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Abstract1

The rapid advancements in computational methods have revolutionized drug dis-2

covery and development. These methods, ranging from molecular modelling to ma-3

chine learning algorithms, have drastically increased in number and sophistication.4

However, a comprehensive understanding of these diverse approaches is essential5

for researchers aiming to make significant contributions to this evolving field. This6

review aims to provide a detailed overview of the most prominent computational7

methods currently used in drug discovery. It will analyze their underlying principles,8

discuss their applications, and highlight their potential for future advancements in9

the field. Through this examination, we aim to equip researchers with the necessary10

insights to navigate and contribute to the rapidly expanding landscape of computa-11

tional drug discovery.12

Keywords: Drug discovery; drug development; computational methods; molecular13

docking; molecular simulation14

1 Introduction15

Traditional methodologies for drug discovery can be classified according to the avail-16

ability of target and ligand structures (Figure 2). The conventional drug categorisation17

discovery methodologies encompass four primary groups ([3]): (i) Library design, (ii)18

Structure-based design, (iii) Ligand-based design, (iv) De Novo Design (Figure 1). In19

addition to traditional classification, it is possible to introduce a novel category known20

as the quantum mechanical simulations and chemoinformatics approach, which can be21

considered novel classes.22
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Figure 1: Overview of Conventional Approaches for Drug Discovery
The overview shows that target and ligand structures define the categorisation of conventional ap-

proaches for drug discovery. Structural-based drug discovery (SBDD) is a technique for developing small
molecules using the three-dimensional conformation of the target protein. By contrast, ligand-based drug
discovery (LBDD) mostly focuses on structural and chemical analysis of known ligands. While de novo
design is carried out to produce new chemical entities, library design involves screening chemical libraries.
Every tactic has special advantages and is quite important for the medication development process.

Commonly categorised based on the presence of target and ligand structures, tra-23

ditional approaches to drug discovery each provide unique advantages and challenges.24

First, structure-based drug discovery, or SBDD, is the method of developing novel med-25

ications using knowledge of the three-dimensional form of the target protein to produce26

small molecules that can precisely bind to particular areas on the surface of the pro-27

tein and alter its action. Often utilised to identify potential therapeutic candidates in28

the structure-based medicinal design process are techniques such as virtual screening,29

molecular dynamics simulations ([151]) and molecular docking ([108, 109, 166, 144,30

219, 190]). Second, ligand-based drug discovery (LBDD) is more concerned with inves-31

tigating well-known ligands’ chemical and structural characteristics that firmly bind to the32

target protein. By analysing ligand similarities and differences, LBDD techniques—such33

as pharmacophore-based virtual screening and quantitative structure-activity relationship34

(QSAR) modelling ([187]), can forecast novel compounds with similar biological prop-35

erties. Third, using either experimental or computational approaches, library design is es-36

sentially about identifying molecules with specific pharmacological characteristics among37

vast collections of chemicals. The last, de novo design ([103, 226]) aims, in essence, to38

create new chemical entities not seen in the natural world before (Figure 1). Besides these39

four conventional approaches, cheminformatics, as the last group, uses computer methods40

to organise, analyse, and predict chemical data and attributes to identify drug candidates41

and optimise their efficacy and safety. It streamlines medication design by integrating42

chemistry and biology to uncover new medicinal molecules faster and more accurately.43

To provide a comprehensive overview of conventional approaches in drug discovery,44

the literature has been investigated under six sections: (i) Ligand-Based Drug Discovery,45
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focusing on techniques that rely on known ligands to find new drugs; (ii) Structure-Based46

Drug Discovery, which delves into methods utilizing the 3D structure of target proteins;47

(iii) Ligand-Based Drug Discovery, focusing on approaches that rely on known ligands to48

find new drugs; (iv) De Novo Drug Discovery, exploring strategies to design new drugs49

from scratch; (v) Quantum Mechanical Simulations, which forecast atomic-level molecu-50

lar behaviour, revealing electronic structures, reaction mechanisms, and binding interac-51

tions, and (vi) Cheminformatics Approaches for Drug Discovery, highlighting computa-52

tional techniques to analyze chemical data.53

1.1 Library design for drug screening54

Library design for drug screening is one of the key steps in drug discovery (Figure 155

and 2). Library design is the most time-consuming process in drug discovery since there56

is no target or ligand at the beginning of the drug discovery. The most logical way to57

define a target library is since the possible target number is significantly lower than pos-58

sible ligands and drug candidates. A library with a target-focused approach refers to a59

compilation of chemicals that have been intentionally created or constructed to target a60

protein or protein family specifically. The rationale behind screening such a library is61

based on the notion that a reduced number of compounds is required to identify hit com-62

pounds. Moreover, it is commonly observed that there is a higher rate of successful hits63

when comparing the screening of diverse sets. Additionally, the hit clusters resulting from64

a successful focused library screening campaign typically display transparent structure-65

activity relationships, which aid in the subsequent analysis and investigation of these hits66

([80]).67
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Figure 2: The schematic representation of library design
The library design procedure for drug and target screening encompasses many crucial elements to guar-

antee the inclusion of a wide-ranging and all-encompassing assortment of probable therapeutic candidates.
The process commences with the choice of primary constituents, which are diminutive, structurally diverse
molecules employed as the fundamental basis for the collection. Subsequently, these fundamental com-
ponents are merged in different manners during the phase of library formation, resulting in a wide range
of chemical compounds. Subsequently, the library undergoes global propagation and the establishment of
a collection of diverse species, wherein various molecular variations are methodically generated and or-
ganised. Subsequently, these species undergo testing to determine their capacity to attach to the designated
receptor, thereby identifying potential candidates that show promise for subsequent advancement. The tech-
nique is recursive, where the successful binding species guide the selection of new building blocks, thus
continuously improving and enlarging the library for succeeding screening cycles ([149]).

Target-oriented libraries usually have a single core or scaffold with one or more at-68

tachment points, usually two or three. Different substituents or side chains are added to69

get the desired molecules. If all conceivable combinations were considered, a scaffold70

that is diversified at two or three attachment locations of diversity would provide a library71

consisting of numerous chemicals. Generally, a subset of these compounds is often se-72

lected for synthesis, ranging from 100 to 500. The selection is made in order to effectively73

investigate the design hypothesis and ensure adherence to drug-like features with the help74

of systematic exploration ([80]).75

The systematic exploration of the chemical space and the identification of prospec-76

tive therapeutic candidates are facilitated by constructing a library for drug screening, a77

critical element of drug development ([80]). To enhance the probability of identifying78

active matches, choosing molecules that demonstrate a diverse array of structural char-79

acteristics is imperative. Furthermore, the design approach frequently employs compu-80

tational techniques to predict the pharmacokinetic and pharmacodynamic properties of81

the medications, thereby enhancing the efficacy of the screening process. Consequently,82

these libraries can be implemented in various drug discovery methodologies, including83

structure-based, ligand-based, de novo drug development, and cheminformatics.84
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1.2 Structure-based drug discovery85

The utilisation of three-dimensional structures of biological targets, such as proteins or86

nucleic acids, in the computational drug discovery approach known as structure-based87

design (SBDD), enables the formulation of novel therapies with a high degree of speci-88

ficity and affinity. To put it differently, SBDD is crucial in contemporary drug devel-89

opment since it utilises molecular knowledge about target-ligand interactions to inform90

the logical creation of small molecules or biologics. SBDD allows for the identification91

of crucial chemical interactions and the optimisation of compound structures to improve92

binding affinity and selectivity by comprehending the spatial arrangement of atoms within93

the target binding site. This methodology encompasses a diverse array of methods, such94

as molecular docking, virtual screening, fragment-based design, and molecular dynamics95

simulations. The primary objective is to leverage structural data in order to accelerate the96

process of drug exploration and advance the development of safer and more efficacious97

therapies for a multitude of diseases ([16]), such as using Molecular docking.98

1.2.1 Molecular Docking in Drug Discovery99

Molecular Docking (MD) is one of the most common methods to investigate drug-target100

correlation (Figure 3). Regrettably, conventional and ML-based docking methods have101

been plagued by a significant false-positive rate, leading to limited effectiveness ([2,102

222]). ML models trained using the outcomes of molecular docking programs can effec-103

tively decrease the occurrence of false positives in MD and ML-based docking ([190]).104

Therefore, high false positives reduce the performance of MD. Initially, comprehending105

the concept of molecular docking is the primary prerequisite for constructing a proficient106

machine-learning model on molecular docking software.107

Figure 3: A basic component of molecular docking
The graphic shows the molecule bonding process. Fundamental to molecular docking is the computer

prediction of the binding mechanism and affinity of small molecules (ligands) within the active site of a
target protein. This method helps to find possible therapeutic options by assessing the degree of interaction
and complementarity between the ligand and the protein target ([148]).
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The first use of molecular docking in drug discovery was in the early 1980s ([29]),108

with a simplified function based on “hard sphere repulsions” and “hydrogen bonding”109

([2]). The research on docking has enhanced its streamlined functionality by considering110

different variables in the scoring function besides “hard sphere repulsions” and “hydrogen111

bonding”. The enhanced functionalities augmented the precision of docking and gradu-112

ally introduced innovative phases. For example, the enhanced functionalities include data113

on the binding strength and the molecules’ shape. Consequently, the efficiency of MD has114

progressively increased due to the implementation of new features, including enhanced115

functionalities.116

Two steps define docking primarily: (i) prediction of the binding site and (ii) predic-117

tion of a ligand conformation and binding affinity ([125]). Unfortunately, even with devel-118

opments in molecular docking methods, accurate docking cannot be guaranteed. Conse-119

quently, the success percentage of docking ranges from 0% to 92.66% ([27]). Therefore,120

establishing successful docking—which directly affects our machine—learning model’s121

efficacy—depends on understanding docking classifications and selecting among the cur-122

rent approaches. Thus, building strong and very effective models depends on under-123

standing the mechanism of molecule docking. Therefore, the fundamentals of molecular124

docking are discussed in the following seven sections, from the Molecular Mechanism of125

Docking to the Classification of Docking by Search Space.126

Molecular Mechanism of Docking In molecular docking simulations, evaluating the127

quality of contacts between ligands and receptors depends on scoring functions, so the128

molecular mechanism of docking mainly consists of their usage. By evaluating several129

elements, including intermolecular forces, steric conflicts, hydrogen bonding, and elec-130

trostatic interactions, scoring systems in docking algorithms evaluate and rank possible131

binding positions. Forecasting the binding affinity between a ligand and a receptor is one132

of these purposes; this is crucial for discovering potential drug candidates. Standard scor-133

ing systems are empirical, which uses pre-defined criteria, and physics-based, which uses134

computational models derived from basic physical principles. The dependability of dock-135

ing predictions depends much on the precision of scoring systems, affecting structural136

biology and drug discovery research’s decision-making. Maximising docking protocols137

and improving the accuracy and efficiency of molecular docking simulations depend on a138

knowledge of the complexity of scoring systems.139

The scoring functions in molecular docking programs are essential in computational140

drug discovery and the research of protein-ligand interactions ([100]). It is a mathematical141

model employed to evaluate and prioritise the strength of the interaction between a tiny142

chemical (a ligand) and a target protein receptor. The scoring function assesses the po-143

tency of the ligand-receptor interaction, forecasting the probability of a favourable binding144

position. This forecast is crucial for the identification of possible therapeutic candidates145

or the comprehension of protein-ligand interaction mechanisms ([100, 58]). A compre-146

hensive scoring function considers multiple aspects, including van der Waals contacts,147

electrostatic interactions, hydrogen bonding, solvation effects, and entropy variations.148

The significance of this rests in its capacity to effectively sift through extensive collec-149

tions of chemical compounds, prioritising those with the strongest binding affinity for150

subsequent experimental confirmation. An accurately calibrated scoring function can sig-151

nificantly expedite drug development by directing medicinal chemists towards molecules152
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with the highest therapeutic potential. This minimises the time and resources required for153

synthesising and testing candidate compounds ([203]).154

A scoring function is used to estimate the binding affinity of a tiny molecule, which is155

a crucial component of docking software. A scoring function typically consists of three156

main subclusters: (i) physical force field-based, (ii) empirical, and (iii) knowledge-based157

scoring functions ([105]) (Figure 4).158

Figure 4: The scoring function classification of molecular docking programs
The diagram depicts three distinct categories of scoring functions that are frequently employed in

molecular docking investigations: (i) scoring functions based on the force field, (ii) scoring functions based
on empirical, (iii) scoring functions based on knowledge and (iv) consensus scoring function. The scoring
functions utilised in structure-based drug discovery employ unique approaches to assess the binding affinity
between a ligand and its target protein. This contributes to the systematic development of possible thera-
peutic candidates.

Scoring functions that utilise physical force fields (or force fields) are employed to159

analyse molecular interactions (Figure 4). The approach integrates molecular dynamics160

(MD), binding affinity, and free energy perturbation (FEP) methods. Medusa Score, for161

example, is one of the physical force field-based approaches. The research demonstrated162

that the Medusa Score success rate is around 82% ([223]). The success rate is better than163

various standard scoring functions, including DrugScore, F-Score, LigScore, ChemScore,164

PLP, LUDI, PMF, X-Score, G-Score, D-Score, and AutoDock. When the scoring method165

was hybridised with DrugScore, it became 85% ([223]). However, the drawbacks of166

techniques are speed and sampling limitations ([223]).167

Empirical scoring functions aim to calculate binding free energy by leveraging chemi-168

cal interactions, such as hydrogen bonds ([67]). In essence, binding energy determination169

depends on the molecular interactions. Molecular interaction variables include Van der170

Waals, dipole-dipole interactions, London dispersion forces, and hydrogen bonds. Some171

examples of docking programs that utilise empirical scoring functions include DOCK 4.0172

([54]) and AutoDock ([125, 173]). Molecular docking programs using empirical scoring173

function examples have already demonstrated their efficacy in the field ([125, 173, 189]).174

Hence, empirical scoring functions are the most auspicious methodologies.175

The other scoring method is knowledge-based scoring functions, which use statistical176

analysis of protein complex structures. These functions model uncommon atoms, such as177

sulphur-aromatic. They also work on the statistical analysis of the ligand-target 3D com-178

plex structure. For example, Bleep, DrugScore, PMF, and SMoG are the most common179

knowledge-based scoring functions ([75, 66, 197]). Knowledge-based scoring functions180

have demonstrated satisfactory performance in molecular docking programs.181

Molecular docking programs that employ consensus scoring functions integrate the182

outcomes of various scoring methods to enhance the precision and dependability of fore-183
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casting ligand-receptor interactions ([185]). For example, CompScore utilises a consensus184

scoring function in docking ([142]). The other example is CoBDock, which benefits not185

only molecular docking scoring function but also cavity detection tools to build a con-186

sensus approach ([190]). The programs utilise consensus scoring to effectively balance187

the merits and drawbacks of individual scoring systems, thereby improving the overall188

accuracy of predictions ([21]). Consensus scoring offers a significant benefit by effec-189

tively decreasing the occurrence of incorrect positive results and enhancing the reliability190

of forecasts regarding binding affinity. Nevertheless, the drawback is that it frequently191

necessitates additional computer resources and time, as it involves many scoring calcula-192

tions that must be done and combined. In addition, the intricacy of including many scoring193

algorithms might occasionally result in incongruous outcomes if the consensus approach194

is not optimised ([185, 99]). Consequently, our machine learning model underwent train-195

ing using several scoring function outcomes in order to enhance its performance. Our ML196

model’s method enhances molecular docking accuracy by mitigating false positives.197

Bound vs unbound molecular docking A protein’s conformation is categorised into198

bound (complex) and unbound (one outside of a complex) structures (Figure 5). The199

bound docking separates a complex and then redocks parts of the complex to build the200

original complex. While bound docking is essential for developing new docking pro-201

grams, it does not hold much value in biology. When an unbound docking program202

predicts a new interaction between a ligand and target (where the ligand and target are203

not already bonded), it enhances our understanding and becomes highly beneficial.204
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Figure 5: The representation of bound and unbound input for rigid and flexible docking
Bound (in green) and unbound (in red) TF-DNA docking test case construction proceeds to assess

docking performance methodically. The bound complex is broken into two binding components: TF and
DNA. These elements then are employed for docking, sometimes known as ”bound docking,” which usually
leads to better outcomes on validation sets because of their pre-existing interface compatibility. This method
might not, however, fairly depict real-world conditions in which the bound conformation is not always
accessible. ”Unbound docking” is exploited to overcome this restriction, whereby molecular docking uses
the unbound TF, as shown in red. Under this situation, the unbound TF lacks a pre-formed interface fit
for complexing with DNA. Hence, flexibility is needed to enhance docking performance. This adaptability
enables conformational changes, raising the possibility of effective docking in useful contexts. Comparative
bound and unbound docking approaches help one understand the need for structural adaptation to reach
precise TF-DNA interactions ([90]).

Bound docking software cannot be significantly successful for an unknown compound205

because of limited performance in real-life cases. On the other hand, unbound docking206

provides vital information about unknown ligand-target complexes ([192]). Therefore,207

unbound docking is called “real-life docking” ([48]) because of the impact on research.208

Regrettably, the progress of unbound docking approaches has been hindered due to a lack209

of understanding of binding parameters. Hence, our machine learning techniques and210

pipelines have been optimised for unbound docking, making them the superior choice for211

new drug discovery and development.212
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Template-Based (Homology) Docking Using known protein structures (templates),213

template-based (homology) Docking is a computer method indispensable in structural214

biology and drug development that predicts the 3D structure of a target protein and per-215

forms molecular binding. This method depends on the idea that proteins with similar216

sequences usually show identical shapes and activity. Two main phases comprise the217

process: first, using a 3D model of the target protein derived from sequence comparison218

for template-based molecular docking, whereby possible ligands are assessed against the219

projected structure to identify potential drug candidates([38]).220

Predicting 3D model for target Approximately 6% of the protein correlations in221

the human interactome, predicted to be researched experimentally, have been examined222

([182]). The scarcity of three-dimensional target models poses a significant obstacle in223

structural-based drug discovery and development. As a result, various techniques have224

been created to anticipate three-dimensional target models, one of which is Template-225

based modelling (TBM). TBM predicts a protein model structure by using the known226

structures (Figure 6). Several TBMs exist in the literature, including MODELLER ([206]),227

SWISS-MODEL ([205]), and FoldX ([14]).228

Figure 6: The figure illustrates the procedure for constructing a homology model based
on a protein sequence.

The process entails aligning the sequence with homologous proteins with a known structure, select-
ing templates depending on the alignment quality, constructing a model using comparative modelling ap-
proaches, and refining the model to enhance its structural accuracy. Homology modelling allows for an-
ticipating protein structures in three dimensions, helping develop structure-based drug design and other
molecular investigations.

Homology models, depicted in Figure 6, are crucial for investigating targets, as wet-229

lab procedures have only been employed to a limited extent for examining less significant230

targets. As a result, other techniques, such as ab initio 3D structure prediction approaches231

besides TBM, have been enhanced over the past ten years. Another way to predict 3D232

structures is through ab initio investigations. Ab initio predicts the 3D structure of pro-233

tein “from scratch” using physical principles. Examples of ab initio structure prediction234

programs are I-Tasser, Raptor-x, Robetta, and PSIPRED ([172]).235
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The main limitation of TBM is the lowered sequence similarity with known proteins,236

which significantly influences the prediction accuracy. Low sequence similarity com-237

promises the structural model’s dependability, thereby leading to mistakes ([160]). Con-238

versely, ab initio methods—which rely not on current protein structures—can provide an-239

swers in these contexts. Still, these methods are computationally demanding and labour-240

intensive; exact results often require significant resources. This double issue emphasises241

the need for discoveries in both TBM and ab initio methods to improve the dependability242

and efficiency of protein structure prediction ([135]). However, TBMs are still practical243

to perform template-based molecular docking in drug discovery.244

Template-based molecular docking Sometimes known as template-based or ho-245

mology modelling, template-based docking is a computer technique used in molecular246

docking to predict the three-dimensional arrangement of a protein-ligand complex by us-247

ing the established structure of a comparable protein-ligand complex ([65]). This method248

is predicated on the idea that proteins with similar sequences or structures often bind sim-249

ilarly to ligands. Matching the sequence or structure of the target protein with that of the250

template protein models the structure of the target protein in template-based docking. To251

create the missing or variable elements, one then uses computational methods, including252

side-chain prediction or loop modelling. Molecular docking techniques are applied to253

anticipate the binding shape and affinity of ligands within the binding site of the target254

protein once a model of the protein is generated ([216, 146, 65]).255

When the experimental structure of the target protein is not easily obtainable or acces-256

sible, template-based docking is quite beneficial not only to understand the structure but257

also to use it in structure-based drug discovery and development. It substantially helps258

to identify new medications and provides essential new perspectives on the interactions259

between proteins and ligands. Still, it is imperative to confirm the accuracy and reliability260

of the expected models by rigorous computational analyses and experimental validation261

([216, 146]). Understanding the classification of molecular docking can be beneficial for262

minimising the need for experimental validation.263

Classification of Docking by Molecule Type Different types of molecules used in the264

docking process help to classify molecular docking, a fundamental computational tool265

used in structural biology and drug development. This classification distinguishes among266

several docking situations. Each is meant to address specific research hypotheses and ob-267

jectives. Three varieties of molecular docking models are known to exist: small molecule-268

protein ([184]), peptide-protein ([234]), and protein-protein ([139]). Mostly in terms of269

the scoring systems, they have many parallels. The scoring system determines the strength270

of the contact between a target and a molecule. The three molecular docking techniques271

differ mainly in the dimensions of the molecules and the size of the search area.272

Small molecule-protein docking Small molecule-protein docking is an essential273

computational technique in structural biology and drug development. It aims to ascertain274

the binding modes and affinities inside the binding site of small compounds or ligands,275

thereby guiding their binding to a target protein([184, 56]) (Figure 7). Examples of small276

molecule docking programs are AutoDock ([49]), BetaDock ([89]), PLANTS ([55, 91]),277

and GalaxyDock3 ([219]). Also, rational drug design depends on this method since it278
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provides essential knowledge on the molecular interactions between ligands and proteins.279

The data about interactions enhance the binding properties of potential drugs and helps to280

identify them.281

Small molecule-protein docking systems also scan the conformational space of lig-282

ands and proteins using different scoring systems and search strategies in order to forecast283

energetically favourable binding locations ([211, 56, 229, 84]). By exposing the funda-284

mental architecture of protein-ligand interactions, small molecule-protein docking helps285

to generate more selective and successful treatments. This helps advance new therapies286

for many diseases and accelerates drug discovery ([84]).287

Figure 7: The figure depicts the process of small-molecule (ligand) docking into a protein
target.

Molecular docking techniques computationally predict the binding mode and affinity of small
molecules within the active site of the protein. The figure illustrates the exploration of ligand conformational
space, docking pose generation, and scoring to identify potential drug candidates for further optimization
in structure-based drug design studies ([165]).

The conformation of a ligand is one of the significant values to evaluate docking re-288

sults, such as RMSD ([125]). RMSD calculates the average distance between the atoms of289

stacked proteins or ligands and assesses the similarity between the reference structure and290

the expected docked location. A known experimental structure is often used to determine291

the accuracy of docking predictions using docked conformation. Once the conformation292

of ligands approaches the natural structure, the RMSD of small ligands is close to zero.293

Peptide-protein docking Peptides have vital roles in many biological processes,294

including cellular communication, control of enzymes, and modification of immune re-295

sponses ([119]). Also, targets for drug development are peptide-protein complexes since296

small peptides either act as inhibitors or modulators of protein activity. Furthermore, pep-297

tides derived from proteins can be the basis for developing peptide-based treatments such298

as peptide mimics or vaccinations ([121]). Therefore, it is essential to understand the299

binding topologies and strengths of peptide-protein complexes.300

Molecular docking offers a vital tool for estimating the binding topologies and strengths301

of peptide-protein complexes. Investigating the interactions between peptides and pro-302

teins computationally is accomplished by docking. This technique guarantees the predic-303

tion of the strength of the binding, finds the particular sites where these interactions occur,304

and helps to identify the relevant residues. Understanding peptide-protein interactions in305
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biological systems ([119, 229, 121]) and developing peptide-based drugs depend on this306

knowledge. Finding the operational processes and possible therapeutic applications for307

peptides and proteins depends on understanding their interactions ([119]). Therefore,308

programs including pepATTRACT ([40]), FlexPepDock ([111]), HADDOCK2 ([193])309

and PEP-SiteFinder ([162]) have been utilised to comprehend the binding topologies and310

strengths of peptide-protein complexes.311

A comprehensive comprehension of the binding topologies and strengths of peptide-312

protein complexes is necessary to elucidate their functional functions and facilitate the313

development of therapies based on peptides. The process of peptide-protein docking gen-314

erally consists of two primary stages using molecular docking ([234]): (1) the creation of315

peptide conformations and (2) the anticipation of their interaction with the protein target.316

The initial stage involves the utilisation of diverse conformational sampling methodolo-317

gies, such as Monte Carlo simulations or molecular dynamics simulations, to investigate318

the conformational space of the peptide ([150]). Docking algorithms are employed in the319

second stage to forecast the most favourable binding position and strength of the peptide320

within the binding site of the protein target. The algorithms frequently employ scoring321

functions to assess the compatibility between the peptide and protein, as well as to choose322

the binding mode that is most energetically advantageous (Figure 8).323

Figure 8: The top 10 peptide poses on the target protein (in grey).
The orange peptides and the protein receptor shown in white are strikingly shown in the visualiser.

These highest-ranking models were chosen according to their docking scores, which reflect their possible
binding affinity and stability. The complex interactions between the peptides and the protein receptor are
stressed by emphasising the important binding sites and potential structural changes. This graphic provides
a complete overview of the docking results, therefore supporting additional research and understanding of
the interactions between the protein and peptide ([31]).

Figure 8) shows the top 10 poses derived from peptide-protein docking simulations,324

therefore illustrating the several orientations and likely binding modalities of the peptides325

inside the binding region of the protein receptor. These studies help identify meaning-326

ful interactions and structural elements and help create novel therapeutic drugs for par-327

ticular protein interfaces. Analysing several docking positions allows one to assess the328

13

https://doi.org/10.26434/chemrxiv-2024-ltmj2 ORCID: https://orcid.org/0000-0001-9589-0269 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-ltmj2
https://orcid.org/0000-0001-9589-0269
https://creativecommons.org/licenses/by/4.0/


binding strength and project biologically relevant interactions. This mechanism helps to329

better appreciate how peptides support protein activities and their possible applications in330

biomedical research.331

Protein-protein dockings A computer method used to predict the three-dimensional332

shape of a complex resulting from the interaction of two or more proteins is protein-333

protein docking (Figure 9). Many biological functions, including enzyme activity and334

cellular signalling, depend critically on a knowledge of these relationships. Known ex-335

amples of docking programs for protein-protein binding are HDOCK ([215]), MEGA336

DOCK ([174]), and ZDOCK ([144]) to investigate these interactions. Simulating the337

binding interaction between proteins using the protein docking program helps one to find338

the best orientation and position at which the two proteins bind. In the drug development339

framework, the given knowledge is quite valuable as it allows the creation of molecules340

that specifically target protein-protein interactions and inhibit pathogenic pathways. Due341

to the complex design of protein-protein interactions and the broad spectrum of possible342

binding methods, protein docking remains a challenging task, even with significant ad-343

vancement. Still, ongoing studies help to improve the accuracy and efficiency of docking344

methods, therefore transforming them into a powerful tool for understanding the intricate345

terrain of protein interactions.346

Figure 9: The figure shows an example of protein-protein docking, in which two protein
molecules connect to form a complex.

A protein-protein docking approach predicts two proteins’ most advantageous binding modes and affin-
ity. The figure shows the study of conformational space, the generation of docking poses, and the scoring
methods used to ascertain the binding configuration most energetically favourable among the proteins en-
gaged in the interaction ([178]).

Classification of Docking by Flexibility Molecular docking is a prevalent computa-347

tional method in structural biology and drug development. It is used to forecast the bind-348

ing interactions of molecules, such as proteins and ligands. The flexibility of molecules,349

specifically proteins, is vital in influencing their ability to bind and selectivity. Three pri-350

mary methodologies are typically utilised in molecular docking research to accommodate351

protein flexibility: ([96]): (i) rigid docking, (ii) semi-flexible docking, and (iii) flexible352
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docking (Figure 10). Each methodology presents unique benefits and constraints, and353

the method selection relies on the research goals and attributes of the studied biological354

system.355

Figure 10: Three different protein docking techniques—rigid docking, flexible-rigid
(semi-flexible) docking, and flexible docking—are shown in the diagram.

Every method forecasts the binding interactions among protein molecules using different approaches.
While semi-flexible docking enables limited flexibility in some areas, rigid docking requires the absence
of any changes in the shape of the protein structures. Conversely, flexible docking considers significant
conformational changes in proteins and ligands during binding. Understanding the differences among these
approaches will help one decide which is best for studying protein-ligand interactions ([126]).

Rigid docking Rigid docking is a computational approach utilised in structural bi-356

ology and drug development to predict molecule binding interactions. Here are several357

examples of grid docking programs that have been employed in drug discovery and devel-358

opment, including MS-DOCK ([167]), pyDock ([28]), and RDOCK ([101]). Such rigid359

docking programs assume that both the ligand and receptor molecules have constant and360

unchanged shapes during the docking process ([4]). The technique helps determine the361

binding modes and affinities of molecular complexes. Rigid docking reduces the compu-362

tational complexity by disregarding any changes in the shape or structure of the ligand363

or receptor when they bind together. It allows for a quick examination of the binding364

possibilities. Rigid docking methods utilise several algorithms and scoring functions to365

systematically explore energetically favourable binding positions, hence aiding in detect-366

ing potential interactions between ligands and receptors.367

Although rigid docking may oversimplify the dynamic nature of molecular interac-368

tions, it continues to be a valuable tool for virtual screening, lead optimisation, and369

structure-based drug design initiatives. Rigid docking is essential to the drug discovery370

process because of its computational efficiency and capability to handle massive datasets.371

It allows researchers to choose potential therapeutic candidates for further experimental372

validation and optimisation ([167, 28, 4, 101]).373
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Semi-Flexible Docking (Flexible-rigid docking) Semi-flexible docking (Figure 10)374

is a computational method that combines the features of rigid and completely flexible375

docking approaches. It aims to balance computational efficiency with the ability to ac-376

count for ligand flexibility during the docking process. Numerous molecular docking pro-377

grammes, such as DiffBind ([236]) and CANDOCK ([59]), have been documented in the378

literature and can be utilised to explore ligand-receptor interactions. Semi-flexible dock-379

ing, such as DiffBind ([236]), involves keeping the receptor structure fixed while allowing380

the ligand to undergo limited conformational flexibility. This flexibility enables the ligand381

to make structural alterations to match the binding site better. The semi-flexible docking382

approach recognises the significance of considering the flexibility of ligands in accurately383

forecasting binding modes and affinities, especially in situations where ligands can take on384

many conformations when binding to the receptor ([236]). Semi-flexible docking meth-385

ods utilise algorithms and scoring functions that can effectively explore the flexibility of386

ligands while quickly sampling the space for binding. Semi-flexible docking is vital to en-387

hance the reliability of virtual screening and drug design studies by effectively modelling388

ligand-receptor interactions while considering computing cost and accuracy ([183, 59]).389

Flexible Docking Flexible docking (Figure 10) is an advanced computational method390

used in molecular docking to consider the flexibility of both the ligand and receptor391

while performing docking ([152]). Flexible docking methods accommodate conforma-392

tional changes in both the ligand and receptor, unlike rigid docking methods that assume393

constant conformations for both molecules. Flexible docking makes predictions more ac-394

curate and better than rigid and semi-flexible docking because it adds complete flexibility395

to the docking process ([158]). Therefore, there are plenty of flexible docking programs396

in the literature, such as CABS-dock ([94]), ATTRACT ([41]), DREAM++ ([120]) and397

SwarmDock ([188]). As a result, they provide a more thorough understanding of the land-398

scape of interactions between ligands and receptors; therefore, it is a helpful tool in drug399

discovery, virtual screening, and structure-based drug design efforts ([158]).400

Classification of Docking by Input Number Classification of Docking by Input Num-401

ber involves categorizing docking methods based on the number of input molecules or402

targets involved in the process. This classification helps in understanding the scope and403

application of different docking approaches. There are three main groups under this clas-404

sification: (i) Reverse (Inverse) Docking, which involves screening a single ligand against405

multiple protein targets to identify potential binding sites and off-target effects ([87]);406

(ii) Virtual Screening, where an extensive library of ligands is screened against a single407

protein target to identify potential drug candidates ([37]); and (iii) Cross-Docking, which408

involves docking multiple ligands against multiple protein targets to explore a wide range409

of possible interactions and binding affinities. Each group offers unique insights and ad-410

vantages, making them valuable tools in computational drug discovery ([106]).411

Reverse(inverse) docking Reverse docking techniques utilise advanced algorithms412

and scoring functions to assess the binding affinity between the ligand and different pro-413

tein targets ([214]) (Figure 11). Reverse docking allows for ranking candidate targets414

based on their projected interaction strength. It is a method that involves methodically415

analysing protein structures to identify potential biological targets for small compounds.416
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Therefore, reverse docking is a method that differs from typical docking approaches as it417

prioritises the prediction of protein-ligand interactions. Instead of guessing how a ligand418

will interact with a protein, reverse docking looks through a library of protein structures419

to see which ones might interact with a specific ligand ([214]).420

Reverse docking techniques are very beneficial in drug discovery, as they can assist421

in identifying targets, predicting off-target effects, and understanding the polypharmacol-422

ogy of small compounds ([96, 72]). The off-target bindings may be an option to design423

polypharmacological drugs, or they cause side effects. Distinguishing between two possi-424

bilities is critical to saving funds and time. For instance, Pfizer designed sunitinib, which425

is cardiotoxic. Off-target bindings on AMP-activated protein kinase (AMPK) families and426

the ribosomal S6 kinase (RSK) are the reasons for cardiotoxicity ([60]). The compound427

wasted significant time and funds of the pharmaceutical company ([60]). Therefore, re-428

verse docking is promising to decide whether off-target binding is a reason for side-effect429

or a polypharmacology opportunity.430

Figure 11: The representation of reverse docking for a small compound into target
database

The concept of reverse docking, a computer process used in drug discovery to identify possible protein
targets for a given small molecule or ligand, is illustrated here. Reverse docking looks at the interactions
between a ligand and a set of protein structures to identify likely binding partners, unlike traditional docking
techniques that predict the binding mode of a ligand inside a specified protein target. In drug discovery
research, the approach described has great relevance for target identification, lead optimisation, and drug
repurposing ([23]).
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Virtual Screening Virtual screening (Figure 12), alternatively referred to as compu-431

tational screening, is a robust computer methodology employed in the field of drug explo-432

ration to expeditiously assess extensive collections of chemical compounds and ascertain433

prospective drug contenders that exhibit a high probability of binding to a specific target434

protein of interest ([156]). The procedure involves docking several ligands, commonly435

of small size, into a target protein’s binding site and then evaluating their interactions to436

determine the relative importance of compounds exhibiting the most significant binding437

affinity. Virtual screening is of utmost importance in the initial phases of drug develop-438

ment since it accelerates the identification of lead compounds with favourable pharmaco-439

logical characteristics, including potency, selectivity, and drug-likeness ([37, 199, 177]).440

Figure 12: The schematic representation of virtual screening
The figure shows virtual screening, a computer technique used in drug research to precisely arrange

multiple ligands into the binding area of a target protein. Virtual screening is a method that helps to quickly
evaluate large chemical libraries in search of potential drug candidates with substantial pharmacological
action and binding affinity. Since it speeds up the discovery of possible leads and improves the effectiveness
of drug development pipelines ([77]), this method is essential in the first phase of drug research.

Cross-docking Cross-docking is a complex computational technique for simulta-441

neously binding several ligands into several target protein configurations ([106]) (Figure442

13). Therefore, it provides an essential understanding of the selectivity and specificity of443

interactions between ligands and proteins. For example, it can be helpful to determine444

off-target binding, which indicates side effects. However, Cross-docking has a disadvan-445

tage in that, particularly for large-scale datasets, the considerable processing resources446

required to dock multiple ligands into several targets concurrently are a burden. Fur-447

thermore, cross-docking may have trouble with the precision of scoring systems and the448

complexity of ligand-protein interactions, which may lead to erroneous positive or neg-449

ative forecasts of binding affinities. Furthermore, it is limited to applying cross-docking450

outcomes to different protein families and structural modifications. Thus, careful analysis451

and result validation are much more critical. Cross-docking remains a valuable technique452

for examining the interactions between ligands and targets and for spotting new treatment453
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candidates with diverse pharmacological profiles, even if there are challenges ([170]).454

Figure 13: The overview of cross-docking for multiple ligands into multiple targets
A computational method applied in structural biology and drug development to dock many ligands into

a binding region of a target protein. Cross-docking is unlike conventional docking, which concentrates on a
single ligand-target complex in that it allows the evaluation of ligand binding modes and interactions across
several ligand-target combinations by docking a varied range of ligands into a single protein structure. This
method improves the development of structure-based drug design techniques by helping to comprehend
protein-ligand recognition patterns and pointing up shared binding motifs ([79]).

Classification of Docking by Search Space The classification of docking by search455

space is the grouping of docking techniques depending on the extent of the search area456

taken into account during the docking procedure. Understanding the attention and com-457

puting needs of several docking techniques depends on this classification. This classi-458

fication has two main categories: (i) Local Docking, which limits the search area to a459

particular region or binding site on the protein, and (ii) Global Docking, which looks over460

the whole surface of the protein to find possible binding sites and binding poses ([218])461

(Figure 14).462
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Figure 14: The representation of local and blind (global) docking
Local and global docking simulations of the aminoglycoside antibiotic Gentamicin (shown in green)

with bacterial ribosome’s 16S rRNA A-site. RLDOCK ([181]) predicts binding locations in the image in
pink and yellow. The red cup shows that local docking concentrates especially on a limited area. Therefore,
it optimises the search for possible binding sites inside a particular target molecule. Global docking, on
the other hand, searches the whole protein surface, looking for several likely binding sites where the ligand
might engage. This all-encompassing strategy lets one broadly investigate binding options around the target
structure. Understanding molecular recognition and creating effective antibiotics depends on knowledge of
the different intensities and orientations of ligand interactions ([97]).

Local docking: Local docking requires a binding site and search space from a user-463

defined one (Figure 14). There are two main approaches to defining a location for local464

docking: (i) experimental ligand binding sites and (ii) theoretical predictions. (i) Experi-465

mental techniques capture the location of small natural molecules on targets as a binding466

site. Small natural molecule binding sites are called ligand binding sites (LBSs) ([230]).467

Most natural LBSs are located on the surface of a protein because of the high affinity468

obtained by large interfaces. By utilising the coordinates of LBSs, a molecular docking469

programme can be employed to identify the potential positions of ligands on the coordi-470

nates. (ii) Also, theoretical approaches have been developed to identify potential binding471

regions. For example, Deep-learning cavity finders are the most effective method ([230]),472

but they suffer from interoperability and extended training time. Recently, the quantum473

algorithm increased the predictive power of machine learning in a short time ([164]). The474

research provided Polar+, the first biological modelling, and it was tested on quantum475

computers ([164]). However, it has significantly higher training costs than classical ma-476

chine learning approaches ([230]).477

Regrettably, the prediction methods used by LBSs are inadequate for fully resolving478

the issue of detecting LBSs due to factors such as protein flexibility, the limited efficacy479

of computational approaches, the intricate nature of molecular interactions, and the dif-480

ficulties in accounting for solvent effects ([76]). Also, cryptic sites become clear when481

proteins are in a complex (bounded form). There are some studies to determine LBSs482

successfully. For example, molecular dynamics simulation is a popular method to assess483

LBSs since it analyses the physical movements of atoms and molecules. Also, machine484

learning or deep learning integrated with molecular dynamics is promising ([230]). Fi-485

nally, although combining computational predictions and experimental data is currently486
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the best solution ([44, 171, 186, 70]), performing global (blind) docking is another option487

to overcome the limitation of identification of binding sites.488

Global(blind) docking Global docking—also known as blind docking—involves489

the thorough study of the whole surface of the protein to identify likely binding sites and490

project the ligand binding mechanisms without first understanding the exact location of491

the binding site ([180, 159]) (Figure 14). Unlike local docking, global docking does not492

necessitate prior knowledge of specific binding cavities, enabling an impartial evaluation493

of the binding affinity between the target and ligand ([43]). Global docking comprehen-494

sive technique facilitates the identification of previously unnoticed binding sites that more495

targeted methods may disregard. Hence, global docking is especially advantageous during496

the initial phases of drug development since it facilitates the creation of novel pharmaceu-497

ticals by offering a comprehensive perspective of potential interaction sites throughout the498

complete target protein. Global docking can potentially uncover previously undiscovered499

binding sites, which can then be used to create more potent and groundbreaking medici-500

nal medicines. The most cited global docking programs are ZDOCK ([25]), FlexX ([92]),501

GOLD ([196]) and MEGA DOCK 4.0 ([136]).502

Global docking offers several advantages in molecular docking by exploring all po-503

tential binding sites on a target protein. This comprehensive approach ensures that no504

potential binding region is overlooked, providing a complete understanding of possible505

ligand interactions. One significant advantage is its utility in predicting side effects, as it506

examines every cavity on the target protein, identifying off-target binding sites that might507

lead to adverse impacts. The therapeutic effect or side-effect of a ligand depends on508

where and how it binds to a target ([74]). Any cavity on a target may be a reason for side509

effects. Therefore, cavities should be considered to predict side effects ([161]). These510

requirements make global docking more suitable to investigate side effects. A unique511

consensus-global docking method can destroy the limitations of global dockings, such as512

high false-positive and low accuracy ([220]). Despite the advantages of global docking513

programs, they have been plagued by lower performance than local docking methods.514

A global docking program has been suffering from a lack of critical location features515

for binding. Binding location helps local docking focus on the correct location, while516

global docking should define that position first before increasing performance in ligand517

pose ([35]). Therefore, global docking’s performance is lower than that of local docking.518

As a result, hybrid molecular docking has been published to improve global docking519

performance ([73]).520

Hybrid molecular docking combines the strengths of both global and local docking521

approaches. It initially employs global docking to explore potential binding sites across522

the target surface. Then, it refines the search using local docking techniques to focus on523

the most promising regions, enhancing the accuracy and efficiency of the docking process524

([73]). For example, the hybrid global docking example is LigDockCSA ([175]), which525

combines conformational space annealing (CSA) with AutoDock’s energy function. It has526

an 84.7% success rate, compared to 80.5% for GOLD and 81.7% for AutoDock. Also,527

the success rate of LigDockCSA becomes 89.4% with the help of conformational entropy528

([175]). The examples indicate that hybrid molecular docking provides more accurate529

results.530
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1.2.2 Molecular Dynamics Simulations in Drug Discovery531

The classical molecular dynamics (MD) methodology is a computationally taxing tech-532

nique enabling quantitative study of molecular events. Classical all-atom MD is a mod-533

elling method that precisely simulates all atoms in a given system, including the solvent.534

Considering interatomic forces, it uses classical bonded and nonbonded potentials (Fig-535

ure 15). Its better performance has resulted in significant developments and has been536

efficiently applied to handle conformational changes, folding binding penetration, and537

many other problems ([107]).538

Figure 15: The schematic representation of molecular dynamic simulation
Interactions between proteins and substrates within a molecular dynamic simulated period have dy-

namic character. The trajectory clarifies important contact sites and conformational changes, therefore
providing insightful analysis of the molecular-level stability and binding mechanisms ([107]).

MD has faced two main challenges: first, the computation of interatomic potential539

tables, sometimes known as force fields, has historically been a laborious process re-540

quiring excellent refinement; second, it is computationally demanding despite reasonable541

efforts and developments in expediting molecular dynamics codes ([124, 45]). To over-542

come these challenges, machine learning (ML) techniques in MD simulations have been543

enhanced in terms of their value and efficiency in drug development ([18]). Machine544

learning methods can analyse large amounts of simulation data to identify trends and545

project molecular behaviours. This so accelerates the process of spotting possible drug546

candidates with promise. ML-driven MD simulations offer a potent mix of accuracy and547

efficiency by improving force fields, anticipating binding affinities, and maximising sam-548

ple efficiency. MD simulations and ML streamline the drug development process and549

allow logical synthesis of more specific drugs ([18, 163]).550

1.2.3 Binding Site Identification in Drug Discovery551

Medications’ effects are manifested by their interactions with distinct binding sites on552

target proteins. These binding sites can be categorised into groups according to their re-553

spective mechanisms and locations. The binding sites can be classified into three primary554
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groups: (i) orthosteric, (ii) allosteric, and (iii) cryptic binding sites ([191]).555

Orthosteric binding site: Orthosteric drugs bind to a protein’s active site, competing556

with the natural substrate or ligand (Figure 16. Their effects are exerted by outcompeting557

the native substrate and obstructing the active site when they possess a strong affinity for558

the site. Most drugs available in the market are traditionally orthosteric ([210, 141]). Also,559

the orthosteric active sites within a protein family exhibit a high degree of conservation,560

implying that a drug designed to target the active site of one protein can also interact with561

the active sites of other proteins belonging to the same family ([115]).562

Figure 16: The representation of Orthosteric binding site on the target protein
Interactions between proteins and substrates within a molecular dynamic simulated period have dy-

namic character. The trajectory clarifies important contact sites and conformational changes, providing
insightful analysis of molecular-level stability and binding mechanisms.

Although extensively employed, orthosteric binding sites and pharmaceuticals also563

have specific drawbacks in drug design and therapeutic uses ([50]). A notable constraint564

is the possibility of off-target effects caused by the extensive similarity of active sites565

throughout protein families ([213]). This can result in unintentional interactions with566

proteins that have similar structures, leading to adverse effects and diminishing the se-567

lectivity of the medicine. Furthermore, orthosteric medications frequently compete with568

endogenous ligands or substrates for binding, which might restrict their effectiveness in569

specific physiological situations or disease states characterised by fluctuating substrate570

concentrations ([50, 213, 194]). Also, the total suppression of protein function by orthos-571

teric medications may not always be preferable, as it can interfere with regular cellular572

processes that depend on regulated enzyme activity ([34]). The significance of taking into573

account alternative drug design techniques, such as allosteric modulation, is emphasised574

by these aspects. These strategies aim to obtain more accurate and specific therapeutic575

results while reducing the possible disadvantages associated with orthosteric binding.576

Allosteric binding site Often called allosteric control, allostery is a fundamental bi-577

ological occurrence relevant to signal transduction pathways, metabolic activities, and578

genomic transcription ([20, 51]). A localised variation in conformation at the active579

site results from the fast change in the conformational ensemble balance at an allosteric580

site ([82, 129]). Potential disturbances cover the interplay between localised chemical581
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changes ([36, 63]) and small molecules/ions. Thus, allostery is the primary way to regu-582

late the function of biological macromolecules (Figure 17).583

Figure 17: The representation of how allosteric activation and deactivation work.
Controlling protein activity is done by attaching parts of the protein not in the active site, the “orthos-

teric” site. The figure shows allosteric inhibition, which happens when a ligand binds to an allosteric site and
causes a conformational change on the protein’s orthosteric side to inhibit binding. In contrast, allosteric
activation (right) occurs when a ligand attaches to an allosteric site, rearranging the protein’s orthosteric
site structure that enhances its activity. Allosteric regulatory mechanisms are of utmost importance in the
context of cellular signalling and the regulation of enzymes.

Knowing allostery can give critical new perspectives for the progress of allosteric drug584

discovery and development ([133, 30]). Among the essential roles allostery plays in many585

biological processes are those of enzyme catalysis, signal transmission, and gene regula-586

tion. Allostery is the phenomenon wherein activity occurs at a distance when a disruption587

at one point inside a macromolecule causes functional changes at another. Several pro-588

cesses can lead to the modulation of protein activity by allosteric mechanisms: effector-589

binding interactions involving small molecules, liquids, DNA/RNA, or proteins; covalent590

modifications including phosphorylation; and photoabsorption ([118, 20, 82, 129]).591

Allosteric pharmaceuticals exhibit binding affinities or catalytic efficiency of biologi-592

cal macromolecules using a perturbation signal propagation but at a place distinct from the593

active site. Allosteric medications have various advantages compared to orthosteric drugs594

([30, 134]). Based on sequence conservation analysis, it has been observed that allosteric595

sites exhibit a lower degree of conservation compared to orthosteric sites ([217, 117]).596

The lower degree of conservation of allostery enables allosteric modulators to effectively597

target specific subtypes within receptor families, leading to enhanced selectivity and re-598

duced occurrence of adverse effects compared to orthosteric drugs ([22]). Also, allosteric599

medicines can regulate protein activity without directly competing with natural ligands,600

decreasing the probability of adverse effects related to unintended interactions ([132]).601

They offer more refined regulation of protein activity, enabling partial activation or inhi-602

24

https://doi.org/10.26434/chemrxiv-2024-ltmj2 ORCID: https://orcid.org/0000-0001-9589-0269 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-ltmj2
https://orcid.org/0000-0001-9589-0269
https://creativecommons.org/licenses/by/4.0/


bition instead of complete blockade ([143]). Partial activation or inhibition can be advan-603

tageous for preserving regular cellular processes. Furthermore, allosteric pharmaceuticals604

do not impede the interactions between substrates and proteins; a maximum limit exists605

to allosteric regulation ([143]). In addition, Allosteric pharmaceuticals are beneficial due606

to two primary factors: firstly, they can provide a less disruptive method to modulate the607

activity of a pathway, and secondly, they are more likely to have a reduced incidence of608

adverse effects ([42, 68, 86]). The other advantage of allostery is that the utilisation of609

techniques that combine allosteric modulators with orthosteric medications can offer ad-610

vantages due to the issue of drug resistance, which arises from mutations in the protein611

target that surpass the inhibitory effects of both orthosteric and allosteric pharmaceuticals612

([127, 68, 86, 46, 224]).613

Using allosteric modulators could help orthosteric treatments become even more ef-614

fective. GNF-2 is one instance of an allosteric modulator; it shows binding affinity to615

T315I human Bcr-Abl’s myristate-binding sites. On the mutant Bcr-Abl protein, GNF-2616

and the substrate-competitive inhibitor imatinib show synergistic inhibitory effects ([227]).617

As such, the co-administration of these two drugs offers a possible approach to overcom-618

ing drug resistance in patients with chronic myelogenous leukaemia (CML). Also, the US619

FDA has so approved several allosteric medicines. For example, developed by Genzyme620

([131, 113]), plerixafor is one example of an allosteric blocker of the C-X-C chemokine621

receptor type 4 (CXCR4) that helps haematopoietic stem cells (HSCs) be mobilised. The622

debate mentioned above on the benefits of allostery and the proof of successful allosteric623

drugs underlines the great possibilities of allostery. It is crucial to recognise its con-624

straints, including the unknown positions of allosteric binding sites on target molecules,625

to overcome the restrictions of allostery.626

Allosteric pharmaceuticals have various restrictions, even if they offer some encourag-627

ing benefits. The critical difficulty is that, for most pharmaceutical targets, the exact areas628

of allosteric activity are yet unknown ([112]). This ambiguity about the allosteric areas629

makes designing and developing medications that can attach to these locations efficiently630

challenging. Moreover, several obstacles hinder the identification of allosteric modula-631

tors, including restricted binding strengths and the usually unknown structural properties632

of putative tiny allosteric compounds ([102, 202]). Furthermore, allosteric sites show less633

conservation than orthosteric sites, which causes differences in the therapeutic efficacy of634

several protein targets ([209]). Furthermore, the inherent adaptability of allosteric sites635

complicates the search for medications, which may only show themselves under particular636

structural states of the protein ([198]). These constraints hinder allosteric pharmaceuti-637

cal development and call for more studies to grasp better and use allosteric pathways for638

therapeutic uses.639

Cryptic binding site Cryptic binding sites are hidden or transient regions that are not640

evident when the protein is inactive or not bound ([78]). However, these cryptic sites641

either arise or become accessible when a ligand hooks to the protein or when its form642

changes (Figure 18). These cryptic sites depend on particular conditions or the presence643

of specialist ligands for their visibility, so they are often invisible using typical structural644

research techniques such as X-ray crystallography or NMR spectroscopy ([157]). Since645

they offer fresh drug discovery and development opportunities, especially for targets that646

have been difficult to control using conventional orthosteric or allosteric sites, identifying647
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and understanding hidden binding sites is vital. Thus, various compotation strategies have648

been designed to investigate cryptic binding sites and understand their mechanisms.649

Figure 18: Initially lacking a pocket structure until the ligand binds, the concept of a
cryptic binding site exposes the hidden binding site.

Often concealed within proteins, cryptic binding sites become accessible for ligand binding via con-
formational changes brought about by ligand binding or protein-protein interactions. Understanding and
focusing on mysterious binding sites offer interesting chances for investigating drugs and applying ther-
apeutic actions. These cases show how the MD technique is the accepted method for locating hidden
places([137]).

Various computational strategies have been employed to detect cryptic or ”transient”650

locations, considering protein dynamics ([5, 95]). For example, Markov state models651

on molecular dynamics simulations detect cryptic sites that effectively reveal the hidden652

locations of two β-lactamases ([61]). In their study, Gao et al. successfully produced653

bound conformations in lengthy microsecond molecular dynamics (MD) simulations em-654

ploying unbound initial structures for a mere 8 out of the 39 systems under investigation655

([61]). Also, Oleinkovas et al. did not identify hidden locations for three systems using656

microsecond-length molecular dynamics simulations. As a result, they devised a method657

to improve sampling by utilising scaled Hamiltonians to sample water interfaces based on658

replica exchange molecular dynamics ([137]). Moreover, Cimermancic et al. ([32]) un-659

covered a set of proteins with cryptic sites for their web server, Cryptosite, which predicts660

binding sites. The term ”cryptic” was used to describe a site that could not be identified661

using FPocket ([98]) when utilising the unbound structure.662

Drug discovery depends on identifying cryptic binding sites, yet traditional computa-663

tional and experimental approaches are somewhat limited. The always-shifting properties664

of cryptic sites, which usually go undetectable in the frozen protein structures obtained665

by crystallography or cryo-electron microscopy, provide a significant challenge. Further-666

more, complicating the identification process is the natural flexibility of proteins ([6]) and667

the limited resolution of experimental instruments. Potential approaches to effectively668

overcome these limitations and find cryptic binding locations ([233]) come from ma-669

chine learning (ML). Using large databases of protein structures and binding interactions,670

ML models could forecast hidden sites that are not readily apparent with conventional671

methods. Combining molecular dynamics simulations with machine learning techniques672

allows one to precisely find hidden spots on proteins by recording their transient shapes673

([204]). Furthermore, machine learning can help to analyse large amounts of experimen-674

tal data by identifying relationships and traits that would point to the presence of latent675

binding sites, therefore accelerating the process of developing drugs.676
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1.3 Ligand-based drug discovery approaches677

Ligand-based drug discovery strategies are fundamental in contemporary pharmaceuti-678

cal research. They concentrate on comprehending and enhancing the chemical charac-679

teristics of drug molecules to attain specific therapeutic outcomes. These approaches680

utilise ideas based on molecular interactions and physical features of ligands, which are681

small ligands that preferentially attach to biological targets like proteins or nucleic acids.682

Standard methodologies include Lipinski Rule of Five ([104]), LogP ([93]), Biophar-683

maceutics Classification System ([17]), and In-vitro in-vivo correlation (IVIVC) ([114]).684

While these methodologies are essential in drug discovery and development, the ”key”685

and ”lock” ideas have drastically impacted new tools and approaches ([33]).686

The idea of ”key” and ”lock” in drug discovery is that “similar ligands bind sim-687

ilar targets”, so molecular similarity is one of the target identification methods ([33]).688

Similarity methods require a representation method for compounds, such as the Sim-689

plified Molecular Input Line Entry System (SMILES). SMILES is the most common690

method to represent and compare the compounds in 1D ([208, 207]). It converts a com-691

pound into a string, using symbols such as C, c, N, O for atoms and =, # for bonds692

(www.daylight.com/dayhtml/doc/theory/theory.smiles.html). SMILES are available in693

quantity structure-activity (QSAR), virtual screening, and toxicity prediction. An exam-694

ple of a similarity search algorithm is the fingerprint Similarity Search Algorithm (MuS-695

SeL), which can provide IC50 or Ki values for ligands ([228]). Finally, other compound696

similarity methods exist in the literature, such as 2D-based compound similarity kernels697

(Figure 19).698
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Figure 19: The representation of ligand-based drug discovery approaches
Using data from known ligands that attach to target proteins to identify or synthesise new compounds

with equivalent functionality, ligand-based drug discovery is necessary in developing new medicines. Atom-
based modelling is one method used in this approach whereby one may understand the interaction of the
ligand with the target by analysing its spatial arrangement of atoms. By focussing on the precise arrange-
ment of every atom, researchers may estimate likely binding affinities and create more potent molecules.
Moreover, atom-based + atom type modelling considers the spatial organisation as well as the particular
atom types—hydrogen, carbon, or nitrogen. This method helps one to understand more fully how different
atomic interactions support the intensity and specificity of binding. The major functional groups of a ligand
causing its biological effect are investigated using pharmacophore sites. This work finds and models these
groups on a more abstract level. The pharmacophore sites identify key features such as hydrophobic regions
and hydrogen bond donors or acceptors. These properties enable the synthesis of new ligands capable of
strong interaction with the target protein. These methods let ligand-based drug development effectively
speed up the identification and improvement of strong therapeutic prospects.

Generally, 2D-based compound similarity kernels, such as SIMCOMP ([138]), are699

preferred to predict drug-target prediction. Here are some examples of 2D-based com-700

pound similarity techniques to indicate their success. One of the 2D-based compound701

similarities is TargetHunter, a web-based tool ([201]). TargetHunter was trained on ChEMBL702

data, and PubChem bioassay was utilised as test data ([201]). Compared to 2D and 1D703

representation, SMILES-based similarity may be computationally more efficient than 2D-704

based approaches ([138]). Consequently, the ligand-based drug discovery approach can705

be more successful with other techniques, such as De Novo Drug Discovery.706
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1.4 De Novo Drug discovery707

The concept of de novo drug design (DNDD) pertains to creating new chemical enti-708

ties that adhere to a predetermined set of limitations through computational growth al-709

gorithms ([168]). The term ”de novo” denotes the process of creating new molecular710

entities without the need for a starting template, as it involves starting from scratch ([47]).711

De Novo drug design can be classified into four main groups: (i) structure-based, (ii)712

atom-based, (iii) ligand-based, and (iv) fragment-based. (Figure 20) Also, the next fron-713

tiers for machine-learning-enabled de novo drug creation, as a new group, include future714

directions such as toxicogenomics integration and vaccine development opportunities.715

Figure 20: Classificataion of De novo drug design methods
The de novo drug-design process calls for several cutting-edge technologies, each of which uniquely

helps to produce new medicinal molecules. Structure-based drug design uses the complex 3D structure of
the target protein to produce molecules that exactly suit its active site, hence improving binding interactions
for best efficacy. Second, ligand-based drug design uses information from known ligands interacting with
the target to generate new molecules with similar or improved potency. This approach often uses computer
models to predict how changes to the ligand can increase binding affinity and specificity. To guarantee
the best interaction with the binding site of the target protein, atom-based drug design gives spatial con-
figuration and atom composition top priority. This degree of precision helps to maximise the molecular
interactions, therefore producing the best possible therapeutic effect. Fragment-based drug design involves
the identification of small chemical fragments attaching to different parts of the target protein. These then
are chemically linked or amplified to create a strong and targeted pharmacological molecule. Combining
these four techniques allows de novo drug design to effectively generate novel compounds with a high prob-
ability of therapeutic efficacy ([130]).

De novo drug design offers several benefits, such as the ability to explore a broader716

range of chemical possibilities, the creation of compounds that represent innovative in-717

tellectual property, the possibility of developing new and enhanced therapies, and the718

efficient development of drug candidates in terms of cost and time. One of the primary719

obstacles encountered in de novo drug design is the synthetic inaccessibility of the molec-720

ular structures produced ([69]). Although de novo drug design benefits, it has limitations721

encompass several desired properties or chemical characteristics, such as a predetermined722

range of solubility, toxicity below a certain threshold, and the inclusion of specified chem-723

ical groups in the structure ([39]). Fortunately, machine learning applications in De Novo724

29

https://doi.org/10.26434/chemrxiv-2024-ltmj2 ORCID: https://orcid.org/0000-0001-9589-0269 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-ltmj2
https://orcid.org/0000-0001-9589-0269
https://creativecommons.org/licenses/by/4.0/


Drug discovery have the potential to overcome limitations such as computational intensity725

and limited performance ([122]).726

The section provides supporting terms to explain the terms and increase understanding727

of the research. The supporting literature review is divided into three sections: (i) How do728

drugs work based on binding site classifications? (ii) Quantum Mechanical Simulations729

in Drug Discovery and (iii) Cheminformatics Approaches for Drug Discovery730

1.5 Quantum Mechanical Simulations731

Quantum mechanics operates on the domain of electrons and nuclei, disregarding the in-732

fluence of chemical bonds. Solving the Schrödinger equation offers a valuable means of733

understanding systems at the atomic level ([13]). The equation’s answer interprets the734

spatial arrangement of electrons and their respective energy levels. Furthermore, it offers735

insight into molecule structure, chemical bonding, and molecular interactions ([7]). Nev-736

ertheless, the Schrödinger equation can only be solved for the Hydrogen atom. Therefore,737

approximations of the equation’s outcomes are used for the remaining atoms (Figure 21).738

Figure 21: Based on the description of the system, two types of atomistic simulation tech-
niques can be distinguished: quantum mechanical (QM) computations depending on the
electronic structure or molecular mechanics (MM) procedures using predefined functional
forms.

Their more considerable computing cost limits QM-based simulations to smaller systems. While more
efficient, MM-based methods sometimes derive from experimental data and depend on various approxi-
mations. QM-based machine learning aims to improve the efficacy of QM techniques while keeping their
capacity to be applied to various scenarios, precisely anticipate outcomes, and adequately explain complex
bonding patterns, including the formation and breaking of chemical bonds ([128]).

Density functional theory is a computer tool for determining the ideal molecule ar-739

rangement, vibrational frequencies, free energy shift during a chemical process, and740

dipole moments (DFT ([11])). Furthermore, DFT is quite important in determining the741

affinities of protein-ligand interaction, a fundamental feature in the discipline of drug742

development ([52]). By providing in-depth knowledge of the electronic structure of743

molecules, density functional theory (DFT) allows exact predictions of the interactions744

between possible drug candidates and their target proteins ([88]). DFT’s properties make745
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it a vital tool for the logical development of new drugs since they help to find exciting746

compounds and improve their binding capacity. This computational approach increases747

the efficiency and output of the drug development process, hence producing more strong748

and targeted drugs ([53]).749

Quantum Mechanics (QM) approaches show promise but have encountered limita-750

tions such as computational power constraints, the absence of atoms and residues on pro-751

teins, and inadequate entropic methods. Rather than imposing restrictions on quantum752

mechanics (QM), QM possesses significant predictive capabilities in binding free energy753

([19]). Machine learning techniques in the context of quantum mechanisms can yield754

distinctive attributes for drug design and development by overcoming the limitations of755

conventional QM ([128]).756

1.6 Cheminformatics Approaches for Drug Discovery757

Cheminformatics methods use computational and informational tools to solve chemical758

problems and enhance the discovery process of new drugs. Combining data from chem-759

istry, biology, and pharmacology, cheminformatics helps to handle, examine, and present760

large datasets efficiently ([24]). Accelerating the identification of potential pharmacolog-761

ical candidates, improving their features, and predicting their performance in biological762

systems depend on this multidisciplinary field ([123]). Among the various advantages763

cheminformatics provides include the ability to examine large chemical databases rapidly,764

lower the cost and length of experimental procedures, and improve target identification765

and lead optimisation accuracy. Ultimately, these approaches enable drug research and766

development procedures’ success and efficiency, generating fresh and creative treatments.767

Three chemogenomic techniques include (i) machine learning-based, (ii) graph methods768

and (iii) network models approaches ([212]).769

1.6.1 Machine learning-based methods in Cheminformatics770

Machine learning techniques in cheminformatics transform the drug development pro-771

cess by utilising sophisticated algorithms to analyse intricate chemical and biological data772

([110]). These techniques utilise patterns and correlations in data to forecast the charac-773

teristics and behaviours of possible drug candidates, expediting the process of identifying774

and refining new therapeutic substances. The significance of machine learning in drug775

discovery is its capacity to manage extensive information, reveal concealed insights, and776

enhance the precision of predictions in contrast to conventional methods. The benefits777

encompass improved efficacy in analysing extensive chemical libraries, the capability to778

simulate complex biological interactions, and the possibility to decrease expenses and779

durations linked to medication development ([110]).780

With the help of ML techniques in cheminformatics, several successful cheminfor-781

matics studies have been reported in the scientific literature ([155]). The preferable ML782

model is a supervised model used to study DTIs. For example, the PaDEL descriptor783

utilised the 1287-dimensional target descriptor and the 1024-dimensional drug descrip-784

tor from these datasets to predict DTIs ([200]). The standard classification models used785

in DTI research are random forest, random walk with restart, support vector machines786

(SVM), and decision trees ([200]). In another example, Yu et al. designed a method to787

indicate drug-target interactions from heterogeneous biological data using Random Forest788
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and SVM ([225]). Also, several machine learning models have been built on a structure-789

activity relationship (SAR) and structure-property relationships (SPR) ([232, 221]). An790

instance of the SAR model application is TargetNet ([221]). TargetNet, containing 623791

SAR models, is a web service working with Naıve bayes based multi-target SAR models792

to predict DTIs ([221]). The last example of the QSAR model is that Bender et al. ([12])793

benefit from the Bayesian-based method to build QSAR models. Finally, deep-learning794

algorithms in chemoinformatics also promise to identify targets for a compound ([110]).795

Figure 22: Various machine learning techniques applied in the field of drug discovery are
shown in this diagram.

The approaches comprise unsupervised learning, which exposes hidden patterns and relationships in
the data without predefined labels; supervised learning, in which models are trained on labelled datasets to
forecast drug-target interactions; and reinforcement learning, in which algorithms acquire optimal strategies
for drug design by experimentation and improvement. Furthermore, underlined in the picture is the use
of deep learning techniques, including neural networks, to depict complex, non-linear relationships and
improve the prediction accuracy. Together, these machine-learning techniques increase the accuracy and
efficiency of identifying potential therapeutic candidates ([1]).

Deep learning in cheminformatics is an advanced method that utilises artificial neural796

networks with numerous layers to analyse and simulate intricate chemical data ([110]).797

Deep learning approaches can improve drug discovery by allowing more precise fore-798

casts of drug-target interactions, molecular characteristics, and potential adverse effects799

([15, 62, 231]). For example, the chemogenomics neural network (CN) is the formulation800

of chemogenomics with deep learning. The deep learning CN approach is superior to801

novel shallow methods ([145]). In addition, a deep-learning model has been designed to802

predict retrosynthetic pathways ([169]). Also, Feng et al. ([57]) proposed a Deep-Belief803

Network (DBN) to foresee DTIs, and DBN has 8420-dimensional Protein Sequence Com-804

position (PSC) of target proteins and 6144-dimensional Extended-Connectivity Finger-805

prints (ECFP) of drugs ([57]). The last example is that Rayhan et al. ([153]) designed806

FRnet-Encode to distinguish 4096 features. FRnet-Encode is constructed on a deep con-807

volutional neural network ([153]). These accomplished researches indicate that the impact808
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of the deep-learning algorithm on hit identification will increase over time.809

Deep-learning models in cheminformatics have substantial difficulties in accurately810

identifying targets because of their intricate nature and the constraints in analysing exten-811

sive training datasets ([154]). Deep-learning models may encounter problems identifying812

meaningful patterns within large datasets, resulting in biases in target selection rather than813

generating new insights ([154]). To overcome these limitations, a potential solution is to814

develop integrated models that merge ligand and target data to construct complete ma-815

chine learning frameworks ([154]). Aligned with this approach, our methodology creates816

a resilient machine-learning model by fusing molecular docking techniques and sophisti-817

cated chemogenomic models.818

1.6.2 Graph-based Method in Cheminformatics819

In cheminformatics, graph-based methods use graph representations to show molecule820

structures and interactions, offering a flexible means of understanding and predicting821

chemical properties and behaviour ([154]). These techniques use graph representations822

to explain molecules using atoms as nodes and bonds as edges. This allows for relational823

as well as structural elements. This approach is significant in drug development since824

it can effectively control complex chemical structures and their interactions, surpassing825

more traditional techniques. Graph theory and algorithms let researchers rapidly examine826

molecular fingerprints, predict biological activity, and optimise lead compounds ([179]).827

Therefore, graph-based methods are crucial for the advancement of computational chem-828

istry as well as for the quick identification of new therapeutic compounds (Figure 23.829

Figure 23: Using graph structures to show complex connections and interactions in data,
this figure summarises graph-based machine learning methods.

Representation learning techniques capture intricate traits and patterns, helping nodes and edges in a
graph undergo metamorphosis. Comparable measurements evaluate the degree of similarity between nodes
or subgraphs, therefore facilitating the identification of objects with comparable architectures. By grouping
nodes with like characteristics, clustering methods help to detect communities and trends. Crucially for
identifying significant nodes or paths in biological networks, centrality and pathfinding algorithms assess
the value of nodes and select the optimal paths within the graph. These graph-based approaches in many
disciplines, including drug development and protein interaction studies, help researchers find latent insights
and make well-informed decisions jointly ([154]).

Graph-based methods in cheminformatics encompass diverse applications, such as830
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molecular fingerprinting, molecular similarity assessment, and predictive modelling of831

biological activities ([110]). These methods leverage graph representations to capture832

intricate structural details and relational data within molecular structures, offering pow-833

erful tools for drug discovery and computational chemistry. Here are examples of graph834

embedding methods ([64]) based on knowledge graphs that boost DTI prediction perfor-835

mance with the help of ML or DL-based models constructed on low-dimensional feature836

representation. The graph-based method uses correlations between correlation drug-drug,837

target-target, and similar matrices, such as DASPfind ([10]). DASPfind orders correla-838

tions based on their path scores to determine the top 1%. The DASPfind approach is supe-839

rior to most network-based models ([10]). Also, DTINET ([116]) uses graph embedding840

approaches and matrix factorisation to foresee novel DTIs from a heterogeneous graph.841

DTINET integrates several types of correlation knowledge, such as protein-protein in-842

teraction, drug-drug similarity, drug-disease association, drug-drug interactions, protein-843

protein similarities, drug-side effect associations, and protein-disease association ([26]).844

The DTINET protocol is used to build a full heterogeneous graph and then learn a low-845

dimensional feature using matrix factorisation ([116]). These approaches make DTINET846

outperform others; however, DTINET cannot predict the interaction of new compounds847

or targets ([116]). Although they still have drawbacks, the example studies indicate that848

graph-based methods are competitive strategies to identify DTIs.849

1.6.3 Network-based Models in Cheminformatics850

Network-based cheminformatics models represent molecular structures, interactions, and851

biological data as networks or graphs by using network science ideas ([147]). Network-852

based cheminformatics models offer a methodical technique to investigate and grasp853

complex interactions within biological and chemical systems. Network-based models854

provide essential insights into network pharmacology, interactions between medications855

and their targets, and the operation of molecules. Network-based models are signifi-856

cant in fitting several data kinds—including chemical structures, biological pathways,857

and protein-protein interactions—into a coherent framework ([147, 85]). This integration858

helps to investigate network properties, identify critical molecular players, and project859

new therapeutic targets or cooperative drug combinations. Using linked data benefits find-860

ing emergent properties, improving knowledge of pharmacological activities at a systems861

level, and creating logical drug design methods emphasising network-level interactions862

([85, 176]). Improving our understanding of complex biological systems and accelerating863

drug discovery depends critically on network-based models.864

Network pharmacology models are still the bottleneck of modern drug discovery, es-865

pecially target identification ([85, 200]). Network pharmacology is to study the mecha-866

nism of a drug candidate at a metabolic level ([71]). It needs network analysis, bioin-867

formatics, and integration of multiple knowledge sources ([140]). Several databases are868

employed in network-based methods, including Gene Ontology (GO) ([8]) and the Kyoto869

Encyclopedia of Genes and Genomes (KEGG) ([81]). The databases have information870

about a drug–target–pathway network, which is essential for network pharmacology. For871

example, Yamanishi et al. extracted data from KEGG BRITE, BRENDA, SuperTarget,872

and DrugBank databases ([138]).873

Although network-based models have achieved significant breakthroughs, their appli-874

cation is still restricted by the complex intricacies of human metabolism ([83]). The com-875
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plexity originates from the extensive interconnection of biochemical events and regula-876

tory mechanisms that govern metabolic pathways ([195]). Existing models frequently en-877

counter difficulties in comprehensively capturing the dynamic interactions and metabolic878

fluxes within this intricate system, which presents obstacles in precisely forecasting drug879

metabolism, toxicity, and efficacy ([235]). Continuous progress in data integration, mod-880

elling approaches, and computational resources is necessary to overcome these restric-881

tions and attain more extensive and dependable forecasts in drug development and per-882

sonalised medicine.883

2 Future direction884

Developing state-of-the-art artificial intelligence and machine learning algorithms has the885

potential to enhance the precision and effectiveness of structural-based drug development.886

By incorporating these models with detailed protein structures, the accuracy of predicting887

protein-ligand interactions can be improved, which expedites the discovery of promising888

pharmaceutical candidates. Moreover, these models aid in predicting alterations in protein889

structure and their impact on the strength of molecular interactions. Consequently, the890

current accuracy of computational methods can be improved.891

Another future direction is utilising deep learning techniques, such as geometric deep892

learning ([9]), to analyse complex ligand-binding data and generate prediction models to893

create novel medications. Deep learning enhances virtual screening by identifying novel894

ligand binding patterns and improving chemical libraries based on known ligands. This895

approach may aid in discovering compounds that exhibit reduced off-target effects and896

enhanced efficacy. However, deep learning can mitigate the interpretability of the model,897

making understanding how the model works harder ([190]). Nevertheless, deep learning898

has critical potential to improve the performance of currently available computational899

methods.900

Hybrid methods are promising to enhance the performance of the current method901

without losing interoperability ([190]). For example, a conventional molecular docking902

program, Vina ([49]), can be executed to produce ligand poses. Then, an ML model can903

only order the outputs to improve the overall performance of molecular docking. As a904

result, such a method improves the performance without losing interpretability.905

While computer power and ML techniques are drastically improving, more accu-906

rate but computationally intense methods, such as Density Functional Theory simulation907

([11]), will quickly provide higher performance and dominate computational drug discov-908

ery and development methods.909

3 Conclusion910

Integrating sophisticated computer techniques has fundamentally changed the terrain of911

drug discovery and development. From molecular modelling and structure-based ap-912

proaches to ligand-based strategies and creative de novo design techniques, these com-913

putational tools have greatly improved our capacity to find and create new therapeutic914

medicines. Constant improvement and integration of these techniques promise to propel915

more discoveries as the area develops.916
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This review clarifies the fundamental ideas and uses of several computational tech-917

niques, giving a whole picture of their contributions to drug development. Future devel-918

opments have great promise from high-resolution structural data, advanced algorithms,919

and developing technologies, including artificial intelligence. However, the intricacy and920

variety of these approaches call for sophisticated knowledge and ongoing adaptation to921

match the fast developments in the area.922

Overcoming obstacles and opening new possibilities will depend critically on devel-923

oping more accurate predictive models, integrating multi-dimensional biological data, and924

optimising computational procedures. Staying current with these developments and using925

the insights offered in this review can help researchers shape the direction of drug discov-926

ery and development, therefore hastening the introduction of fresh and potent treatments927

to meet unmet medical needs.928
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