can inadvertently decrease Vmax, by restricting the 
rate of conversion or the accessibility of catalytic sites. 
 
High entropy alloys (HEAs) emerge as a versatile platform for the development of nanozymes, 
particularly because of their potential for simultaneously optimizing the key enzymatic 
parameters: Vmax (maximum reaction rate), KM (substrate affinity), and the efficiency ratio 
Vmax/KM. This multifaceted optimization may be facilitated by the unique attributes of HEAs, 
including their vast compositional diversity and the resulting synergistic interactions among 
constituent elements.27,28 These features allow for the precise tuning of the electronic structure 
and the spatial configuration of catalytic sites,29–31 directly enhancing Vmax by promoting rapid 
substrate conversion while also enabling the modulation of substrate binding sites to reduce 
KM. Furthermore, the structural complexity and inherent stability of HEAs contribute to their 
robustness under various operational conditions, maintaining the integrity of catalytic sites and 
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ensuring consistent enzymatic performance. The ability to engineer surface properties further 
enhances the potential of HEAs to achieve high catalytic efficiency alongside specificity. 
 
The compositional diversity of HEAs, while a strength, introduces significant combinatorial 
complexity, posing a challenge in optimizing these materials for nanozyme applications, 
especially when aiming to enhance multiple desirable properties concurrently. Given that 
HEAs consist of five or more principal elements in substantial proportions, the vast 
compositional space vastly increases the number of potential materials, making the 
identification of optimal compositions more complex. This challenge is compounded when 
attempting to optimize multiple interrelated properties simultaneously, as enhancing one 
characteristic can inadvertently impact others due to the synergistic and, at times, antagonistic 
interactions among the constituent elements. Furthermore, while computational methods and 
machine learning offer tools to navigate this complex compositional space,32,33 the 
effectiveness of these models depends on the availability of reliable data and the intricacy of 
the underlying physical phenomena.3435 The multifaceted nature of HEAs, including aspects 
like electronic structure and surface reactivity, renders predictive modelling particularly 
challenging. The challenge extends beyond theoretical considerations. While high-throughput 
experimental screening promises an efficient exploration of the compositional space, its 
application to HEAs is still emerging. Moreover, the complexity of assays needed to 
simultaneously assess multiple catalytic properties introduces further complications. 
Consequently, the development of HEAs as nanozymes with multiple desirable properties 
necessitates collaborative efforts spanning theory, computation, machine learning, and 
experiment. 
 
In this work, we explored the discovery of HEAs as POD nanozymes using a robotic chemist 
equipped with theoretical calculations, artificial intelligence (AI) capabilities—machine 
learning (ML), Bayesian optimization, and on-the-fly data analysis by a large language model 
(LLM)—and automated material synthesis and function testing. By developing and deploying 
a physics-informed, dual-objective Bayesian optimization approach, we investigated a vast 
chemical space of five-component HEAs, aiming to discover HEAs with enhanced maximum 
reaction rate (high Vmax values) and substrate affinity (low KM values), ultimately attaining 
high catalytic efficiencies (high Vmax/KM values). Notably, the integration of a knowledge 
model based on theoretical predictions and LLM-in-the-loop analyses of experimental data 
significantly improved the optimization efficiencies compared to random sampling and 
standard Bayesian optimization. After synthesizing and testing 96 HEAs, following an initial 
random set of 50 HEAs as the starting point, we discovered HEAs with a tenfold increase in 
catalytic efficiency compared to natural horseradish peroxidase; these HEAs also surpassed 
some of the most effective catalysts based on single atoms and other HEAs reported in the 
literature. 
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Figure 1. Accelerating the discovery of HEAs as POD nanozymes. a, Objectives for and advantages 
of HEA-based nanozymes, and the challenges associated with discovering them. b, Scheme of our 
discovery workflow, involving literature text mining to identify candidate metallic elements for HEAs, 
theoretical predictions for building a knowledge model to be incorporated into Bayesian optimization 
(BO); LLM-in-the-loop analyses of experimental data (using GPT-4), and a closed-loop physics-
informed, dual-objective BO process. c–e, HEA synthesis by the robotic AI chemist, involving 
dispensing liquids (c), assembling autoclaves (d), and transferring assembled autoclaves to the oven for 
hydrothermal synthesis (e). 
 
Results 
Automating HEA synthesis 
In this work, we considered HEAs consisting of five principal metallic elements; details are 
given below for how the specific elements were chosen for synthesis. Considering the ease 
with which it could be integrated into an automated robotic workflow, we adopted a mild 
solvothermal method to synthesize HEA nanoparticles.36,37 This involved dissolving five 
different metal acetylacetonate precursors in an acetone and ethanol mixture (50:50 vol%). 
Acetone was used to fully dissolve dispensed metal acetylacetonates, and ethanol was used as 
a reducing agent under solvothermal conditions to reduce the mixed metal acetylacetonates to 
form HEAs. All metal acetylacetonate solutions were initially prepared with a total metal 
concentration of 10 mM. For the synthesis of a specific HEA, the required volumes of various 
precursor solutions were added according to the provided ratios. A 30 mL precursor solution 
with the desired ratio of metal acetylacetonates was mixed in a Teflon lined steel autoclave, 
which was subsequently sealed and heated in an oven at 200 °C for a duration of 4 hours. We 
randomly performed X-ray diffraction on 42 groups of HEAs with different synthesis 
formulations (Supplementary Table S1), which showed a face-centred cubic structure with 
relatively low crystallinity (Supplementary Fig. S1). 
 
The hydrothermal synthesis of HEAs described above was achieved through an automated 

https://doi.org/10.26434/chemrxiv-2024-mbk38 ORCID: https://orcid.org/0000-0002-0382-5863 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-mbk38
https://orcid.org/0000-0002-0382-5863
https://creativecommons.org/licenses/by-nc-nd/4.0/


workflow, extending our previously established robotic experimental capabilities.38,39 Figure 
1c and Extended Data Fig. 1(1, 2) depict an automated liquid dispensing station where 
precursor solutions are drawn from reagent bottles and pipetted into inner tanks for 
hydrothermal autoclaves. This workstation can prepare five inner tanks simultaneously with 
high dispensing accuracy. Figure 1d and Extended Data Fig. 1(3–7) illustrate a six-degree-of-
freedom robotic arm securing the lid on the inner tank before inserting it into a stainless-steel 
autoclave. The autoclave is then positioned on a rotating platform and securely held in place, 
with the lid fastened by the robotic arm as the platform rotates. Figure 1e and Extended Data 
Fig. 1(8, 9) show a mobile robot collecting the assembled autoclave and transferring it to the 
oven for solvothermal synthesis. Full experimental details are provided in the Methods section 
and in the Supplementary Information. 
 
Determining metallic elements for HEAs as potential POD nanozymes 
Previously,40 we developed an unsupervised syntactic distance analysis approach for mining 
scientific literature, capable of extracting information about chemical substances, 
physicochemical properties, chemical/material functions, experimental conditions, and more, 
without the need for annotation. Here, we applied this approach to analyse the abstracts of 
recent scientific literature and patents containing the keyword "peroxidase" from the Web of 
Science, totalling 98,881 documents (data retrieval date: September 2022). Among this 
extensive collection, only 14,597 scientific publications and 847 patents mentioned both 
"peroxidase" and at least one metallic element in their abstracts. Moreover, these metallic 
elements were mentioned in various forms, including metal oxides, alloys (high-entropy or 
otherwise), organometallic compounds, and more. We posited that the co-occurrence of 
"peroxidase" and metallic elements in abstracts indicates a significant relevance of metal-
containing materials to peroxidase-related functions or applications. Thus, the identified 
prevalence of metallic elements holds strong potential for pinpointing metallic elements 
suitable for HEAs as peroxidase nanozymes. 
 
Extended Data Fig. 2a presents the identified frequencies of various metallic elements, depicted 
as counts of their occurrences. Additionally, Extended Data Fig. 2b shows a correlation 
heatmap that illustrates the co-occurrences of metal pairs within the same abstracts. For 
instance, iron (Fe) is often mentioned alongside vanadium (V), copper (Cu), and Cobalt (Co), 
indicating potential synergies among these elements. Furthermore, considering HEAs' 
formation, the structural and chemical similarities of the components are important. Therefore, 
we refined the metal-pair correlation map by considering the metallic elements' atomic radii 
and counts of their valence electrons, assigning enhanced correlations to similar elements 
(based on these criteria), as represented by thicker lines connecting them in Extended Data Fig. 
2c. This refinement resulted in the final recommendations shown in Figure 2a. Consequently, 
the top five recommended elements for the synthesis of HEAs in this study were determined to 
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be Fe, Mn (manganese), V, Co, and Cu. 
 
Building a theory-based predictive model for enhancing BO efficiency  
We explored HEAs composed of five selected metallic elements, each within the range of 5 to 
35 at.%, resulting in a total of 553,401 potential unique compositions. To navigate this 
extensive chemical space efficiently, we employed Bayesian Optimization (BO) for its sample 
efficiency in evaluating functions whose forms and derivatives are unknown, akin to 
experimental scenarios. Additionally, we leveraged a previously developed method to improve 
optimization efficiency by integrating prior knowledge into the standard BO algorithm.41 
Specifically, this enhanced BO framework allows the inclusion of external knowledge into the 
acquisition function through an additional deterministic surrogate model. This approach 
enhances the standard single surrogate model's approximation capabilities, which is typically 
a Gaussian Process (GP). The added surrogate model can be any ML model that offers 
predictions to facilitate more informed sampling decisions. 
 
In this study, we employed an ML model capable of estimating computable properties that 
represent certain underlying characteristics of the enzymatic functions of interest. By 
integrating this additional surrogate model, we introduced a bias towards regions in the search 
space that are more likely to exhibit these underlying characteristics, thereby potentially 
leading us to solutions with enhanced enzymatic functions more swiftly. The surface desorption 
energy of the hydroxyl radical has been proposed as a descriptor for the catalytic performance 
of peroxidase (POD) nanozymes,21 whose kinetic parameters are determined based on the 
oxidative coloration of the substrate by the desorbed hydroxyl radicals. It has also been 
suggested that the surface adsorption/desorption energy can be related to the surface structure 
through the so-called d-band model.42 Therefore, we selected the Gibbs free energy for the 
surface desorption of a hydroxyl radical and the centres of the d-band before and after 
desorption as the underlying characteristics for constructing the additional surrogate model. 
 
Results from electron spin resonance spectroscopy (Supplementary Fig. S2) revealed that the 
catalysis of H2O2 by the HEA nanozyme follows a homolytic reaction pathway (Extended Data 
Fig. 3): (i) H2O2 is adsorbed onto the HEA surface; (ii) the activated H2O2 undergoes homolysis, 
forming two hydroxy groups (–OH); (iii) one hydroxy group desorbs from the surface, yielding 
a hydroxyl radical (•OH). Since the homolysis step is thermodynamically favourable, the 
desorption of the hydroxy groups becomes a critical step in the overall reaction. Aligning with 
this mechanistic view, the pipeline for calculating the relevant thermodynamic features to be 
used by the additional surrogate model in the enhanced BO framework is outlined in Figure 2b. 
 
First, classical molecular dynamics (MD) simulations were employed to generate atomistic 
configurations for 12,205 distinct compositions of the five selected metallic elements. Then, 
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from each configuration, representing a unique composition, we extracted 6,400 local 
structures, each comprising 16 neighbouring atoms. These structures served as representative 
surface structures of the composition for calculating the Gibbs free energy of desorbing the 
first hydroxy group (ΔG!"#–%&), as well as for determining the d-band centre positions before and 

after the desorption of the first hydroxy group (𝜀!
'(–%&) and 𝜀!–%&, respectively). Since 6,400 

local structures represented each composition and were calculated for ΔG!"#–%&, 𝜀!
'(–%&), and 

𝜀!–%&, we computed the mean and median of 𝜀!
'(–%&) and 𝜀!–%&, and the probability of ΔG!"#–%& 

being above -1 eV across all 6,400 samples for the composition, yielding 5 thermodynamic 
features for the composition. Subsequently, a neural network (NN) model was trained to predict 
these 5 features using only the composition as input, employing the 12,205 compositions for 
training. Ultimately, this NN model was used to predict the 5 thermodynamic features for any 
given composition, which were then used by the additional surrogate model in the enhanced 
BO framework. 
 
To build atomistic models for the calculations described above, it is necessary to know the 
compositions of the HEAs, which can deviate from the synthesis formulations (i.e., the 
precursor dosages used during synthesis). Indeed, we synthesized 150 HEAs with randomly 
chosen synthesis formulations, with the dosage of each element within the range of 5 to 35 
at.%. We then determined the actual composition of each HEA through inductively coupled 
plasma–optic emission spectrometry (see Methods section for details). Extended Data Figure 
4(a–e) shows that, generally, the dosages used in synthesis correspond well with the actual 
compositional amounts across the 150 HEAs, albeit with appreciable differences for individual 
ones. Our Bayesian optimization, which guides experimental syntheses of HEAs in the 
formulation space, employs an external knowledge model to incorporate theoretical predictions. 
Therefore, calibrating synthesis formulations to HEA compositions is required so that Bayesian 
optimization can evaluate any points in the search space and suggest subsequent experiments. 
To accomplish this, we built a simple feedforward neural network that took a synthesis 
formulation as input and outputted its predicted composition. Extended Data Figure 4(f–o) 
confirms the high predictive accuracies of this calibration model for a test set from the 150 
randomly chosen HEAs (f–j) and for all other samples synthesized in this study (k–o). 
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Figure 2. Literature text mining results and the workflow of theoretical calculations and 
predictions. a, Recommendation ranking of candidate metallic elements for synthesizing HEAs, taking 
into consideration the prevalence of metallic elements in the literature mentioning “peroxidase” in their 
abstracts and the size and chemical compatibility between elements. b, Workflow of building a machine 
learning (ML) model for predicting thermodynamic properties from HEA compositions, involving 
molecular dynamics (MD) simulations, first-principles density functional theory (DFT) calculations, 
and building and training neural network (NN) models.  
 
Developing a physics-informed, dual-objective BO strategy 
The theory-based NN model, which predicts the five thermodynamic features based on 

calculated ΔG!"#–%&, 𝜀!
'(–%&), and 𝜀!–%& for a given HEA composition, was incorporated as an 

auxiliary model within the standard Bayesian Optimization (BO) framework, representing 
prior knowledge throughout the optimization process. This method is hereafter referred to as 
physics-informed BO, as it integrates theoretical predictions into the BO framework. 
Specifically, for each synthesis formulation 𝑥 , the calibration model predicted the 
corresponding composition 𝑥′. For composition 𝑥′, the theory-based NN model predicted the 
five thermodynamic features, collectively termed domain knowledge 𝒟, which was then used 
to estimate the optimization objective by a knowledge model 𝜉(𝑥′; 𝒟) . That is, the 
optimization objective was estimated using both the GP model, based on the synthesis 
formulation 𝑥, and the knowledge model, based the thermodynamic properties derived for 
composition 𝑥′. These two models were combined into an augmented acquisition function: 
𝛼𝒟(𝑥|𝑥′) = 𝛼(𝑥) + 𝜉(𝑥′; 𝒟), where 𝛼(𝑥) is the acquisition function in standard BO, chosen 
to be the upper confidence bound (UCB) in this study. Therefore, the full expression of the 
augmented acquisition used is given by  
 

𝛼𝒟(𝑥|𝑥′; 𝜅) = 𝛼+,-(𝑥; 𝜅) + 𝜉(𝑥′; 𝒟) = [𝜇(𝑥) + 𝜅𝜎(𝑥)] + 𝜉(𝑥′; 𝒟)         (Eq. 1) 
 
where 𝛼+,-(𝑥; 𝜅) is a weighted (by 𝜅) sum of the posterior mean, 𝜇(𝑥), and uncertainty, 
𝜎(𝑥), both given by the GP model for 𝑥.  
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Furthermore, as discussed above, HEAs have significant potential for simultaneously 
optimizing several key enzymatic parameters, aiming for a large Vmax (high maximum reaction 
rate), a small KM (high substrate affinity), and a high efficiency ratio Vmax/KM all at once. Thus, 
we implemented a dual-objective BO method, searching for solutions (i.e., HEA synthesis 
formulations) that increase Vmax and decrease KM. In multi-objective optimization tasks, it is 
common for a solution to perform well on one objective but poorly on the others. A solution is 
considered nondominated or Pareto optimal if any improvement in one of the objective 
functions would lead to a compromise in others. Conversely, a solution is dominated if there 
exists another solution that outperforms it across all objectives. Evidently, any dominated 
solution cannot be optimal. Therefore, multi-objective optimization often aims to identify and 
sample from the set of Pareto optimal solutions—known as the Pareto front. In this study, the 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) was selected to approximate the 
Pareto front of the dual-objective acquisition function.43,44 
 
Finally, we implemented an automated approach to analysing the experimental results gathered 
along the dual-objective optimization process. After each BO step, the large language model, 
GPT-4,45 was initiated to analyse the by-then-obtained data, identifying correlations between 
individual metal dosages, as well as pairs of them, and the values of KM and Vmax. In doing so, 
GPT-4 would recommend increasing or decreasing specific metals’ dosages in HEA synthesis 
formulations, for improving on one or both optimization objectives. Such recommendations 
were then incorporated into the dual-objective BO framework as biases, in the form of 
boundaries or restraints on the specific metal dosages. That is, for instance, if GPT-4 
recommends increasing the dosage of V for lowering KM, then formulations with high V 
dosages will be penalized with lower acquisition scores. We implemented this GPT-4-based 
statistical analysis as an automated workflow, as graphically represented in Figure 3a, with one 
example of the GPT-4 query prompt and response provided in Figure 3b. 
 
We adopted this strategy with the aim of increasing search efficiency within the vast chemical 
space of 553,401 unique HEA compositions. However, this comes with the risk of prematurely 
biasing against currently deprioritized regions, which might become promising as more data 
are gathered. Our approach, in essence, aligns with the "human in the loop" concept within 
global optimization—a collaborative process where human judgment and decision-making are 
integrated with automated optimization algorithms. This allows for a more flexible and context-
aware optimization process that combines the strengths of both humans and machines, often 
resulting in better outcomes in complex, dynamic, or poorly defined problem spaces where 
human expertise is essential. On the other hand, our "GPT in the loop" approach has significant 
potential to mitigate some of the major drawbacks of the "human in the loop" approach, 
particularly in terms of cognitive biases, consistency issues, and information overload. 
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Furthermore, the fully algorithmic nature of our physics-informed, dual-objective BO strategy 
with GPT in the loop is conducive to full integration with robotic automation. 
 

 
Figure 3. Integration of GPT-in-the-loop analysis of experimental data into the physics-informed, 
dual-objective BO. a, Flowchart illustrating the physics-informed, dual-objective Bayesian 
optimization (PI-DO-BO) with GPT-in-the-loop data analysis framework. b, An example of user prompt 
and GPT-4 response for analysing experimental data.  
 
Searching for HEAs with dual desired functions as POD nanozymes 
The maximum reaction rate Vmax and the Michaelis constant KM were determined through the 
oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by hydroxyl radicals.46 A series of 
nanozyme-catalysed reactions were conducted at various substrate concentrations, with steady-
state reaction rates measured for each concentration. By plotting the reaction rates against 
substrate concentrations and fitting the Michaelis-Menten equation to these data points, Vmax 
was estimated from the asymptote of the plot, and KM was calculated from the substrate 
concentration at which the velocity was half of Vmax. An example of deriving Vmax and KM is 
provided in Figure 4a. 
 
We first randomly selected 50 HEAs from the 150 HEAs synthesized to establish the 
formulation-to-composition calibration model, measuring their KM and Vmax values, thus 
forming step 0 in the optimization process. In Figure 4b and 4c, we plotted the Vmax/KM ratio 
against the optimization step and KM, respectively, as it reflects catalytic efficiency and is 
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ultimately the most desirable property of enzyme mimics. Undoubtedly, one could employ a 
single-objective BO to search for solutions with high Vmax/KM values. Nevertheless, our 
decision to optimize for Vmax and KM separately and concurrently, in retrospect, allowed us to 
gain insights into the intricate relationships between metal contents and the optimization 
objectives. These insights helped to reveal the underlying mechanisms through which high 
catalytic efficiencies could be attained, as well as the challenges in simultaneously decreasing 
KM while increasing Vmax. Further discussions are provided below. In step 0, most of the HEAs 
yielded very low Vmax/KM values (below 1.0 × 10−5 s−1, note the logarithmic scale of the axis 
in Figure 4b), due to their large KM values (Figure 4c).  
 
Our physics-informed, dual-objective BO (PI-DO-BO) began by constructing a GP-based 
surrogate model and an auxiliary knowledge model, following the procedure described above, 
using the 50 data points from step 0. Subsequent sampling involved selecting 8 points (i.e., 
synthesis formulations) per optimization step that maximally covered the Pareto optimal front, 
prioritizing thorough exploration of this front. After 6 PI-DO-BO steps, the highest Vmax/KM 
value attained by the 48 new samples was still below 1.0 × 10−4 s−1 (Figure 4b). This was 
predominantly because the HEAs associated with high Vmax values also had high KM values 
(Extended Data Fig. 4). Since achieving high Vmax values necessitates abundant accessible 
catalytic sites and rapid substrate conversions, our results suggest that the HEAs attained 
increased reactivity of catalytic sites at the cost of a loss of substrate specificity, thus leading 
to high KM values. This further suggested to us that a potentially viable approach to attaining 
high Vmax/KM values was to significantly decrease KM while maintaining a moderately high 
Vmax. 
 
At this point, we introduced GPT-4 into the optimization process by prompting it to analyse 
the synthesis formulations from steps 0–6, to identify correlations between metal dosages (or, 
in this context, interchangeably referred to as contents, as the values are very close; see 
Extended Data Fig. 5) and the optimization objectives, Vmax and KM. It was also prompted to 
formulate hypotheses for improving one or both objectives. GPT-4 identified several strong 
and weak correlations. For instance, Fe content was found to have a strong positive correlation 
with Vmax and a positive correlation with KM, suggesting that increasing Fe content could be 
beneficial for increasing Vmax but would also likely increase KM. By contrast, V content 
exhibited a strong negative correlation with KM but minimal effects on Vmax. Therefore, 
increasing V content would be beneficial for reducing KM without significantly impacting Vmax. 
Examples of the prompts and responses are provided in Figure 3b. These interpretations and 
recommendations agreed with human-based analyses of the data. Ultimately, biases towards 
low Fe dosages and high V dosages were introduced into the PI-DO-BO framework when 
generating recommendations for subsequent experiments in step 7. 
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From step 7 to step 10, the highest value of Vmax/KM reached 1.58 × 10−3 s−1, a significant 
increase from the highest Vmax/KM value of 8.45 × 10−5 s−1 achieved by step 6. Throughout 
steps 7–10, GPT-4 maintained the same recommendations for keeping Fe dosages low and V 
dosages high. For suggesting experiments for step 11, we additionally prompted GPT-4 to 
analyse possible joint effects of binary combinations of metals on the optimization objectives. 
GPT-4 revealed how combined changes in the contents of two metals influenced KM and Vmax 
values (Supplementary Fig. S3). Specifically, the Fe+Cu and Fe+Mn pairs had strong positive 
correlations with KM, while the Co+V pair had a strong negative correlation with KM. The 
Fe+V pair had a very strong positive correlation with Vmax. Consequently, biases towards low 
combined dosages of the Fe+Cu and Fe+Mn pairs, high combined dosages of the Co+V pair, 
and high combined dosages of the Fe+V pair were introduced into the PI-DO-BO framework 
when generating recommendations for subsequent experiments in steps 11 and 12; see Methods 
for details. As for step 12, GPT-4 maintained the same analysis and recommendations. The 
highest value of Vmax/KM further increased to 2.97 × 10−3 s−1 in step 12, which was achieved 
through an optimization process beginning with 50 randomly selected samples (step 0), 
followed by 48 samples acquired by the PI-DO-BO framework (steps 1–6), before acquiring 
48 more samples through the PI-DO-BO with GPT-in-the-loop framework (steps 7–12). 
 
For comparison, the remaining 100 HEAs from the initial batch of 150 randomly chosen and 
synthesized HEAs achieved the highest Vmax/KM value of 6.18 × 10−5 s−1, which is two orders 
of magnitude lower than the highest value of 2.97 × 10−3 s−1 attained by the PI-DO-BO 
approach (Figure 4b). Moreover, we established a stronger baseline using a standard dual-
objective BO (DO-BO), starting after step 7. That is, using all the same data points acquired 
within steps 0–7, we used a standard DO-BO to inform subsequent experiments. This was done 
without supplementing it with the theory-based knowledge model. This standard DO-BO ran 
for 5 steps, acquiring the same 8 samples per step and finishing at the same step 12 as the PI-
DO-BO. However, the highest Vmax/KM value attained by the standard DO-BO was only 2.86 
× 10−5 s−1, significantly lower than that of its physics-informed counterpart (Figure 4b). This 
stark contrast underscores the importance of incorporating prior knowledge into the 
optimization process to achieve enhanced search efficiencies. 
 
Among all the HEA samples synthesized and tested in this study, two samples’ Vmax/KM values 
exceeded 2.0 × 10−3 s−1 (both acquired by PI-DO-BO in step 12), attaining 2.97 × 10−3 s−1 and 
2.19 × 10−3 s−1. This level of catalytic efficiency represents a tenfold increase compared to the 
natural horseradish peroxidase (HRP), which measured 2.9 × 10−4 s−1 in our laboratory (see 
Methods section for experimental details). It also outperformed previously reported HEA 
nanozymes and is on par with the most effective catalysts based on single atoms reported in 
the literature (Figure 4d, and Supplementary Table S2).  
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Figure 4. Synthesis of HEAs for the discovery of POD nanozymes. a, A typical Michaelis-Menten 
plot used to derive the catalytic kinetics parameters Vmax and KM for HEA nanozymes. The concentration 
of 3,3′,5,5′-tetramethylbenzidine (TMB) used was 800 μM, and the H2O2 concentration varied from 25 
to 600 mM. b, Measured catalytic efficiencies (in logarithmic scale) of the HEAs synthesized 
throughout the sequential optimization steps 1 to 12 from the physics-informed, dual-objective BO (PI-
DO-BO) and standard BO; 50 randomly selected samples were synthesized and tested at step 0. 
Additionally, the grey points refer to a baseline control batch of 100 HEAs selected randomly from the 
complete chemical space, serving as a benchmark for the effectiveness of our algorithmic approach. c, 
A semi-logarithmic plot of the catalytic efficiency ratio Vmax/KM against the Michaelis constant KM. d, 
Summary of catalytic efficiencies (Vmax/KM) and substrate affinities (KM) for the best-performing HEA 
nanozyme discovered in this study, natural HRP enzyme measured in this study, and POD-mimicking 
nanozymes reported in the literature. 
 
Figure 5 illustrates the selection and deselection of metal contents as a result of the different 
search strategies adopted at various stages throughout the PI-DO-BO process. Between steps 1 
and 6, HEAs’ synthesis formulations were suggested for each step as a maximally distributed 
set of points on the Pareto optimal front. The metal dosages of these formulations were 
relatively well spread within the 5–35 at.% range for every metallic element. Nevertheless, at 
step 6, the PI-DO-BO clearly focused on low Fe dosages and high V dosages, achieving 
generally high Vmax/KM values among the samples acquired within these 6 steps. Along with a 
few samples also featuring low Fe contents and high V contents, and comparatively high 
Vmax/KM values, GPT-4 captured these favourable correlations and made recommendations 
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accordingly. Consequently, from step 7, Fe dosages were restricted to the range of 5–15 at.%, 
while V dosages were biased towards high values. Indeed, the PI-DO-BO with GPT-in-the-
loop strategy aggressively selected V dosages towards the upper bound of 35 at.% (Figure 5e). 
In fact, the entire PI-DO-BO process (i.e., steps 1–12) exhibited heavily skewed distributions 
of Fe and V contents (Figure 5f). 
 

 
Figure 5. Selection and deselection of metal dosages by the physics-informed, dual-objective BO. 
a–e, Plots showing varied metal dosages in HEA synthesis formulations as a result of the different 
search strategies adopted at various stages throughout the optimization process: maximally distributed 
across the Pareto optimal front (steps 1–6), constrained below 15% for Fe dosages and biased towards 
high V dosages (steps 7–10), and biased towards low Fe+Cu dosages, low Fe+Mn dosages, high Co+V 
dosages, and high Fe+V dosages (steps 11–12). f, Split-side violin plots showing the distributions of 
the various metal dosages across the 96 samples selected by the PI-DO-BO versus the 100 random 
selections. An equivalent of this figure, but showing all the HEAs’ measured compositions, is provided 
as Extended Data Fig. 6.  
 
Revealing the composition–property correlations for HEA nanozymes  
Using ICP-OES measurements, we experimentally established the actual compositions of all 
the HEAs synthesized in this study, totalling 286 HEAs, which included 150 from random 
selection, 96 from the PI-DO-BO, and 40 from the standard DO-BO. Figure 6a presents a 
heatmap illustrating Pearson’s correlations between the metal contents of the HEA 
compositions and the enzymatic properties of them. Among all five elements, Fe exhibited a 
strong positive correlation with Vmax (0.64) and a moderately positive correlation with KM 
(0.54), suggesting that higher Fe contents generally enhanced catalytic rates (Vmax), albeit 
coinciding with undesirably higher KM values. In contrast, V showed a relatively strong 
negative correlation with KM (-0.35) and a weakly positive correlation with Vmax (0.069), 
indicating its beneficial role in reducing KM with minimal effect on Vmax. However, no element 
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shows a strong correlation with overall catalytic efficiency (i.e., Vmax/KM), implying that the 
effect of compositions on it is complex and non-linear.  
 

 
Figure 6. Composition–property correlations for HEA nanozymes. a, Heatmap showing Pearson’s 
correlations between the metal contents of the 286 HEA compositions and the enzymatic properties of 
them. b, 2D UMAP embedding of the 286 HEAs’ composition space, colour-coded by k-mean clusters 
identified in the five-dimensional composition space; each data point on the plot represents the 
composition of an HEA, with the symbol size denoting the corresponding Vmax/KM value. 
 
Using unsupervised machine learning to cluster the 286 HEA compositions provided additional 
valuable insights into the correlation between the composition of an HEA and its enzymatic 
properties. We used the k-means algorithm to identify clusters in the five-dimensional 
composition space of the 286 HEAs, yielding 5 clusters that effectively separated the space. 
For visualization, we applied the Uniform Manifold Approximation and Projection (UMAP)47 
technique to learn a mapping from the five-dimensional composition space to a two-
dimensional (2D) representation (Figure 6b). In this 2D UMAP embedding, the points are 
arranged spatially such that the closer the two points are on the plot, the more similar the two 
compositions are, according to Euclidean distance. Clusters 0 and 1 both exhibited high average 
values of V contents (31.0 at.% and 38.2 at.%, respectively) but had opposite concentrations of 
Co (9.4 at.% and 18.8 at.% for clusters 0 and 1, respectively) and iron (25.6 at.% and 10.5 at.%, 
respectively). The high levels of V and Co in these clusters suggest a critical role in reducing 
KM, which is beneficial for enhancing substrate affinity. Conversely, a moderate presence of Fe 
appears crucial for sustaining Vmax, thus promoting superior catalytic rates. All top 12 
compositions with a Vmax/KM value greater than 2 × 10−4 s−1 fall within cluster 1 and were all 
discovered by the PI-DO-BO approach. This underscores the high efficiency of the search 
strategy, which quickly identified a “sweet spot” in the vast HEA composition space of over 
five hundred thousand possibilities after evaluating only 96 samples experimentally. Finally, 
high-resolution transmission electron microscopy (HR-TEM) characterizations were 
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conducted for the top-performing nanozymes from the five clusters. The results revealed no 
significant difference in their morphology or particle size (Supplementary Fig. S4), indicating 
that the performance differences are primarily due to the variations in the compositions of the 
HEAs.  
 
Conclusions 
This study marks a significant advancement in developing and deploying algorithmic 
approaches to expedite the predict-make-measure discovery loop for high entropy alloys 
(HEAs). By integrating robotic experimentation with theoretical calculations, machine learning, 
dual-objective Bayesian optimization, and on-the-fly data analysis by a large language model, 
we have efficiently explored a vast chemical space to identify HEAs with substantially 
enhanced enzymatic properties. A pivotal element of our approach was the integration of an 
auxiliary knowledge model based on physical insights and collaborative decision-making 
enhanced by AI-in-the-loop, analysing experimental data and providing instant feedback, into 
a Bayesian optimization-driven discovery workflow. This synergistic combination of theory, 
computation, and data-driven strategies has significantly outperformed random sampling and 
standard Bayesian optimization. Our method's success in identifying HEAs that exceeded the 
catalytic efficiency of natural enzymes by up to tenfold illustrates the power of our 
computational strategy to identify optimal HEAs from a broad array of possibilities after 
evaluating only a small sample set. Our approach can be readily adapted to other catalytic 
systems and functional materials more generally. It has the potential to integrate more complex 
multi-objective functions and/or additional knowledge models, thereby enhancing its 
applicability across different domains of chemistry and materials science.  
 
Additionally, and critically, we measured the actual compositions of all 286 synthesized HEAs 
and compared these to their intended synthesis formulations. The notable discrepancies 
between the intended and actual compositions underscore the essential need for precise 
calibration and verification in HEA research. These variances in composition can significantly 
influence the materials' catalytic behaviour and overall performance. Addressing and 
understanding these discrepancies is crucial for improving the accuracy and reliability of future 
studies in HEA research, emphasizing the importance of rigorous experimental protocols and 
clear reporting of results. 
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Extended Data Fig. 1. Automated robotic workflow for the hydrothermal synthesis of HEAs. 
Multi-robot collaboration for automated liquid dispensing, autoclave assembling, and its transporting 
and transferring into the oven for hydrothermal synthesis.  
 
 

 
Extended Data Fig. 2. Text mining relevant literature to establish the prevalence of individual 
metallic elements in it. a, Occurrence frequencies of metallic elements in abstracts of 98,881 research 
articles and patents, mentioning “peroxidase” in the abstracts. b, Heat map representing relative 
frequencies of pairing of two metallic elements. c, Correlation map illustrating connections between 
different metals (the thicker the line, the stronger the assigned connection), which considers the size 
and chemical similarities between them (atomic radii and outer electrons, respectively). 
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Extended Data Fig. 3. Molecular view of the catalysis of H2O2 by the HEA nanozyme following a 
homolytic reaction pathway. H2O2 is adsorbed onto the HEA surface, which gets activated and 
undergoes homolysis, forming two hydroxy groups (–OH). One hydroxy group desorbs from the surface, 
yielding a hydroxyl radical (•OH). Since the homolysis step is thermodynamically favourable, the 
desorption of the hydroxy groups becomes a critical step in the overall reaction. 
 
 

 
Extended Data Fig. 4. a, Measured catalytic efficiencies of the HEAs synthesized throughout the 
sequential optimization steps 1 to 12 from the physics-informed, dual-objective BO; 50 randomly 
selected samples were synthesized and tested at step 0. b, Additionally, a batch of 100 HEAs randomly 
selected from the complete chemical space formed a baseline control to benchmark the effectiveness of 
the algorithmic approach. 
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Extended Data Fig. 5. Calibration between HEA synthesis formulations and actual compositions. 
a–e, Comparison between the synthesis formulations and the actual compositions for all 286 HEAs 
synthesized in this study, which include 150 HEAs from random sampling, 96 from PI-DO-BO, and 40 
from standard BO. f–j, Comparison between actual and predicted compositions for the 150 HEAs from 
random sampling. A feedforward neural network, referred to as the calibration model, was trained on 
80% of these data points to predict composition from formulation and was tested on the remaining 20%. 
k–o, Comparison between actual and predicted compositions for the 136 HEAs from optimizations (96 
from PI-DO-BO and 40 from standard BO), using the same calibration model trained with the 150 
random HEAs.  
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Extended Data Fig. 6. Measured compositions of the HEAs acquired by the physics-informed, 
dual-objective BO. a–e, Plots showing varied metal contents in HEA compositions as a result of the 
different search strategies adopted at various stages throughout the optimization process: maximally 
distributed across the Pareto optimal front (steps 1–6), constrained below 15% for Fe contents and 
biased towards high V contents (steps 7–10), and biased towards low Fe+Cu contents, low Fe+Mn 
contents, high Co+V contents, and high Fe+V contents. f, Split-side violin plots showing the 
distributions of the various metal contents across the 96 samples selected by the BO versus random 
selections for metal components. An equivalent of this figure, but showing all the HEAs’ synthesis 
formulations, is provided as Figure 5.  
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Methods 
Chemicals and materials 
Fe(acac)3 (98%), Co(acac)3 (98%), Cu(acac)2 (97%), Mn(acac)3 (97%), V(acac)3 (97%), 
sodium acetate trihydrate (99%), 5,5-Dimethyl-1-pyrroline N-Oxide (97%), and 3,3′,5,5′-
tetramethylbenzidine (98%) were purchased from Aladdin Reagent (Shanghai, China). Acetone 
(99.5%), absolute ethanol (99.7%), hydrogen peroxide (30%), glacial acetic acid (99.9%), and 
dimethyl sulfoxide (99.5%) were purchased from China National Pharmaceutical Group Co., 
Ltd. All chemical reagents were used as received without further purification. Deionized water 
(18.2 MΩ/cm) was produced using a Milli-Q purification system (Millipore, Bedford, MA, 
USA). 
 
Synthetic procedures 
The FeCoCuMnV HEAs were synthesized based on a modification of previous literature 
procedures.36,37 Precursor solutions were prepared using a 50:50 vol% mixture of absolute 
ethanol and acetone as solvent. The above solvent and corresponding metal acetylacetonates 
were added in 250 mL glass vials, ensuring that the concentration of each metal precursor was 
equal to 10 mM. Afterwards the vials were sonicated for 20 minutes and stirred (600 rpm) for 
at least 30 minutes. The obtained precursor solutions were placed at a fixed position of the 
automated liquid dispensing station. Specific volumes of metal precursor solutions were 
pipetted according to required component ratios (i.e., synthesis formulations), maintaining the 
total volume of 30 mL (e.g., for the formulation of Fe0.2Co0.2Cu0.2Mn0.2V0.2, 6 mL of each of 
the five metal precursors was added in the Teflon lined autoclave). After sequentially 
completing precursor dispensing and autoclave assembling, the hydrothermal autoclave was 
transferred to the oven and heated at 200 °C for 4 hours. After solvothermal reactions, HEAs 
were separated from the solvent by centrifuging at 10,000 rpm for 5 minutes and then drying 
under vacuum. 
 
Material characterizations 
High-resolution transmission electron microscopy (HR-TEM) images were obtained using 
JEM-F200 (JEOL) with an accelerating voltage of 200 kV. Powder X-ray diffraction (XRD) 
patterns were recorded at room temperature using a Rigaku/Max-3A X-ray diffractometer 
operating with Cu Kα radiation (λ=1.54178 Å) over the range of 2θ = 10° to approximately 
80°. Compositions of HEAs were determined using inductively coupled plasma–optic emission 
spectrometry (ICP-OES) carried out on Avio 220 MAX (Pekin Elmer); sample were 
predigested in HNO3. For determining enzymatic reaction pathways, the generation of •OH 
was measured by electron spin resonance (ESR) spectroscopy (JES-FA 200, JEOL) using a 
spin trapper 5,5-Dimethyl-1-pyrroline N-Oxide (DMPO). 
 
Kinetic assays 
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Catalytic activities of FeCoCuMnV HEA peroxidase nanozymes were assessed by determining 
their ability to oxidize the commonly used peroxidase colorimetric substrate 3,3,5,5-
tetramethylbenzidine (TMB) in the presence of H2O2 to provide a color reaction. We measured 
peroxidase-mimicking activities of HEAs while varying the pH from 3 to 10 and found the 
optimal pH to be approximately 4.5, which agreed with the pH value for HRP (Supplementary 
Fig. S5). Thus, we adopted pH 4.5 and 30 °C as standard conditions for all HEAs in this study. 
Kinetic assays were carried out under these standard reaction conditions with varying 
concentrations of H2O2 (25, 50, 100, 200, 400, 600 mM), together with a fixed concentration 
of TMB (800 μM, in DMSO). Steady-state kinetic assays were carried out in a 48-well plate 
with 200 μL HEAs (10 μg/mL) in 1 mL of HAc-NaAc buffer (0.4 M, pH 4.5) in the presence 
of 150 μL of H2O2 (25, 50, 100, 200, 400, 600 mM), using 150 μL TMB (800 μM) as 
colorimetric substrate. Immediately following the addition of HEAs, color reactions were 
observed. 
 
All reactions were monitored in kinetic mode at 652 nm using a SpectraMax iD5 (Molecular 
Devices). The apparent kinetic parameters were calculated using: 
 
v = V./0 × [S]/(K1 + [S])                        (1) 
 
where v  is the initial velocity, V./0  is the maximal reaction velocity, [S]  is the 
concentration of substrate and K1 is the Michaelis constant. 
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