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Abstract

Finding microkinetic parameters for heterogeneously catalyzed processes with conventional methods is a
challenging task. Recently, the use of artificial neural networks has been described as a promising and flexible
tool for kinetic parameter estimation. In this work, an extension to the methodology of chemical reaction
neural networks (CRNNs) to heterogeneously catalyzed reaction networks (hCRNNs) is proposed. The
developed network architecture encapsulates physically interpretable layers for the Arrhenius expression,
coverage dependency, and power-law terms encountered in a typical microkinetic model and accounts for
possible reversibility of all elementary step reactions in the mechanism. Thus, it is fully interpretable and
acts as a drop-in replacement for a conventional kinetic expression.
The methodology is further examined on a prototypical heterogeneously catalyzed reaction mechanism
under transient conditions and various operational and kinetic regimes. This work offers a framework for
quantifying network errors and interpreting its predictions as well as a systematic overview assessing its
ability to identify kinetic parameters. It is found that kinetic behavior is generally described very well by the
network. Additionally, kinetic discovery is possible for the fastest reaction in the mechanism, if observed. A
link between the results and the transient regime is established. With this, the design of suitable hCRNNs
training strategies becomes possible.
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Nomenclature

Latin Symbols
A mm mol−n s−1 pre-exponential factor (unit varies)

bj , b a.u. bias (vector notation in bold)
ci, c molm−2/molm−2 concentration
EA kJmol−1 activation energy
k mm mol−n s−1 rate constant (unit varies)
M gmol−1 molar mass
m 1 number of species
n 1 number of reactions
p bar pressure
R Jmol−1 K−1 universal gas constant

rj , r molm−2 s−1 reaction rate
S 1 sticking coefficient

ṡi, ṡ molm−2 s−1 formation rate
T K temperature

wi,j ,w a.u. weight
xi,x a.u. network input
yi,y a.u. network output

Greek Symbols
β 1 temperature exponent
Γ0 molm−2 surface site density
∆ – difference
ε molm−2 s−1 (overall) loss, error, MAE
εI 1 integer loss
ε kJmol−1 coverage dependency parameter

Θ,Θ 1 surface coverage (vector notation in bold)
µ 1 coverage dependency parameter
ν 1 stoichiometric coefficients
ν′ 1 reaction orders
σ – nonlinear activation function

Sub- and Superscripts
ads adsorption
G gas phase
i species index
j reaction index
ref reference
S surface
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Acronyms

aNN artificial neural network
CRNN chemical reaction neural network
DFT density functional theory

hCRNN heterogeneous chemical reaction neural network
LHHW Langmuir-Hinshelwood-Hougen-Watson
MAE mean absolute error
MKM microkinetic model
PTK periodic transient kinetics method
RDS rate-determining step

1. Introduction

1.1. The microkinetic formalism
For simulation of industrially relevant chemical processes, source terms of species are critical since they

set apart reaction processes from thermal or mechanical separation processes. Generally, the source term for
species i ,ṡi, in molm−2 can be written in accordance to their stoichiometric coefficients, νi,j , and the rate of
reaction j, rj , as eq. (1).

ṡi =

n∑
j=1

νi,jrj (1)

The much debated challenge is describing these formation rates in terms of the current reaction conditions.
This functional dependency is referred to as the reaction kinetics. However, it is often not trivially accessible,
how many reaction steps make up a seemingly simple reaction. This matter is further complicated by the fact
that heterogeneously catalyzed reactions only take place at a phase boundary where interactions between
bulk phase and catalytic phase (and oftentimes even supposedly inert phases like catalyst support [1]) occur.
This results in the fact that the unknown number of reaction steps might be (and more often than not is)
interconnected in an unknown way by an unknown number of intermediate species at the phase boundary.
Each of these reaction rates are in turn described by a set of unknown kinetic parameters linking the reaction
conditions to the observed rate. Equation (2) is often used to model the reaction rate for a generic surface
reaction j [2].

rj = AjT
βj exp

(
−EA,j

RT

)
︸ ︷︷ ︸

Arrhenius

· exp

(
mS∑
i=1

(µi,j ln θi) +

mS∑
i=1

(
εi,jΘi

RT

))
︸ ︷︷ ︸

Cov. Dep.

·
m∏
i=1

c
ν′
i,j

i︸ ︷︷ ︸
Power Law

(2)

Before investigating possible solutions to the parameter fitting problem at hand, the full complexity of
eq. (2) has to be broken down into its distinct parts. Firstly, concentration (ci) dependency of reaction
j is conventionally covered by power-law expressions of reactant i and its respective reaction orders, ν′i,j .
Temperature (T ) dependency is introduced into eq. (2) by an Arrhenius-type expression. The most often used
standard parameterization (form eq. (2), hereafter referred to as standard) contains only the pre-exponential
constant, Aj and activation energy, EA,j . However, a temperature exponent, β, may be included for
temperature correction of the pre-exponential factor [3]. Note that at a fixed temperature, pre-exponential
constant, A, and activation energy, EA, can not be determined independently of each other. Correlation
between the two values show even when classically calculated by regression of temperature-rate data pairs –
an effect known as compensation effect [4]. It has been shown before that a slight reparameterization of the
Arrhenius expression with respect to an arbitrary reference temperature, T ref , yields enhanced interpretability
of kinetic constants [5, 6]. Hence, eq. (3) is implemented in favor of the standard Arrhenius expression in
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eq. (2) though they are equivalent and parameters can be transformed between them. Equation (3) will be
referred to as the reparameterized Arrhenius equation [6].

kj = AjT
βj exp

(
−EA,j

R

(
1

T
− 1

T ref

))
(3)

Coverage (Θi) dependency of surface reactions is known to significantly impact the performance of microkinetic
models (MKMs) and is usually incorporated into the Arrhenius expression by a correction term, εi,j , influencing
the activation barrier of reaction j at high coverages of surface species i [2, 7, 8]. The desorption of CO from
Ni surfaces, for example, is known to be encouraged at high coverages [9, 10]. The additional parameter
µi,j resembling a pseudo power-law expression for surface coverage dependency is rarely tabulated for
experimentally or computationally derived kinetics and thus omitted. In other words, we assume µi,j = 0
throughout this work. It must be noted that this coverage dependency formulation in general applies for
all possible surface reactions, adsorptions, and desorptions. However, only the adsorbed surface species are
considered when calculating the expression in eq. (2) as indicated by summing up to mS, the number of
surface species [2].
Special care is often taken when considering adsorption. Since adsorption kinetics can be described from a
statistical thermodynamics viewpoint, they are oftentimes parameterized using the sticking coefficient, Sj ,
following the formalism depicted in eq. (4)[2].

kadsj =
Sj

(Γ0)µ

√
RT

2 π Mads
i

(4)

Sj = S0,j T βj exp

(
−EA,j

RT

)
(5)

Herein kadsj denotes the rate coefficient of reaction j if it is an adsorption, µ is the number of reactant
molecules and sites partaking in the adsorption (µ = 2 in most cases e.g. simple adsorption), Mads

i is
the molar mass of the gas-phase molecule adsorbed in that step and Γ0 denotes the overall active site
density of the catalytic material. It can be shown easily that above parameterization is consistent to the
overall formalism presented in eqs. (1) to (3) and can be rewritten accordingly. For more information see
appendix SI A.
One can easily see that the number of unknowns in this system quickly explodes even for simple systems
[11] leading to the development of simpler (almost surrogate) kinetic expressions. The most commonly
used kinetic expressions are of the Langmuir-Hinshelwood-Hougen-Watson (LHHW)-type. They derive
from assuming a simple surface reaction network of adsorption and reaction steps under the assumption of
equilibrated and rate-determining steps (RDSs). Therefore, they are analytically closed, obey the respective
adsorption and reaction equilibria and reproduce kinetic behavior near steady-state [12].
Unfortunately, it has been shown repeatedly that the approximation of surface processes by steady-state
kinetics does not provide sufficient detail to derive insights into the system behavior as it undergoes transient
changes [13, 14, 15]. To encapsulate these dynamic processes MKMs that contain all the aforementioned
complexity are sought.

1.2. Finding microkinetic parameters
As described above, there are many parameters to be determined when identifying a MKM. This process of

parameter identification is of critical importance for the success of the endeavor. Unfortunately, conventional
parameter fitting methods often struggle in multi-parameter settings making brute force identification of
kinetic parameters unfeasible [16, 17]. The use of first-principle data obtained by computational chemistry
like density functional theory (DFT) might eliminate the need for parameter fitting routines but comes
at extremely high computational costs making it equally unfeasible to apply to complex multi-component
systems [12, 11]. Thus, many of the currently employed approaches attempt to reduce the parameters (and
thereby the required computational time) as far as possible. The different ways this is achieved separates the
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authors: While some start from the most complex possible mechanism and systematically reduce complexity
by employing knowledge about discovered RDS on the fly [7, 18], others take the inverse approach and start
at simple models. After obtaining reasonable agreement with experimental data, further complexity is added
to describe deviations only where needed [16]. Others again circumvent expensive DFT-calculation and use
shortcut methods estimating kinetic parameters only to dynamically refine them where needed [11]. All
three approaches are viable but still require some amount of parameter fitting to scale results from DFT or
approximate them.
Though progress towards reliable global minimization algorithms is being made, at the time of writing this
article no catch-all solution exists. Chacko et al. [17] recently revisited already published work and were able
to enhance prediction accuracy by fitting kinetic parameters through basin hopping, a minimization algorithm
based on local exploitation with simultaneous global exploration steps [17, 10]. This success once again
underlines the importance of accurate parameter identification when attempting to combine first-principle
with experimental data by MKMs.
From an industrial modeling standpoint however, the identification of physically accurate parameters might
not even be necessary. For process design a reasonably accurate rate prediction is oftentimes enough. This
realization and the advent of cheap computational power lead to the development of surrogate machine-
learning driven models reproducing kinetic behavior over a wide range of conditions. These range from
black-box-style deep neural networks [19] over physically-informed semi-interpretable kinetic expressions
[20, 21, 22] into fully interpretable digital twins of physical and chemical processes. Especially the latter
are of great interest since they allow for the accurate prediction of reaction rates with the added benefit of
gaining insight into fundamental kinetic properties albeit from a phenomenological perspective. The chemical
reaction neural network (CRNN) formalism as an example for such a digital twin will be the foundation of
this work.

1.3. CRNNs
The CRNN formalism introduced by Ji and Deng [23] takes advantage of the superior parameter fitting

capabilities of artificial neural networks (aNNs) for identifying kinetic constants. The underlying structure
makes use of the similarity between the parameterization of the rate constant eq. (6) in log-scale, the
stoichiometric relation eq. (1) and the general mathematical formulation of a single layer in multilayer aNNs.
By construction, CRNNs obey the above mentioned well-known physicochemical laws of chemical kinetics for
homogeneous reaction systems. This not only guarantees consistency with physical intuition but also ensures
interpretability of the network discovered constants. As for most known machine learning algorithms, results
are obtained by training – the process of fitting the network parameters to match the network output to
supplied training data. The sufficiently trained CRNN is a ready to use, drop-in replacement for conventional
kinetic expressions able to reproduce kinetic behavior and yields not only the usable kinetic expression but
also guesses for the kinetic parameters. Applications of this concept have been described for a plethora of
nontrivial reaction networks in conjunction with different reactor and analysis setups with great success
[23, 24, 25].
Further improvements upon the neural network enabled differential equation solver allows to couple the
results to the reactor scale more robustly [26]. In terms of network construction, parameter reduction
was achieved by introduction of mass conserving stoichiometry layers through identifying the null space of
the stoichiometric matrix [27]. The use of Bayesian inference has been demonstrated to further allow for
uncertainty quantification of the retained parameters [28].

1.4. Objectives of the hCRNN framework
Despite its potential, the applicability of CRNNs has not yet been demonstrated for heterogeneous

catalysis and its inherent problems like different time scales for sorption processes and reactions or the
presence of many short-lived or hard to measure intermediates. Furthermore, although contained within
the CRNN framework, the reversibility of reactions has never been explicitly described and thus no clear
distinction between forward and backward reactions can be made in the original formalism. In regards to these
challenges, the heterogeneous chemical reaction neural network (hCRNN), an extension to the homogeneous
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case, is presented to address them. Consequently, the constructed framework will be systematically evaluated
for plausible kinetics encountered in heterogeneous catalysis. Preliminary experiments, which employed the
new formalism in conjunction with complex kinetics, suggested the existence of an intrinsic link between the
kinetic properties of the mechanism under consideration and the training success of the hCRNN, which is to
be investigated in this work. Thus, the focus of this work is to unveil the possibilities and limitations of
parameter identification of hCRNNs for highly transient generic heterogeneous reaction networks. As will be
shown hereafter, aforementioned features of heterogeneous reaction systems strongly effect the interpretability
of the obtained results.

2. HCRNN Construction

Looking back at eq. (1) and eq. (2) rephrased in logarithmic scaling, reveals the similarity of eqs. (1)
and (6) to the general mathematical formulation of a single aNN layer depicted in eq. (7).

rj = exp

 lnAj + βj lnT − EA,j

R

(
1

T
− 1

T ref

)
︸ ︷︷ ︸

Arrhenius

+

mS∑
i=1

εi,jΘi

RT︸ ︷︷ ︸
Cov. Dep.

+

m∑
i=1

ν′i,j ln (ci)︸ ︷︷ ︸
Power Law


(6)

yl,j = σ

(∑
i

wl,i,jxi + bl,j

)
(7)

While earlier works lumped much of the complexity into one single layer [23], this work aims to develop a
more strongly separated network architecture in the open-source deep learning framework PyTorch[29]. This
leads to the use of PyTorch’s parameter groups that bundle similar parameters into distinct units and is
highly beneficial, since manual handling of the larger number of parameters impedes interpretability. In other
words, different parts of any generic microkinetic model get their own dedicated layers. This is also apparent
from the grouping of stoichiometric coefficients, reaction orders and the parameters for the Arrhenius- and
surface coverage dependency expressions in eqs. (1) and (6). This compartmentalization empowers efficient
handling, interpretation and manipulation of those parameters. An overview of the proposed network
architecture is depicted in fig. 1. This shows the general hCRNN structure as a parameterized function
N (wl, bl,β) : (c, T ) 7→ ṡi as well as the breakdown into dedicated layers. The single layer expressions
resemble the terms in eq. (2):

Power Law Pj(c) =

m∑
i=1

wP,i,j ln (ci) (8)

Arrhenius Aj(T ) = bA,j + βj ln (T ) + wA,j

(
1

T
− 1

T ref

)
(9)

Cov.Dep. Cj(T,Θ) =

mS∑
i=1

wC,i,jΘi
1

T
(10)

Θi =
cSi∑
i c

S
i

(11)

By comparing, one can identify the weights (w), biases (b) and additional parameters (β) of the layers
(abbreviated as A, C and P ) with the kinetic constants (or simple expressions containing them). Thus, the
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Figure 1: Proposed network architecture. Each colored box represents a fully connected linear layer (denoted A, C and P in
eqs. (8) to (10) and eq. (12)) with sub-layers for forward and reverse rate indicated.

overall rate expression can be written as follows:

rj = exp (Aj(T ) + Cj(T,Θ) + Pj(c)) . (12)

Logarithmic scaling is used on the inputs of concentration and temperature [23]. Additionally inverse scaling
is applied to the temperature [23]. Surface coverages are calculated from the passed in concentrations for all
species marked as present on the surface (compare eq. (11)).
To ensure stoichiometric consistency splitting of forward and backward reactions into two separate sub-layers
according to Barwey and Raman [30] is employed. By using the notion that ν+i,j = − ν−i,j and assuming
elementary steps for all surface, adsorption, and desorption reactions (i.e. ν′i,j = −νi,j for reactants and
ν′i,j = 0 for products) one can derive a formulation relying only on the stoichiometric coefficients of the forward
reactions to accurately describe both the reaction orders and the stoichiometry of forward and backward
reactions at the same time. To our knowledge the proposed extension is novel to the CRNN methodology and
extends usability to equilibrium reactions without doubling the amount of network parameters by singularly
including both the forward and backward reaction. These common and well documented assumptions aid in
reducing the number of trainable parameters in the power-law and stoichiometry layer from 4 (m× n) for
the fully explicit notation down to (m× n) for the elementary step notation. During preliminary testing, this
splitting has significantly sped up training and increased interpretability of the obtained results for reaction
systems as small as m = 2 and n = 2. Recently, attempts have been made to further decrease the number
of parameters by using the fact that atoms have to be conserved during any reaction [27]. Examining this
methodology is however, not the focus of this work.
This construction leaves only one major hyperparameter up to the users choice: The number of neurons
in each layer (indicated by the index j) which corresponds directly to the number of elementary reactions
sought for in the microkinetic model [23]. Thus, even this a priori undetermined hyperparameter gains
physical interpretability and can be used to reason about the reaction system at hand. Note that generally
hyperparameters are not available through training but have to be chosen beforehand according to some
heuristics. In our specific case, an educated guess towards the correct choice of the number of neurons can
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Figure 2: Schematic of the sampling strategy. Different samples within the valid state space develop along trajectories far from
steady-state.

be made by prior insight into or literature knowledge about the investigated system.

3. Training Data Generation

The preparation of meaningful training data is of utmost importance for the training success of any
machine learning project including physically motivated aNNs [31]. It has to be sampled from a wide yet
physically feasible field of possible conditions. The data collection will proof to influence training success
heavily, as is reported in literature [32]. In context of the here presented hCRNNs the goal is to predict
species formation rates, ṡi, from data containing gas and surface phase compositions, cGi and cSi (or simply ci
in short), and temperature, T . The latter three are hereafter referred to as a state and directly sampled while
the formation rates are state-dependent. The sampling strategy is schematically depicted in fig. 2: From a
range of possible states a number of points is chosen uniformly [32]. Those states are likely to be distant
from equilibrium or steady-state (compare trajectories in fig. 2) and thus show strongly kinetic behavior. The
proposed sampling strategy is only concerned with the initial reaction rates at these conditions and contain
no temporal information about the overall progression towards steady-state. This kind of data is referred to
as being differential for it does not contain any information about its history. We refer to this setup as the
maximally transient regime because it allows for observation of kinetic effects far from steady-state.
Specifically, a two phase system containing a catalytic surface in contact with a gas phase is considered and
studied. Transport limitations are neglected. For this system, a single system state is generated by sampling
gas and surface phase compositions (xi and Θi) according to a flat Dirichlet distribution [33]. Concentration
measures are subsequently derived from the surface site density, Γ0, and the gas phase pressure, p, and
temperature, T , according to

cGi = xi
p

RT
(13)

cSi = ΘiΓ0. (14)

Temperature (and pressure, respectively) is either taken as a fixed value or sampled according to the uniform
distribution, U , given by a mean value (T ) and a half-range (∆T ) as U

(
T −∆T, T +∆T

)
. To ensure

reproducibility, all random number generators are seeded before sampling.
For each thus generated state the formation rate of species i, ṡi, is calculated assuming a ground truth
reaction mechanism. Hence, one set of ṡi is derived from a sampled set of xi and Θi.
In this work the focus is set on a generic yet universal Langmuir-Hinshelwood type mechanism of eight species
present both in the gas and surface phase partaking in four reversible reactions. An additional inert species
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Figure 3: Schematic of the chosen reaction mechanism.

Table 1: Reaction mechanism and kinetic parameters of the prototypical Langmuir-Hinshelwood kinetics. †Value varied for
study of reaction rate regime. ‡Value varied for study of coverage dependency.

reaction Aj EA,j εi,j
s−1 kJmol−1 kJmol−1

R1 A + ? −−→ A? 8 0 0
A? −−→ A + ? 2×106 90 −40ΘA

‡

R2 B + ? −−→ B? 30 0 0
B? −−→ B + ? 3×106 80 0

R3 C + ? −−→ C? 5×10−2 0 0
C? −−→ C + ? 5×104 40 0

R4 A? + B? −−→ C? 6×1013† 70 0

is added. The mechanism is illustrated in fig. 3 and the chosen ground truth kinetic constants tabulated in
table 1 in full complexity. Adsorptions are taken to be non-activated. Desorption of A? is promoted at high
coverages by itself, loosely inspired by aforementioned self-interactions of CO on Ni surfaces [10, 9]. Product
readsorption is highly discouraged but not impossible. The rate constants have been constructed to expect
reactions to proceed with roughly the same net rate at stoichiometric conditions and T = 550K.
To investigate the influence of kinetic parameters isolated from each other, multiple simplified and varied
mechanisms are derived from the prototype described in table 1 by, e.g, varying the surface reaction rate of
R4. An exhaustive overview over all generated mechanisms can be taken from appendix SI B.
All samples generated with the same operational and mechanistic settings make up a data set and are used
for training. Through combination of different operational and mechanistic settings multiple datasets can be
dynamically created. The default data set contains 10 000 individual states. 20% of a data set is used as
holdout (or test) data not supplied during network training.

4. Training Process

During training, deviation between network prediction (ˆ̇s) and ground truth value (ṡ) is calculated
according to the L1-norm [34] (more commonly referred to as MAE) (compare eq. (15)) as implemented in
PyTorch[29].

ε = L1(ṡ− ˆ̇s) =
1

n

n∑
i=0

|ṡi − ˆ̇si| (15)

Error minimization is conducted using the well known backpropagation algorithm coupled with the ADAM-
optimizer for network parameter optimization [35]. The initial learning rate was chosen to be lr = 4×10−3 with
a custom decay schedule reducing it by a factor of λ = 0.72 whenever no significant training success is achieved
over 80 epochs. Identification of suitable network and training hyperparameters was conducted preliminary
on test problems using Bayesian optimization to minimize the loss on the holdout data set. Training proceeds
for 8000 epochs after which no significant reduction of loss was observed for most experiments conducted.
After the training epochs, one test step is performed on the holdout data set. During this step, L1-loss is
calculated as well. However, since interpreting L1-loss in terms of prediction accuracy is difficult, another
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Figure 4: Loss, ε, (blue, left ordinate) and integer loss, εI, (orange, right ordinate) for the trained hCRNN at T = 550K under
variation of n. The ground truth mechanism contains 4 reactions and is shown in table 1. Stoichiometric coefficients for the
point at n = 4 match the ground truth stoichiometry as tabulated in table 2.

measure on the network parameters is proposed.

εI = max
i,j

|bνi,je − νi,j | (16)

Equation (16) will be referred to as integer loss and yields a value εI ∈ [0, 0.5] representing the maximum
difference of any network identified stoichiometric coefficient from the nearest integer (rounding to the nearest
integer is denoted using b·e). With this metric one can asses how well elementary step assumption is obeyed
by the identified parameters without knowing the ground truth constants as such. Note that no parameter
or error measure used in training or testing is derived from knowing ground truth information. The proposed
training strategy is designed specifically to formulate heuristics for applying the procedure to data without
knowledge of the underlying mechanism or kinetic constants.

5. Results

5.1. Isothermal Data
Figure 4 shows loss, ε, and integer loss, εI, for hCRNNs with a differing number of presumed elementary

reaction steps, n. As described above, this hyperparameter has to be chosen by the user and is critical
for the network to identify the reactions pathways within the mechanism. To select a fitting value, n is
linearly increased during a hyperparameter search and the error metrics of the trained network are observed
during screening. Generally, small losses, ε, indicate overall low errors for formation rate predictions, while
low integer losses, εI, indicate very little deviation from integer stoichiometric coefficients and thereby the
elementary-step assumption.
For the chosen reaction network, the loss significantly decreases between n = 3 and n = 5 while the integer
loss shows the opposite behavior. Focusing only on overall loss might lead the reader to choose the local
(possibly global) minimum at n = 5 and consequently assume 5 elementary reactions, neglecting the fact
that decrease in loss from n = 4 to 5 is far less significant than that from n = 3 to 4. At the same time the
strong rise in integer loss εI indicates the presence of at least one row with a stoichiometric coefficient far
from the next integer (for explicit results the reader is referred to appendix SI C). Experience shows that
this typically coincides with completely chaotic stoichiometric coefficients in that row.
Both facts combined reveal the overall tendency repeatable throughout all conducted experiments: If too
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Table 2: Stoichiometric coefficients, νi,j , of forward elementary reaction steps predicted by the hCRNN at p = 1bar and
T = 550K.1

νA? νB? νC? ν? νA νB νC νI

R1 A + ? −−⇀↽−− A ? 1.00 0.00 0.00 −1.00 −1.00 0.00 0.00 0.00
R2 B + ? −−⇀↽−− B ? 0.00 1.00 0.00 −1.00 0.00 −1.00 0.00 0.00
R3 C + ? −−⇀↽−− C ? 0.00 0.00 1.00 −1.00 0.00 0.00 −1.00 0.00
R4 A ? + B ? −−→ C ? + ? −1.00 −1.00 1.00 1.00 0.00 0.00 0.00 0.00

few elementary steps are presumed the network fails to capture the expected kinetic behavior (high loss, ε);
the overall kinetic model does not contain enough parameters. Choosing too many elementary steps might
depict the overall kinetic behavior well but leads to no insights into the stoichiometry of the mechanism; the
overall kinetic model is overparameterized and at least one row of the stoichiometric matrix does contain
parameters without physical meaning.
For the present case, prediction of the observed formation rates for the species at given (variable) gas phase
compositions and constant temperature of T = 550K is possible for a number of presumed reactions of n = 4
with a low loss of ε = 9.448× 10−8 mol s−1 m−2. At the same time stoichiometric discovery is still possible
as the integer loss is virtually zero. The effect can be seen in table 2: The network is able to identify the
stoichiometry of all 4 elementary reactions in remarkable agreement with the ground truth mechanism.
It is apparent that no additional mechanistic information is gained by assuming more reactions than present
in the ground truth mechanism and that knowledge about the integerness of the stoichiometric coefficients
can be used as a tool to reject kinetically feasible but stoichiometrically overparameterized mechanisms
proposed by hCRNNs.

5.2. Influence of rate regime
Most reaction systems undergo a change of the reaction rate regime when different reaction conditions

are present. Therefore, the reaction rate constant of the surface reaction, kS, is used as a proxy to investigate
the reaction system from the surface reaction being rate limiting to quasi-equilibrated. Since the reaction
network was constructed to be approximately equally fast on all reaction routes at an arbitrarily chosen
reference state at T ref = 550K, the resulting kS is chosen as a reference and denoted with the superscript ref
as well (eq. (17)).

krefS = A+
0,4 exp

(
−

E+
A,4

RT ref

)
(17)

This means for kS � krefS the surface reaction is rate limiting while for kS � krefS the surface reaction is
quasi-equilibrated. Figure 5 reveals an overall linearly increasing loss, ε, with increasing kS (especially for
n = 3 and n = 4) which is explained by the chosen error measure. Assuming constant relative errors in
rate prediction, the chosen L1-norm computes errors proportional to the predicted rates. Since the rate
of the surface reaction is purposefully increased, it is expected to see a linear rise in losses with increasing
reaction rate constant. Apart from this trend, a distinct bifurcation of losses, ε, for n = 3 and n = 4 with a
minimum at kS = 1× 107 m3 mol−1 s−1 for n = 4 is apparent. This minimum unsurprisingly corresponds to
the identifiable ground truth mechanism at the point of reference krefS where all reactions are equally fast by
construction.
The overall loss, ε, for n = 3 and n = 4 to the left of the bifurcation in fig. 5 (slow surface reactions, region I)
behaves very similarly, while the integer loss, εI, simultaneously is maximal for n = 4 and n = 5. Hence,
the low loss, ε, suggest the existence of three or four reactions, while the high integer loss, εI, actively
contradicts four or more reactions. Consequently, n = 3 reactions suffice to describe kinetic behavior while
retaining kinetic and stoichiometric information in region I. This observation might seem contradictory to

1Reaction indices have been rearranged to match order and sign in the ground truth mechanism for simplicity in all tables
and figures.
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(a) (b)

Figure 5: Loss, ε, (a) and integer loss, εI, (b) for the trained hCRNN at variable surface reaction rate constants kS under
variation of n.

the expected behavior assuming four reactions present in the ground truth mechanism. The unidentified
("missing") reaction is tied to the limited observability of slow processes in the chosen maximally transient
regime. Under these conditions, the formation of adsorbed species by surface reaction is far outpaced by
the formation via sorption processes. Thus, identifying the three main sorption reactions R1, R2 and R3 is
sufficient for describing overall species formation rates.
A similar argument can be made in case of the surface reaction being fast in comparison to the sorption
processes (high values of kS, region III). In this regime, loss, ε, and integer loss, εI, eventually (kS >
1× 1013 m3 mol−1 s−1) predict the existence of only one reaction step since both are lowest for n = 1. Again,
species formation rates are dominated by a subset of fast reactions, the surface reaction in this case, and
only one elementary reaction step is enough to describe observed data by our criteria. Only the intermediate
regime (region II at kS ≈ 1× 104 – 1× 1010 m3 mol−1 s−1) is better explained by the set of all four reactions
as shown by the simultaneously low losses, ε and εI. A visual representation of what it means for the reaction
system to be dominated by a subset of reactions can be taken from fig. 6: For both region I and III the
logarithmic difference in reaction rate far exceeds 4, meaning the slowest reactions is more than 10 000 times
slower than the fastest one – a rather difficult case for observing kinetic behavior by any means. The region of
kinetic discovery (II) aligns well with the minimum indicating that maximal kinetic discovery seems feasible
in the range where the logarithmic rate difference of the reactions is < 4; or in other words, if most of the
reactions happen on similar time scales. It should be mentioned again that the presented method does in
fact represent the dominating kinetic behavior of the reaction system whether it is dominated by a subset of
fast reactions or not. In certain cases this just leads to a loss in kinetic information – quite similar to the
description of kinetics using macrokinetic expressions like the LHHW.

5.3. Pressure Influence
Variation of operating pressure reveals the dependency of reaction rate with total concentration expressed

in the power-law in eq. (2). Because of the elementary step assumption, reaction orders, ν′i,j , and stoichiometric
coefficients, νi,j , are directly coupled and thus observing reaction order influence simultaneously enables
stoichiometric discovery and thus carries important kinetic information. To demonstrate these effects,
numerical experiments at varying pressures are conducted. Once again, fig. 7 shows very distinct regions
separated into near ambient (p ≤ 10 bar) and high pressures (p > 10 bar).
Since adsorption reaction rates are proportional to component partial pressure the adsorptions of reactants
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(a)

(b)

Figure 6: (a) Absolute net rate of elementary reaction steps with varying surface reaction rate constant kS. (b) Logarithmic
difference between fastest and slowest reaction rate observed. Median rates for all training samples depicted.
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(a) (b)

Figure 7: Loss, ε, (a) and integer loss, εI, (b) for the trained hCRNN at variable pressure, p, under variation of n. Stoichiometric
coefficients for n = 4 and p = 100 bar tabulated in table 3.

A, B and C dominate the reaction network for high pressures (region II) and can be easily identified. This is
discernible from approximately equal losses, ε, for n = 3 and n = 4 in this range, while the integer loss for
n = 3 tends towards lower values. This again supports the idea of the fast reaction being found preferably
over the slower ones.
Table 3 shows the stoichiometric coefficients for the n = 4 reactions identified by the hCRNN for an exemplary
experiment at p = 100 bar. Note the deviation in R3 and R4 influencing integer loss. From that it seems
that the adsorption of C (reaction R3) is not identified entirely by the hCRNN on its own. Since product
adsorption, although possible, is constructed to be severely hindered even at elevated pressures it gets
overshadowed by the much faster adsorptions of A and B. However, stoichiometry is reasonably close to
the correct coefficients for R3 and stoichiometrically consistent for R4. To illustrate this further, consider
fig. 8. It is apparent that the logarithmic difference in rates strongly increases with higher pressures, meaning
stoichiometric discovery can not be guaranteed. However, note that the adsorption of C still takes place
significantly fast, when compared to the surface reaction, yet can not quite compete with reactant adsorption
of A and B. Nonetheless, its influence is not entirely negligible resulting in a slight increase in loss, ε, for
n = 2 when compared to n = 3 (compare fig. 7a, region II). This in term results in a partial discovery of the
product readsorption process at higher pressures.
For lower pressures (region I) adsorption rates decrease with decreasing pressure while desorption and surface
reaction rates remain constant (compare fig. 8, region I). Thus, for low pressures the sorption equilibrium
eventually shifts towards desorbed species with net formation rates dominated by the desorption processes,
which are independent of pressure. This leads to the identification of n = 4 reactions even to the lowest
pressure sampled. Compare again the low and nearly constant overall and integer loss in fig. 7 for n = 4
for low pressures. The stoichiometric consistency of the described hCRNN allows for the identification of
all four steps, since the sign (direction) of the reaction step is irrelevant for its stoichiometric discovery by
construction, meaning the forward pathway can be discerned from the observed backward reactions.

5.4. Temperature Influence
So far, no information regarding the influence of temperature on the reaction rate (the Arrhenius part of

eq. (2)) could be extracted from the conducted experiments. To investigate kinetic discovery of activation
barriers, a data set containing temperatures sampled from a range (T ref ±∆T ) is hereafter used for training.

Figure 9 shows loss, ε, and integer loss, εI, after network training on the nonisothermal data set comparing
both the standard (eq. (2)) as well as the reparameterized (eq. (3)) Arrhenius expression. The difference in
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(a)

(b)

Figure 8: (a) Absolute net rate of elementary reaction steps with varying pressure, p. (b): Logarithmic difference between
fastest and slowest reaction rate observed.

Table 3: Stoichiometric coefficients of forward elementary reaction steps predicted by the CRNN with n = 4 at p = 100 bar and
T = 550K.

νA? νB? νC? ν? νA νB νC νI

R1 A + ? −−⇀↽−− A ? 1.00 0.00 0.00 −1.00 −1.00 0.00 0.00 0.00
R2 B + ? −−⇀↽−− B ? 0.00 1.00 0.00 −1.00 0.00 −1.00 0.00 0.00
R3 C + ? −−⇀↽−− C ? 0.00 0.00 0.84 −1.00 0.00 0.00 −0.97 0.00
R4 A ? + B ? −−→ C ? + ? −0.35 −0.35 0.32 0.30 0.00 0.00 0.00 0.00
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Figure 9: Loss, ε, (blue, left ordinate) and integer loss, εI, (orange, right ordinate) for the trained hCRNN with data uniformly
sampled from the interval

[
T ref −∆T, T ref +∆T

]
. Depicted are the standard (eq. (2)) and the reparameterized (eq. (3))

Arrhenius expression.

(a) (b)

Figure 10: hCRNN identified parameters in comparison to the ground truth (ideal) values of (a) the activation energy, E+
A , and

(b) the rate constant, k+
S,T ref , evaluated at T ref = 550K. Both values are calculated for the forward reaction of R4 for variable

training temperature ranges (∆T ) and contrasted for both described parameterization methods.
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loss, ε, between both parameterizations is striking. With only minor deviations from integer stoichiometric
coefficients (compare εI), stoichiometry can be discovered over the whole training range with both methods.
With the stoichiometry recovered for all sampled temperature ranges and constant integer losses, εI, (compare
fig. 9), the difference in overall loss can solely be attributed to the (miss)identification of the pre-exponential
constants, A, and activation energies, EA, differing between both parameterizations. From these results it is
apparent that the reparameterized expression performs better in terms of minimizing error alone.
Making use of the physically informed network architecture, the network predicted surface reaction rate
constant at T ref , k+S,ref , is calculated for each ∆T (eq. (18)) and depicted in fig. 10 alongside the network-
identified absolute value of the activation energy, EA.

k+S,ref = k+S
(
T ref = 550K

)
(18)

From fig. 10 it is quite apparent that the reparameterized Arrhenius equation significantly outperforms
the standard one not only in terms of overall loss ε but also in interpretability of the recovered results:
Figure 10a shows that, while the standard formulation correctly discovers activation energies, EA, only for
larger temperature ranges, ∆T , the reparameterized formulation yields good agreement over all but the
smallest temperature ranges (∆T < 0.1K). Figure 10b in contrast supports the overall reparameterization
idea of referring the constants to a reference state: The rate constant at reference conditions, k+S,ref , is
inherently always identified using eq. (3) as can be seen from the constant and near ideal course. The
difference between their values obtained by the reparameterized and the standard expression is particularly
striking. For a detailed discussion of the results for the eq. (2) parameterization, the reader is referred to
appendix SI D.
These results suggest to use the parameterization according to eq. (3) and show that this way, robust discovery
of activation energies is feasible over experimentally relevant temperature ranges.

5.5. Coverage dependency
As discussed above, the presence of surface intermediates is known to have an influence on sorption

reactions. In the following it is briefly demonstrated that coverage dependency can be depicted with the
proposed network architecture, yet detailed analysis is omitted for brevity since superimposing effects of
stoichiometry, reversibility and temperature hinder the intuitive explanation of surface coverage dependency.
Moving on, the parameter ε+A?,R2 (change in activation energy of reaction R2 with increasing coverage of A?)
is varied. The generated mechanism is investigated with a hCRNN containing no coverage dependency layer
(w/o cov. dep.) and one that does contain the coverage dependency layer (w cov. dep.). As can be seen
from fig. 11b, integer loss εI is nearly identical and small for both models and thus promises stoichiometric
discovery for low values of ε+A?,R2 regardless of coverage dependency. However, overall loss ε in fig. 11a is
significantly lower for the coverage dependent hCRNN indicating that the inclusion of a coverage dependency
layer is beneficial, if the observed mechanism contains even just one coverage dependent reaction. The
hCRNN-predicted reaction rate constants can be calculated at arbitrary reference conditions for comparison
as follows:

k−1,ref = k−1
(
T ref = 550K,Θref

)
(19)

Again, a reference temperature of T ref = 550K is chosen. Additionally, two different reference coverages are
defined as Θref

A?,0 = 0 and Θref
A?,1 = 1 respectively. Tabulating the hCRNN-predicted reaction rate constants

at different fractional coverages of A? (compare fig. 12) reveals that the hCRNN with coverage dependence
layer does indeed recover the correct kinetic dependence (for full tabulation see appendix SI E) for describing
reaction rates at full and zero coverage. In comparison, excluding it from the hCRNN yields rate predictions
not representative of the coverage state of the surface and wrong by multiple orders of magnitude.

6. Conclusion

This works offers an extension of the CRNN methodology to heterogeneous reaction networks including
reversible and coverage dependent reactions called hCRNN. The demonstrated construction offers clearly
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(a) (b)

Figure 11: Loss, ε, (a) and integer loss, εI, (b) for a hCRNN with no coverage dependency layer (w/o cov. dep.) and one with a
coverage dependency layer (w cov. dep). Temperature is sampled uniformly from [500K, 600K].

Figure 12: Rate constant k−
T ref at reference temperature T ref = 550K and coverages Θ = 0 and Θ = 1 comparing a hCRNN

with no coverage dependency layer (w/o cov. dep.) and one with a coverage dependency layer (w cov. dep.).
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separated and interpretable network layers directly corresponding to terms in the general kinetic expression.
As a consequence, fitting arbitrarily complex observed kinetic behavior is possible while at the same time
ensuring that the recovered kinetic obeys fundamental physicochemical principles of chemical kinetics. This
contrasts the hCRNN against black box models and allows for the discovery of kinetic parameters. Since the
hCRNN works the same way as a conventional kinetic expression, usage in common chemical engineering
applications, i.e, reactor scale simulations is trivially accessible. The fully trained model can function as a
drop-in replacement for conventional kinetic expressions:

ṡi = hCRNN (ci, T ) (20)

The above discussed strategy for setting up a training workflow can be used to gradually increase model
complexity and maximize training process. Although the demonstration of the introduced method for a
generic yet universal heterogeneous mechanism suggests the potential for extension to all elementary step
reaction mechanisms, it is evident that interpretation of results for complex mechanisms requires a detailed
analysis. Despite the promise of easy interpretation of CRNNs, this work also shows that discovery for
complex cases is not trivial and still requires substantial domain knowledge.
Nonetheless, it was demonstrated that kinetic discovery for heterogeneous mechanisms is possible and can
yield good approximations for pre-exponential constants, activation energies and even coverage dependency
parameters. The so discovered kinetic model obeys thermodynamic and kinetic restrictions without any prior
knowledge of the mechanism. In it’s current state, the hCRNN only fulfills these restrictions by training,
i.e., thermodynamically and kinetically consistent data must be supplied during training. For example, the
conservation of mass is not enforced by the network construction but implicitly satisfied by observation of
mass conserving processes. The conservation of mass for the retained mechanism can be checked after the
training, but requires the stoichiometric compositions of the observed species. Similar reasoning applies to
thermodynamic consistency: Although reversibility is assured to be captured when observed, the correctness
of equilibrium constants depends on the presence of correct equilibria in the training data.
From this, it is reasonable to assume that training data plays a critical role in interpreting the results of
the method. This work is only concerned with the maximally transient regime because it is conceptually
interesting. However, the authors acknowledge that this type of data is difficult to access experimentally for
a few reasons: Firstly, extremely fast, yet still precise analytics would be needed to correctly resolve the
formation and consumption dynamics in maximally transient regime. Furthermore, since the only way to
reliably load a catalytic surface is by bringing it into contact with a gas phase and advancing it towards
or even into chemical equilibrium, the start-up of such a reactor would be tedious and skewed towards
coverages close to equilibrium. Lastly, even if analytics and experimental setup were ideal, instrumentation
is oftentimes not: switching times of valves and nonideal residence time distributions in pipes make highly
transient kinetic measurements experimentally hard to realize. Nonetheless, the described sampling method
was specifically designed to elucidate the dynamic processes far from equilibrium. Indeed, we can conclude
that the fastest (dominating) kinetic behavior is well recovered under all circumstances by the hCRNN in the
chosen maximally transient regime. If the mechanism contains very fast steps, these will be identified in favor
of slower ones all the while dynamic behavior is well retained. The number of reactions needed for describing
the kinetic behavior depends on their speed (processes that dominate the overall kinetics are captured while
additional slow ones may not be correctly identified and consequently omitted from the construction). Thus,
best kinetic discovery is possible, if all reactions are equally fast.
This in terms means that slow processes are not observable through the chosen sampling strategy. In contrast,
in a steady-state experiment, the slowest step limits productivity and dictates overall reactor behavior. Thus,
in a typical steady-state catalytic experiment, only the slowest reaction can be observed, while all the others
are (assumed to be) in quasi-equilibrium. This can be formalized with the concept of the RDS. In that regard,
the observability of fast reactions in the maximally transient regime is the counterpart of the observability of
rate determining reactions in a steady-state experiment.
Full kinetic discovery by hCRNNs might consequently be achievable by observing different regimes: While
this work demonstrates that the use of maximally transient data favors identification of fast reactions, theory
promises the discovery of slow reactions from steady-state data. Whether or not a well-chosen sampling
strategy is capable of exposing both fast and slow reactions to the hCRNN remains unclear up to now, and
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answering this question is left as part for future work. Such a strategy might be based on observing varying
time horizons of a reaction system evolving from its initial state into steady-state or equilibrium. This might
mean observing the reaction system at different residence times (for continuous systems) or physical times
(for transient systems) in the systematic way detailed throughout this work. This kind of experimentation,
in contrast to maximally transient experiments, is achievable by, e.g., the periodic transient kinetics method
(PTK) and has been demonstrated before [36]. Ultimately, understanding the behavior of hCRNNs in the
different rate regimes might allow for the design of a training strategy tailored to the reaction system at
hand and consequently enable kinetic discovery even for heterogeneous systems.
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