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Atomistic simulations are routinely employed in academia and industry to study the behavior of
molecules, materials, and their interfaces. Central to these simulations are force fields (FF), whose
development is challenged by intricate interatomic interactions at different spatio-temporal scales
and the vast expanse of chemical space. Machine learning (ML) FFs, trained on quantum-mechanical
energies and forces, have shown the capacity to achieve sub-kcal/(mol·Å) accuracy while maintaining
computational efficiency. The TEA Challenge 2023 rigorously evaluated commonly used MLFFs
across diverse applications, highlighting their strengths and weaknesses. Participants trained their
models using provided datasets, and the results were systematically analyzed to assess the MLFFs’
ability to reproduce potential energy surfaces, handle incomplete reference data, manage multi-
component systems, and model complex periodic structures. This publication describes the datasets,
outlines the proposed challenges, and presents a detailed analysis of the accuracy, stability, and
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efficiency of the MACE, SO3krates, sGDML, SOAP/GAP, and FCHL19∗ architectures in molecular
dynamics simulations. The models represent the MLFF developers who participated in the TEA
Challenge 2023. All results presented correspond to the state of the ML architectures as of October
2023. A comprehensive analysis of the molecular dynamics results obtained with different MLFFs
will be presented in the second part of this manuscript.

I. INTRODUCTION

Abbreviations

1. SO3 – SO3krates

2. sGDML – Symmetric Gradient Domain Machine Learning

3. SOAP/GAP – Smooth Overlap of Atomic Position / Gaussian Approximation Potential

4. FCHL19* – Randomized Fourier features of Faber–Christensen–Huang–Lilienfeld 2019

5. FFAST – Force Field Analysis Software and Tools

6. MAE – Mean Absolute Error

7. MAX – Maximum Absolute Error

8. RMSE – Root Mean Square Error

9. (in)com – (in)complete

10. (un)fold – (un)folded

11. unkn – unknown

Robust and accurate computer simulations of chemical systems are essential for multiple applications ranging
from biomedical research to the development of semiconductors and solar cells. Central to these simulations are
the force fields (FF), which play a pivotal role in determining their accuracy and reliability. The complexity of
intra- and intermolecular interactions within these systems, combined with the vastness of Chemical Compound
Space, makes developing effective FFs a formidable challenge. Despite the long-standing use of FFs, only recently
the machine learning (ML) paradigm has enabled FFs to achieve quantum-chemical accuracy for broad chemical
spaces while maintaining computational efficiency. In less than two decades, ML-based force fields (MLFFs) have
evolved significantly. They have progressed from achieving qualitatively correct results for relatively simple periodic
systems [1–10] and small molecules [11–22] to simulating nanoseconds of dynamics under realistic conditions for
molecules and materials containing thousands to millions of atoms, all while maintaining root mean squared errors
in forces within a fraction of one kcal/(mol·Å) [23–32] compared to the forces produced with quantum chemistry
reference methods (at least for small fragments).

Despite their remarkable success in the world of hard materials, for organic chemistry and softer materials developing
generally useful MLFFs remains an ongoing challenge. Specifically, issues such as reliable transferability (in chemical
space), reactivity and scalability (in terms of system size) have yet to be fully satisfactorily addressed [33–44]. Along
the road of progress for MLFFs, a crucial role has been played by the significant efforts that have been dedicated
to assessing the state of the field and identifying areas for improvement [45–62]. One of the main challenges here
is that due to the increasing complexity of the systems, MLFFs require specialized expertise to identify the correct
performance metrics, making reliable error estimation difficult. A significant risk can occur when MLFFs do not fail
outright but produce seemingly reasonable yet ultimately incorrect results. Identifying such cases in large and complex
systems requires deeper assessment than mere comparison to reference ab initio calculations, as those calculations can
be computationally prohibitive or even unfeasible.

An alternative approach to assessing models in areas of chemical space unreachable by traditional quantum methods
is to reproduce the same computer simulations using different MLFFs. A consistent outcome of those simulations,
especially by different architectures, would indicate a high likelihood of a correct result. However, when discrepancies
arise, this is indicative of possible mistakes in one or both MLFF results, and the simulation results should be
interrogated further. Therefore, performing a comprehensive comparative analysis of the performance of various
MLFF models across different types of systems is crucial for understanding their actual application ranges. Similar
work has been done on reproducibility for Density Functional Theory (DFT) codes [63, 64], which has led to increasing
trust in the DFT calculations, and those are now frequently used as a reference in MLFF tests whenever possible.
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The “Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces” i.e. the TEA Challenge
aims to provide a platform for rigorous testing of commonly used MLFFs across diverse applications. The TEA
Challenge 2023 commenced with a workshop, which gathered MLFF developers. While many notable MLFFs of recent
years were invited, the TEA Challenge 2023 as presented here only comprises those who undertook the challenge.
The developers were provided with training datasets and limited information about the details of data generation in
order to ensure that the data could not be extended unilaterally. They were tasked with training their models to
the degree that they chose as best suiting the task and presenting their results, in particular each developer made
their own choices and trade-offs regarding model size, accuracy and computational efficiency. The results were further
analysed by the organisers, who were not involved in the models’ training process. The models could be improved
and resubmitted based solely on outcomes from predefined test sets presented during the workshop. A schematic
representation of ML models submitted in the TEA Challenge 2023 is shown in FIG. 1, while their details are available
in the SI. Subsequently, the organisers conducted tests of running molecular dynamics (MD) simulations using the final
MLFF models under identical conditions within the same platform on the same High Performance Cluster (HPC).
At this stage, the models could no longer be altered, nor could developers influence the outcomes of the analysis.
This approach simulates realistic application conditions for MLFFs, where the ground truth is unknown, highlighting
potential issues practitioners might encounter. The selected systems for MDs were designed to be manageable yet
challenging within most modern MLFF architectures, diverse, and unbiased towards any existing ML models. The
TEA Challenge 2023 spans a range of models from lighter kernel regression models with 123,000 trainable parameters
through lighter neural networks (NNs) 487,613 to heavier neural networks 2,983,184.

FIG. 1. Schematic representation of the ML architectures involved in the TEA Challenge 2023, in which U and F are the
output energies and forces, respectively. Further details of the methods and their implementation are available in the SI.

This article is divided into five sections as follows. Section II introduces the four datasets used in each of the
Challenges I - IV, while Section III details the challenges themselves. Section IV analyzes the accuracy of MLFFs on
the test sets, their stability during MD simulations, and their efficiency based on the computational resources required
to produce 1 million steps of a classical MD simulation (equivalent to 1 nanosecond of dynamics with 1 femtosecond
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time steps). Some pitfalls of the MLFF implementations are also discussed. Our findings are summarized in Section V.
Additionally, a detailed description of the MLFFs that participated in the TEA Challenge 2023, along with results for
PhysNet[65] and a benchmark of Hydrogen under pressure can be found in the Supplementary Information (SI). A
comprehensive analysis of the MD simulations within each of the four challenges is provided in the follow-up article,
“Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces: Molecular Dynamics in the
TEA Challenge 2023.”

II. DATASETS

The energies and forces for all the systems listed below were obtained using DFT with semi-local and hybrid
exchange-correlation functionals and MBD/MBD-NL dispersion interactions within the FHI-Aims code [66–68].

I. The alanine tetrapeptide dataset (Ac-Ala3-NHMe, 42 atoms) is a part of the MD22 benchmark dataset[69]. It
was generated as a single NVT MD trajectory sampled at a temperature of 500 K with a time step of 1 fs. The
corresponding potential energy and atomic forces are calculated with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [70] and Many-Body Dispersion (MBD [71, 72]) method. The dataset contains a total of 85,109
structures.

II. The N-acetylphenylalanyl-pentaalanyl-lysine dataset (Ac-Phe-Ala5-Lys, 100 atoms) was specifically generated for
the TEA Challenge 2023. It contains a limited sampling near the 200 lowest energy conformers identified using the
CREST software package[73]. The sampling was performed by running NVT MD simulations at a temperature of
500 K with a time step of 0.5 fs starting from each conformer’s equilibrium structure. All the trajectories are 250
fs long and contain 500 configurations. This gives a total of 100,000 reference structures with energies and forces
computed using the PBE0 [74] exchange-correlation functional and nonlocal MBD (MBD-NL) [75] method to describe
dispersion interactions. The dataset contains the indices of the MD trajectories (starting conformers) from which the
given geometry was extracted.

III. The 1,8-Naphthyridine molecule adsorbed on graphene dataset (C8H6N2/C98, 114 atoms) was specifically gener-
ated for the TEA Challenge 2023. It consists of six independent NVT MD runs performed at a temperature of 500 K
with a resolution of 1 fs. The dataset contains 15,000 reference structures with forces and energies computed at the
PBE+MBD-NL level of theory.

IV. The tetragonal phase Methylammonium Lead Iodide perovskite dataset (MAPbI3, 384 atoms) was created
by extracting the train, validation, and test sets (selected based on the energy distribution using the procedure
implemented within the sGDML software package [15, 45]) from the MD trajectory published in Ref. 76. For the
TEA Challenge 2023, 698 structures were recomputed with PBE and MBD-NL.

Notably, only the alanine tetrapeptide dataset was published before the TEA Challenge 2023. Therefore, the MLFF
developers had limited information about three out of four datasets. Visualisations of the atomic structures are shown
in FIG. 2 for the four datasets.

FIG. 2. Snapshots of system geometries from: I - Ac-Ala3-NHM, II - Ac-Phe-Ala5-Lys, III - 1,8-Naphthyridine/graphene, and
IV - MAPbI3 datasets.

III. CHALLENGES

The TEA Challenge 2023 consisted of four independent challenges testing the limits of modern MLFFs. All the
TEA 2023 participants were provided with the same information, train, validation, and test datasets, which can be
found in the Zenodo archive 10.5281/zenodo.13832725. None of them were involved in the Challenge preparations,
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ensuring a level playing field. The participants presented their results in a dedicated workshop. After the workshop
ended, participants were allowed to improve their models. The TEA 2023 team performed all the test simulations
afterwards using the same HPC hardware and settings for all provided MLFF models to ensure a fair comparison. The
MLFF performance tests (model evaluations per second) were done under the same conditions by running simulations
using the same script for all MLFF models on dedicated HPC nodes, ensuring that the results were free from potential
interference from other jobs.

The first challenge aims to verify the ability of MLFF models to reproduce the potential energy surface (PES) for
flexible organic molecules, where the training dataset is chosen to include only folded or alternatively only unfolded
configurations. We use the alanine tetrapeptide dataset split into training, validation, and test sets using three
different strategies to do so. As a benchmark, we start with MLFFs trained on representative samples of all possible
extended and compact Ac-Ala3-NHMe structures with training/validation datasets of the sizes 200, 400, 600, 800,
and 1,000 to validate the convergence of the models. Next, we divide the entire alanine tetrapeptide dataset into
two subsets based on the distance between the farthest non-hydrogen atoms as a measure of the compactness of the
molecule. 70% of the most compact structures form the folded dataset, while the remaining 30% form the unfolded
one. The classification is based solely on whether the corresponding interatomic distance is larger or smaller than
the empirically defined threshold of 10.06 Å found suitable for this dataset. The challenge posed to the participants
was to train MLFFs using only one of the proposed subsets of configurations (provided to all participants) and to
predict the unseen data from the other subset. The evaluation criteria are the accuracy and stability of three types
of MLFF models. In this way, we test the ability of MLFFs to extrapolate in the configurational space. All the
analyses for accuracy, stability, and performance of the provided MLFF models are done based on the most accurate
models trained on 1000 reference geometries. Different training/validation test sizes were used solely to ensure the
convergence of the ML models during the training process.

For the stability and performance tests, the trained models provided by participants were used by the TEA 2023
evaluation team to run 12 independent NVT MD simulations employing a Langevin thermostat with a friction
coefficient of 10−3 fs−1 and a time step of 1 fs to measure the trajectory’s average length before the system enters
a nonphysical state (i.e. breaking chemical bonds). The 12 MD runs were started at a temperature of 300 K from
12 fixed nonidentical system configurations. The 12 starting configurations were always chosen from the training
datasets. When all 12 trajectories reached 1 ns length without entering an unphysical state, the same models were
tested at an increased temperature of 500 K. For the most robust models, 12 MDs were run once more at 700 K. The
starting conditions and the MD settings were identical for all MLFFs participating in the challenge.

The second challenge verifies the ability of MLFFs to deal with a different type of reference data incompleteness.
It is based on the Ac-Phe-Ala5-Lys dataset. As a baseline, we have “complete” ML models trained on a fixed number
(10 and 20) of randomly selected molecule configurations from each of the 200 MD trajectories. Additionally, we
trained ML models on a separate dataset to simulate “incomplete” training data by sampling a fixed number (16
and 32) of randomly selected configurations from 125 out of the 200 MD trajectories. The remaining 75 trajectories
were excluded from training and used as “unseen” sets. The accuracy of the MLFFs was compared for complete and
incomplete ML models tested on both seen and unseen test datasets. Note that the training and validation dataset
sizes are 2000 and 4000 for both types of models, and the datasets are the same for all MLFF architectures. For the
analysis, we use only the models trained on 4000 reference geometries. The stability and performance of the MLFFs
were estimated in the same manner as for Challenge I.

The third challenge assesses the ability of MLFFs to deal with multi-component interfaces. It is based on a
1,8-Naphthyridine molecule adsorbed on a pristine graphene sheet. While the 1,8-Naphthyridine molecule and the
graphene sheet are, by themselves, trivial challenges for modern MLFFs, their combination introduces a new element:
molecule-surface interaction. This interaction is non-covalent and small in strength compared to interatomic forces
within the subsystems. At the same time, molecule-surface interaction determines the many effects of practical
interest, such as surface friction or adsorption. The participants were provided with train and validation datasets of
the sizes 200, 400, 600, 800, and 1000. The test dataset in all cases was all configurations left in the 1,8-Naphthyridine
molecule adsorbed on a pristine graphene sheet dataset after extracting the train and validation subsets. The stability
and performance of the MLFFs were estimated in the same manner as for the first challenge using the MLFFs trained
on the largest training set (1000 configurations) with periodic boundary conditions in two dimensions. One key
difference in the third challenge was the limitation of the simulation temperature to a maximum of 500 K. This was
done to prevent the potential desorption of the molecule from the surface. The original dataset was sampled at 500
K, which means it does not contain reference structures with large surface-molecule separations.

The fourth challenge extends the complexity of multi-component modeling by combining heavy and light atoms
within one relatively large system. It is based on the Methylammonium (MA) Lead Iodide perovskite dataset. One
can distinguish three types of interactions here: interatomic forces within MA molecules, interatomic forces between
heavy I and Pb atoms, and the interaction between the MA and PbI3 subsystems. The additional complexity of the
challenge arises from the sluggish Pb and I atoms’ motion compared to that of H, C, and N atoms and the rotational
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freedom of the MA molecule within the PbI3 cage. All these lead to different requirements for the sufficient sampling
of different system parts, further complicating the MLFF training process. The training and validation datasets are
the same for all MLFFs; their sizes are 100, 200, 300, 400, and 500. Only the MLFF models trained on 500 reference
structures were used for the stability and performance test similar to Challenge I with periodic boundary conditions
in three dimensions.

It is worth noting that the datasets for all challenges can be categorized into two major groups: comprehensive
datasets designed to cover all essential regions of the PES, including those for Challenges I (complete), II (complete),
III, and IV; and partial datasets, which include the remaining datasets constructed to cover only specific regions of
the PES, namely Challenges I (folded and unfolded) and II (incomplete and unknown).

IV. RESULTS AND DISCUSSION

The results of the TEA Challenge 2023 are presented in two parts, the second of which can be found in Journal name
and issue. This paper focuses on analysing MLFFs by evaluating their performance on test datasets and examining
the basic outcomes of molecular dynamics (MD) simulations. Specifically, it presents the outcomes of the TEA 2023 in
terms of Mean Absolute Errors (MAE), Root Mean Squared Errors (RMSE), and maximum errors (MAX) in energy
and force predictions.

The MAX error for forces is computed as follows

∆Fmax = max
n

∣∣∣~F true
n − ~F ml

n

∣∣∣ . (1)

where ~F true
n is the reference force acting on an atom n, ~F ml

n is the corresponding force predicted by an ML model,
| . . . | is the norm of a vector, and max is the maximum over atomic forces for all system configurations.

For the sake of completeness in the force analyses, we also provide values for forces acting on full molecules when
they are system components. Namely, we include the total force acting on 1,8-Naphthyridin (Challenge III) and
Methylammonium (Challenge IV) molecules

~F (mol) =
∑

n∈molecule

~F s
n , (2)

where ~F s
n denotes ~F true

n or ~F ml
n . Since the PES is conservative, ~F (mol) deviates from zero only due to the interaction

between the molecules and their environments.
To gain more detailed insight into MLFFs performance, we go beyond the aggregate measures. A comprehensive

analysis is carried out for atomistic force predictions by color coding the MAE for each individual atom in the system.
Finally, to recognise practical considerations about the use of the MLFF models, the stability and computational
speed of the MD simulations are also assessed. Detailed analyses of the MD results are published in Part II article of
the TEA Challenge 2023.

A. Aggregated Accuracy

The first step in assessing the performance of the models in the TEA 2023 challenges is by considering the measures of
aggregated accuracy as presented in Table I. A comprehensive set of energy and forces MAE, RMSE, and MAX errors
across all four challenges can be found there, with the MAE values below 1 kcal/mol or 1 kcal/(mol·Å) highlighted in
bold. To simplify the comparative analyses of the MLFFs performance, the MAE and MAX energy and force errors
are also plotted in FIG. 3, with the models’ naming schemes detailed in the list of abbreviations. Tables SI 7 and SI
8 in SI contain relative prediction errors normalized by the mean absolute values and the standard deviations of the
energies and forces in the reference datasets.

The first conclusion that can be drawn from Table I is that the employment of equivariant NN architectures in
MACE and SO3krates models significantly reduces MAE and RMSE for energy and forces throughout all tested
systems compared to the kernel-based models: sGDML, SOAP/GAP, and FCHL19∗. Traditionally, the benchmark
for MLFF accuracy in quantum chemistry has been 1 kcal/mol MAE for energy and 1 kcal/(mol·Å) MAE for forces.
Equivariant architectures reduce typical MAEs by a factor of 2 to 5, depending on the number of parameters within
the NN. This reduction represents a substantial leap in predictive accuracy, establishing new standards for force
predictions in the range of 0.2 – 0.5 kcal/(mol·Å).

Conversely, the standards for energy predictions have not seen a similar reduction. The increased size and complexity
of the simulated systems complicate the reconstruction of global quantities, such as energy. This trend is evident
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Challenge MACE SO3 sGDML SOAP/GAP FCHL19∗

I (com)

E 0.15 0.19 1 0.34 0.43 2 1.09 1.42 8 1.16 1.50 9 0.76 0.98 5
F 0.20 0.30 10 0.38 0.57 18 1.50 2.14 28 1.01 1.67 500 0.97 1.36 29

F(H) 0.11 0.17 9 0.23 0.33 12 0.99 1.32 22 0.65 0.87 23 0.65 0.88 29
F(C) 0.29 0.40 9 0.56 0.76 18 2.13 2.81 26 1.41 2.21 500 1.36 1.80 22
F(N) 0.32 0.44 10 0.62 0.83 10 2.57 3.39 28 1.46 2.77 490 1.42 1.85 17
F(O) 0.23 0.32 9 0.45 0.60 14 1.39 1.87 22 1.31 1.70 19 1.07 1.41 20

I (fold-fold)

E 0.12 0.16 0.9 0.40 0.50 2 1.00 1.33 13 1.11 1.44 7 0.74 0.95 6
F 0.19 0.29 8 0.38 0.55 17 1.43 2.05 23 0.98 1.39 71 0.93 1.30 16

F(H) 0.11 0.17 7 0.24 0.34 17 0.95 1.27 16 0.64 0.86 20 0.63 0.85 16
F(C) 0.28 0.39 6 0.54 0.73 8 2.04 2.72 23 1.37 1.84 71 1.31 1.72 15
F(N) 0.31 0.43 7 0.61 0.81 11 2.39 3.18 23 1.38 1.83 71 1.37 1.78 16
F(O) 0.23 0.32 8 0.43 0.58 11 1.29 1.76 20 1.26 1.65 25 1.01 1.33 11

I (fold-unfold)

E 0.21 0.28 1 0.63 0.75 3 4.96 7.01 30 1.44 1.80 7 1.72 2.24 9
F 0.26 0.40 10 0.48 0.73 9 2.60 3.79 36 1.14 1.63 22 1.13 1.63 20

F(H) 0.14 0.20 10 0.28 0.41 9 1.65 2.26 30 0.71 0.98 22 0.73 1.02 16
F(C) 0.39 0.55 7 0.70 0.95 7 3.78 5.10 32 1.59 2.13 16 1.63 2.19 20
F(N) 0.42 0.57 6 0.82 1.11 8 4.36 5.71 36 1.69 2.22 21 1.72 2.27 16
F(O) 0.34 0.46 5 0.61 0.83 7 2.55 3.49 25 1.54 2.01 20 1.28 1.70 15

I (unfold-unfold)

E 0.23 0.26 0.9 0.31 0.39 2 0.86 1.43 25 0.90 1.17 4 0.58 0.81 9
F 0.16 0.26 6 0.32 0.47 9 1.23 1.80 33 0.92 1.28 18 0.83 1.16 15

F(H) 0.10 0.15 6 0.20 0.28 6 0.83 1.15 33 0.61 0.81 14 0.58 0.80 13
F(C) 0.23 0.34 5 0.45 0.62 9 1.71 2.35 21 1.29 1.70 13 1.14 1.51 10
F(N) 0.26 0.38 6 0.51 0.69 7 2.05 2.80 23 1.28 1.67 18 1.22 1.60 15
F(O) 0.19 0.27 5 0.36 0.49 6 1.11 1.55 15 1.14 1.48 10 0.90 1.18 9

I (unfold-fold)

E 0.92 1.19 5 0.86 1.04 5 23.4 31.2 140 1.94 2.48 10 4.04 5.67 33
F 0.40 0.74 21 0.57 0.87 21 4.43 6.66 86 1.25 1.85 73 1.71 2.62 65

F(H) 0.20 0.35 20 0.33 0.52 21 2.95 4.62 86 0.80 1.22 73 1.18 1.93 65
F(C) 0.59 0.99 14 0.81 1.13 18 6.00 8.22 75 1.65 2.25 48 2.11 2.93 36
F(N) 0.75 1.07 21 0.96 1.28 12 7.34 9.74 58 1.96 2.63 50 3.03 4.17 30
F(O) 0.63 0.99 12 0.74 1.02 19 4.96 7.12 53 1.75 2.40 25 2.04 2.91 49

II (com)

E 0.21 0.27 3 0.48 0.60 3 3.68 5.05 26 7.79 9.71 41 2.37 3.00 14
F 0.11 0.17 33 0.30 0.46 88 1.39 2.06 54 4.93 6.80 370 1.57 2.18 120

F(H) 0.07 0.10 33 0.19 0.28 57 0.92 1.30 54 3.41 4.63 230 1.05 1.41 120
F(C) 0.16 0.22 10 0.42 0.59 16 1.90 2.62 36 7.04 9.10 110 2.22 2.90 81
F(N) 0.18 0.25 24 0.49 0.67 88 2.40 3.28 47 6.25 8.03 230 2.14 2.75 59
F(O) 0.14 0.20 22 0.36 0.50 43 1.34 1.89 37 4.91 6.43 370 1.69 2.22 35

II (incom-incom)

E 0.22 0.31 12 0.39 0.50 9 4.76 6.79 37 3.17 3.94 22 2.33 2.94 14
F 0.10 0.16 81 0.29 0.44 85 1.22 1.85 54 5.04 6.93 420 1.56 2.17 120

F(H) 0.07 0.12 81 0.19 0.29 85 0.81 1.17 54 3.47 4.70 340 1.04 1.41 120
F(C) 0.14 0.20 17 0.40 0.56 36 1.67 2.35 31 7.29 9.35 100 2.20 2.87 84
F(N) 0.16 0.24 34 0.44 0.63 52 2.10 2.93 32 6.35 8.23 420 2.13 2.75 59
F(O) 0.12 0.18 35 0.34 0.49 79 1.18 1.71 49 4.75 6.14 93 1.69 2.23 110

II (incom-unkn)

E 0.22 0.28 1 0.45 0.58 3 30.2 35.4 170 2.81 3.47 14 2.64 3.37 17
F 0.14 0.21 16 0.36 0.55 34 2.55 3.59 96 5.03 6.92 210 1.61 2.25 51

F(H) 0.08 0.12 10 0.21 0.32 34 1.88 2.74 96 3.46 4.68 160 1.07 1.46 40
F(C) 0.19 0.27 7 0.51 0.71 17 3.21 4.21 41 7.28 9.35 110 2.26 2.97 42
F(N) 0.23 0.30 9 0.58 0.79 21 4.11 5.32 45 6.37 8.22 210 2.25 2.90 47
F(O) 0.18 0.25 16 0.45 0.62 24 2.60 3.49 39 4.75 6.14 78 1.76 2.32 51

III

E 0.24 0.31 1 0.41 0.52 3 0.46 0.58 3 1.31 1.59 5 366 366 380
F 0.05 0.08 4 0.56 0.93 44 0.23 0.37 12 0.56 0.76 69 1.44 1.91 190

F(H) 0.06 0.09 2 0.28 0.40 9 0.18 0.26 3 0.44 0.63 25 1.29 1.70 134
F(C) 0.04 0.07 4 0.58 0.95 44 0.22 0.37 12 0.57 0.75 69 1.43 1.89 190
F(N) 0.14 0.20 3 0.53 0.75 13 0.45 0.70 12 0.93 1.23 21 2.21 2.92 90
F(mol) 0.12 0.16 1 0.58 0.77 5 0.16 0.24 3 1.57 2.63 20 4.03 6.12 41

IV

E 0.50 0.65 2 0.75 0.94 3 - - - 1.66 2.09 7 134 138 240
F 0.17 0.23 5 0.20 0.28 4 - - - 0.43 0.59 7 2.81 3.62 68

F(H) 0.12 0.16 5 0.13 0.17 2 - - - 0.29 0.38 7 2.75 3.55 68
F(C) 0.18 0.24 4 0.19 0.25 4 - - - 0.50 0.64 7 2.60 3.42 68
F(N) 0.21 0.27 3 0.23 0.29 2 - - - 0.54 0.68 5 2.95 3.80 62
F(Pb) 0.28 0.36 3 0.41 0.52 3 - - - 0.83 1.05 7 3.40 4.30 34
F(I) 0.20 0.26 4 0.26 0.34 3 - - - 0.50 0.65 5 2.78 3.53 34

F(mol) 0.23 0.29 4 0.22 0.28 2 - - - 0.55 0.70 5 6.23 7.92 53

TABLE I. MAE, RMSE, and MAX (or the MAX errors per component) errors, in that order, for energy and forces are reported
in units of kcal/mol and kcal/(mol·Å), respectively. Values in bold represent MAE below 1 kcal/mol and 1 kcal/(mol·Å) for
energies and forces, respectively.
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FIG. 3. Graphical representation of MAE and MAX errors in energy and forces for the various challenges as listed in Table I.

when comparing the MAE and RMSE for the first two challenges, involving molecules with 42 and 100 atoms, against
Challenge IV, where the unit cell consists of 384 atoms. While the MAE and RMSE for forces and energies are fairly
similar for both molecules, the energy errors for MAPbI3 are 2.5 – 3.5 times larger compared to those for forces across
all ML models capable of providing reliable predictions (MACE, SO3krates, and SOAP/GAP). Note however that
since the total energy of a solid is an extensive quantity, even small errors per unit cell can be scaled to arbitrary
values as the system size is scaled.

The second finding concerns the MAX errors. Despite the advancements in MLFF architectures, MAX errors remain
substantial even for the most recent MLFF models. When trained on comprehensive (complete) datasets, the MACE
and SO3krates models exhibit significant prediction discrepancies in the forces, with maximum MAX errors of 33
and 88 kcal/(mol·Å), respectively. Notably, the molecular geometries associated with the largest errors differ between
these two models. Moreover, the maximum MAX force error for the sGDML model is comparable at 54 kcal/(mol·Å).
Still, a significant improvement is observed compared to two other kernel-based models, SOAP/GAP and FCHL19∗,
which display considerably higher maximum MAX force errors of 500 and 190 kcal/(mol·Å), respectively. On the
other hand, SOAP/GAP generally displays smaller MAX energy errors than the other kernel models, indicating that
the balance between energies and forces in the respective loss functions also plays a role here. The issue of large MAX
errors can be further exacerbated when the MLFFs are trained on partial datasets (missing data). For the MACE
model, the MAX error increases from 33 to 81 kcal/(mol·Å), while for the sGDML model, it escalates from 54 to
140 kcal/(mol·Å).

The third observation is related to systems with prominent non-covalent binding. Particular attention should be
paid to the total forces acting on the 1,8-Naphthyridine molecule in Challenge III and the Methylammonium molecule
in Challenge IV. These forces arise from non-covalent interactions between the molecular and periodic components
of the system, which are naturally weaker in magnitude compared to atom-atom interactions dominated by covalent
bonding. Despite this, the MAE and RMSE for molecular forces are similar in magnitude to those for atomistic forces
across all considered ML models. This is likely due to the fact that all loss functions contain total forces rather than
non-covalent forces, and results in a higher relative error for non-covalent interactions, highlighting a critical area for
enhancing ML architectures.

While for the organic systems of Challenges I and II equivariant NN architectures showed larger improvements,

https://doi.org/10.26434/chemrxiv-2024-ctdm3 ORCID: https://orcid.org/0000-0001-9853-6775 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-ctdm3
https://orcid.org/0000-0001-9853-6775
https://creativecommons.org/licenses/by-nc/4.0/


10

periodic systems could be more challenging for them as exemplified by the results of Challenge IV – arguably, the
most complex one. For instance, the advantage of the MACE model, which in other cases exhibited MAE and RMSE
values approximately half those of the SO3krates model and 5 to 10 times smaller values compared to kernel-based
models, is only about 30% for the energy and just 15% for the forces compared with SO3krates. Also, the MAE
and RMSE of the SOAP/GAP model are just twice as large as the NNs. While the difference in energy prediction
accuracy was higher than for forces, it was also considerably reduced for all models except FCHL19∗ compared to
Challenges I – III.

FIG. 4. Atomic Force MAEs for Ac-Phe-Ala5-Lys. Figure (a) shows a snapshot of the system geometry and atom types:
Carbons – grey, Nitrogens – blue, Hydrogens – white, and Oxygens – red. Figures (b) through (f) display the MAEs for
forces, measured in kcal/(mol·Å), acting on individual atoms within the Ac-Phe-Ala5-Lys system. The MAEs correspond to
the MLFFs predictions on the test set and are represented with different colors according to the color bars shown with the
corresponding scaling numbers, different for different MLFFs. Note the rather different absolute scale of the colour bars, ranging
from 0.23 for MACE to 3.00 for FCHL19*.

B. In-depth Accuracy Analysis

The analyses presented above follow the typical approach based on aggregated accuracy metrics. While that is a
well-established method reliable for small and relatively simple systems in terms of chemical composition, it becomes
insufficient as system size and composition diversity increase. In order to address this gap, the FFAST software[77] is
used to provide detailed performance quantifiers on the atomistic level.

FIG. 4 shows the MAEs of atomic forces for the Ac-Phe-Ala5-Lys molecule on the test set for all five MLFFs
participating in the Challenge II. In FIG. 4b through 4f, atomic colors encode the force MAE for each individual
atom, with corresponding color bars indicating numeric values. A similar Figure SI 4 for the Ac-Ala3-NHMe molecule
can be found in SI. Note that individual colour scales are used for each model, and the absolute scale of the errors
shown varies considerably between the models. In both figures, a significant heterogeneity in force prediction accuracy
across the molecule can be seen. The MAE ratio between the worst and best-predicted atoms ranges from 6 for neural
networks to 4-5 for kernel-based methods. Notably, even among atoms of the same type, such as carbons, the best-
predicted atoms can have MAEs that are three times smaller than the worst-predicted carbons. This force predictions
heterogeneity indicates that there is still room for improvement of MLFF architectures in achieving consistent accuracy
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across individual atoms.
Interestingly, the pattern of force prediction heterogeneity is very similar across all five MLFFs. The color bar values

are non-withstanding; one could notice minimal differences between the relative errors of atom pairs, especially in the
middle part of the molecule. Notable differences in prediction patterns appear mainly at the molecule’s extremities.
For example, examining the aromatic ring in the upper right corner of the figures, one can observe variations in
accuracy for the C atoms, particularly those connecting the ring to the rest of the molecule, going from MACE or
SO3krates MLFFs to sGDML, and finally to SOAP/GAP and FCHL19∗ models.

FIG. 5. Maximum Atomic Force Errors for Ac-Phe–Lys. Figure (a) shows a snapshot of the system geometry and atom types:
Carbons – grey, Nitrogens – blue, Hydrogens – white, and Oxygens – red. Figures (b) through (d) show the absolute atomic
force errors in kcal/(mol·Å), as indicated by the corresponding colour. Note the different scales for the colour bars, ranging
from 12.11 for MACE, 31.52 for SO3krates, to 179.25 for SOAP/GAP. Figure (e) presents the projection of the force acting
on hydrogen atoms along the vectors connecting the nitrogen and hydrogen atoms in the R-NH3 (with maximum prediction
errors). These projections are shown as a function of the nitrogen–hydrogen distance. The solid lines represent the force
predictions made by the MACE and SO3krates MLFFs, while the dotted lines correspond to the reference results obtained
from DFT calculations. The red line depicts the hydrogen atom with the largest force prediction error. At the top of the figure,
we also plot the distance between this hydrogen atom and the neighboring oxygen atom, which is only relevant for the red
curve. Figure (f) illustrates the work required to move the hydrogen atom along bond vectors, with the energy minima used
as reference zero points. Vertical dashed lines on (e) and (f) represent the longest NH bond distance found in the training set
(grey) and the NH bond distance corresponding to the configuration with the maximum error (black). Blue and green solid
curves show the PES scan for the two hydrogen atoms in the R-NH3 that move away from the molecule as the bond length
increases (for comparison purposes).

The observed MAX error pattern in the MACE, SO3krates, and SOAP/GAP models again shows a similarity in the
relative error between different atoms for these MLFFs. FIG. 5 illustrates the atomistic force errors for configurations
from the test set where these models exhibit the most significant deviations from the reference data (Figures SI 5–SI
7 contain more examples from Challenges I–III). Although the three geometries are not identical, they represent
consecutive points along one of the MD trajectories used to form the reference dataset. Note that our visualization
software, which determines chemical bonds based on interatomic distances, erroneously depicts the hydrogen atom as
being bonded to oxygen, whereas, it is bonded to the nitrogen atom, as illustrated in FIG. 4 (see the NH3 tail in the
lower central part).

FIG. 6 presents a similar analysis of the MAEs for atomistic forces for the 1,8-Naphthyridine molecule adsorbed
on a graphene test set of Challenge III. While there is a vast difference between the absolute accuracy of the best
(MACE) and the worst (FCHL19*) models, all MLFFs, except SO3krates, exhibit similar patterns of relative force
accuracy between different atoms. The H atoms and C atoms in graphene are treated with relative ease, while C and
N atoms in the 1,8-Naphthyridine molecule show significantly larger force errors. The variation of atomic force error
is particularly pronounced for the MACE model, where the MAEs for C atoms in graphene are five times smaller
than those for the C atoms in the 1,8-Naphthyridine molecule. Interestingly, the exceptionally high accuracy of force
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FIG. 6. Atomic Force MAEs for C8H6N2/C98. Figure (a) shows a snapshot of the system geometry and atom types: carbons –
grey, nitrogens – blue, and hydrogens – white. Figures (b) through (f) display the MAEs for forces, measured in kcal/(mol·Å),
acting on individual atoms within the C8H6N2/C98 system. The MAEs correspond to the MLFFs predictions on the test set
and are represented in different colors according to the colour bars shown with the corresponding scaling numbers, which are
different for different MLFFs, with scales ranging from 0.16 for MACE to 2.64 for FCHL19*.

reconstruction within the graphene layer, with an MAE of approximately 0.03 kcal/(mol·Å), results in a noticeable
‘shadow’ of the molecule on the graphene surface in FIG. 6b. This ‘shadow’ represents the region most affected by
molecule-surface interactions where the MACE model exhibits lower accuracy compared to regions away from the
molecule. This observation aligns with the aforementioned challenging nature of non-covalent interactions. This effect
is not seen for other models whose errors on the carbon atoms in the graphene sheet are much higher thus masking
the above effect.

The significant errors for C atoms on the two borders of the graphene cell produced by the SO3krates model are
unexpected and due to precision design choices employed in the JAX ecosystems for certain GPU hardware (see
explanation below). It further does not affect the faithfulness of simulation and derived observables. It is important
to note that only the visualisation of atomistic errors allows for identifying subtle but essential prediction problems.
This underscores the necessity of employing software packages such as FFAST, which are designed for comprehensive
MLFF performance analysis, to ensure the reliability of the predicted forces and the results of consequent simulations.
The cause of the errors for SO3krates is due to the JAX default of running in tensorflow32 precision on A100 and H100
GPU. This problem can be alleviated by explicitly disabling tensorflow32 precision (which performs some operations
in float16) and instead running training and evaluation in standard float32 precision. This not only alleviates the
boundary effects (SI Figure SI 8) but also gives significantly lower errors, ranging from 0.09 to 0.32 kcal/(mol·Å)

The observations made thus far are also consistent with the results of Challenge IV, as presented in FIG. 7 for
the atomic force MAEs for MAPbI3. Similar force prediction heterogeneity patterns are observed across all MLFFs.
FIG. 7 b, c, and e appear nearly identical when disregarding the color bar values that indicate the vast difference
between absolute errors. Surprisingly, the most problematic atoms for all MLFFs are the Pb atoms. The largest
MAEs for these atoms anti-correlate with the strength of the forces they experience. This can be seen in FIG. 7d,
which illustrates the distribution of the magnitudes of atomic forces for different chemical elements in the system.
The forces on Pb atoms, shown in dim grey, are the second smallest, only slightly larger than those on I atoms.
Meanwhile, the MAEs for force reconstruction on I, C, N, and H atoms throughout the system are more than twice
as small as those for Pb atoms. This clearly indicates the need for improvements in either MLFF architectures, loss
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FIG. 7. Atomic Force MAEs for MAPbI3. Figure (a) shows a snapshot of the system geometry and atom types: Carbons –
grey, Nitrogens – blue, Hydrogens – white, Iodines – purple, and Leads – dim grey. Figures (b), (c), (e), and (f) display the
MAEs for forces, measured in kcal/(mol·Å), acting on individual atoms within the MAPbI3 system. The MAEs correspond
to the MLFFs predictions on the test set and are represented in different colors according to the color bars shown with the
corresponding scaling numbers, which are different for different MLFFs. Figure (d) illustrates the distribution of the norms of
atomic force vectors for different chemical elements. The carbon curve lies under the nitrogen one, as expected due to the 3d
Newton’s law.

functions, or training datasets. As we will demonstrate in Part II of this manuscript, the large MAEs for Pb atoms
directly impact the stability of MD simulations.

Finally, in Challenge IV, we observe only a minor difference in accuracy for the forces between MACE and SO3krates,
although the energy error of MACE is 30% lower. This suggests that, beyond a certain level of system complexity,
integrating even more principles of chemistry and physics is necessary for more accurate and reliable modeling.
Therefore, despite the tremendous progress in MLFF architectures over the last decade, there remains room for
improvement and further developments.

In summary, novel equivariant MLFF architectures like MACE and SO3krates significantly enhance the faithful
reconstruction of potential energy surfaces for molecules, molecular interfaces, and periodic systems. However, a
major challenge remains in eliminating rare but substantial errors in force predictions. The observed maximum force
errors are comparable to those of previous MLFF generations, such as sGDML. Another area for improvement is the
description of non-covalent interactions, which are often obscured by strong covalent bonding. Additionally, force
reconstruction demonstrates significant heterogeneity between different atoms of a given system that is consistent
across all tested models, including both kernel-based and neural network approaches. The consistent error patterns
are primarily due to the L2 nature of the loss function applied to the forces vector across all models. However, the
observed heterogeneity, which does not always align with the magnitude of the force acting on an atom, suggests
a direction for further development of MLFFs. We also emphasize the need to move beyond aggregate accuracy
measurements, such as system MAE or RMSE, to uncover potential pitfalls of MLFFs.
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C. Stability and Speed

One of the critical requirements for any MLFF is the ability to run efficient and reliable simulations. Beyond
achieving low MAE, RMSE, or MAX errors on test sets, an MLFF must also ensure stable and computationally
efficient MD trajectories. To assess this, we conducted 12 independent MD simulations, each for one million steps,
using all MLFF architectures participating in the TEA Challenge 2023. While a detailed analysis of the resulting
trajectories will be presented in a companion paper, we focus here on stability analyses and the averaged computational
times required to generate 1 ns of dynamics (one million energy and force evaluations).

Simulation Challenge

Model Temperature, K I II III IVcom fold unfold com incom

MACE
300 12/0 12/0 12/0 12/0 12/0 12/0 12/0
500 12/0 12/0 12/0 12/0 12/0 12/0 0/12
700 12/0 12/0 12/0 12/0 12/0 – –

SO3krates
300 12/0 12/0 11/1 12/0 12/0 12/0 12/0
500 12/0 11/1 5/7 12/0 12/0 6/6 10/2
700 4/8 7/5 0/12 5/7 8/4 – –

sGDML
300 12/0 12/0 0/12 12/0 12/0 12/0 –
500 7/5 7/5 0/12 12/0 12/0 12/0 –
700 – – – 12/0 12/0 – –

SOAP/GAP 300 2/10 0/12 8/4 0/12 0/12 2/10 0/12
FCHL19∗ 300 0/12 0/12 0/12 0/12 0/12 1/11 0/12

TABLE II. Molecular dynamics stability in A/B ratio. Here, A is the number of completed trajectories (1 ns), and B is the
number of failed trajectories (broken chemical bonds).

Table II provides a summary of the stability test results. Stability was assessed using a broken bond criterion,
terminating the simulation if any covalent chemical bond in the system exceeded a length of 2 Å. Under the given
simulation conditions, the test systems were not expected to undergo proton transport or other processes that would
alter their bonding patterns.

The MACE architecture demonstrated the highest stability in our tests, successfully completing most MD trajec-
tories. It only failed in the MAPbI3 system at 500 K, where it could not provide a single 1 ns long MD trajectory.
The second most stable architecture, SO3krates, performed well in this scenario, successfully completing 10 out of 12
MD runs. However, SO3krates faced stability issues in most of the other challenges when the temperature increased
to 500 K and above. The causes of the difference in stability between the equivariant NN architectures is unclear at
the moment and requires further investigation.

Among the kernel-based models, the sGDML model exhibited the highest stability. It performed well at 300 K
across all challenges except Challenge I, which had a significantly incomplete training set. It also maintained stability
in Challenges II and III at 500 K. Nevertheless, the limited sampling of the PES in the reference dataset for Challenge
I led to instability in the MD simulations of the alanine tetrapeptide molecule at 500 K.

The SOAP/GAP and FCHL19∗ models were quite unstable. These models struggled to provide stable dynamics
across all challenges, with some simulations failing within just a few thousand steps. This is unsurprising as these
kinds of kernel models typically need to be trained in active learning workflows to achieve stable dynamics.[9, 78–80]
Nevertheless, achieving simulation durations ranging from dozens to even hundreds of picoseconds is feasible using
the SOAP/GAP and FCHL19∗ models, particularly in well-sampled, near-equilibrium PES regions.

Overall, our results highlight the varying degrees of stability among different MLFF architectures and emphasize
the need for continued improvements to ensure reliable MD simulations, cf. also [62, 81]. Additionally, the MACE and
SO3krates models, when trained on the unfolded alanine tetrapeptide and MAPbI3 datasets, highlight an important
observation. Despite the fact that the mean and maximum force errors of these models were much lower than those
of the kernel models, this did not necessarily translate to better stability of MD simulations at 500 K, for the case
of SO3krates. This suggests a weak correlation between the accuracy of MLFFs on the test set and their reliability
in actual simulations. This finding indicates that high aggregate accuracy on reference data does not necessarily
translate to stable and reliable performance in practical MD simulations. On the other hand, the models with the
most accurate aggregate statistics (MACE and SO3krates) also consistently exhibit the highest stability. Therefore,
overall accuracy is necessary for stability but not sufficient on its own.

Table III summarizes the average computational time required for each ML model to produce 1 ns of MD dynamics
(1 million steps) on a single NVIDIA A100-40 GPU. The reported times are averaged across all MD trajectories within
each challenge. All run conditions and scripts were identical for all models except for the ASE calculator and the
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specific ML architecture provided by the participants. It is important to note that the SOAP/GAP models cannot
be executed on a GPU. Instead, these models were run on CPU nodes consisting of 2 AMD Rome CPUs, each with
64 cores at 2.6 GHz, for a total of 128 cores and 512 GB of RAM. This hardware configuration was used to ensure
that SOAP/GAP models could complete the MD simulations within a reasonable timeframe.

Simulation Challenge
Model I II III IV
MACE 34.4 43.6 45.4 36.1

SO3krates 1.4 2.0 4.2 6.7
sGDML 2.4 2.7 224.8 –

SOAP/GAP 83.6 111.0 64.9 606.2
FCHL19∗ 11.9 12.4 9.9 29.2

TABLE III. Average simulation time in hours per 1 ns of molecular dynamics. The red color indicates models that failed to
generate a single 1 ns MD trajectory.

We found that the SO3krates model, with its current settings, was the fastest in production, outperforming its NN
competitor, MACE, by a factor of 6 to 25, depending on the system size. Surprisingly, it was even faster than the
sGDML model, known for its minimalistic architecture, which ranked second in running MD simulations for molecules
from Challenges I and II. However, for larger systems, such as the molecule-surface interface in Challenge III, the
need to explicitly account for permutational symmetries significantly decreased the efficiency of the sGDML model,
making it the slowest among all TEA 2023 competitors. The third fastest ML model in production was FCHL19∗,
but this came at the cost of the largest instability in MD simulations. The MACE architecture, with its current
settings, ranked fourth. For Challenges I, II, and III, MACE showed only a 1.5 to 2.5 times increase in prediction
speed compared to the SOAP/GAP model, even though SOAP/GAP ran on CPU rather than GPU. However, for
the largest test system, MAPbI3, the speed difference between MACE and other competitors, namely SO3krates and
FCHL19∗, became smaller. Although the system sizes in the TEA 2023 Challenge were relatively small compared
with those needed and used in most scientific studies using molecular dynamics, it is apparent that in this regime
the relationship between the simulation time and system size can be complicated, suggesting a need for further code
optimization. Increasing the system size may result in a shift from a memory-bound to a compute-bound regime,
further complicating performance analysis.

D. Pitfalls

When utilizing any modern MLFF, it is important to recognize that much of the software is developed by scientists
with varying degrees of coding experience, and not professional software engineers. Below, we outline some of the
issues the TEA team encountered in the process of installation, integration within common frameworks, and during
MD runs and tests with various MLFF architectures:

1. Compatibility Issues: Models trained with previous MLFF versions may not be supported after software
updates, potentially leading to incorrect results.

2. Lack of Update Information: Information regarding updates is often missing, making it difficult to track
changes and their impacts.

3. Inconsistent Standards: There are no universally accepted standards for units, inputs, and outputs, leading
to inconsistencies across different implementations.

4. Installation and Benchmarking Challenges: Software installation and performance benchmark tests are
typically absent, meaning there is no assurance that the MLFF will function as expected in your specific
environment.

5. Systematic offsets communication: The presence of systematic offset (e.g. for the energy prediction) can
be a challenge to obtaining correct results when these systematic offsets are not clearly communicated in the
software itself or its manual.

Several such pitfalls were corrected in the course of the challenge, highlighting the benefits such collaborative efforts
bring to the entire community.
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V. CONCLUSIONS

The TEA Challenge 2023 provided a comprehensive evaluation of a representative sample of modern MLFF models,
capturing the current state of the field and identifying the strengths and weaknesses of existing architectures. ML
models were tested for their ability to predict potential energy surfaces and forces with high accuracy and reliability.
The selected models included both kernel and NN architectures, namely MACE, SO3krates, sGDML, SOAP/GAP,
and FCHL19∗, representing the MLFF developers who participated in TEA 2023. The evaluation comprised four
distinct tasks, each designed to test the limits of MLFFs under various conditions and system complexities. Another
test case for MLFFs, namely a compressed Hydrogen benchmark dataset is available in the SI. Limited tests were also
performed for the PhysNet model as detailed in the SI.

The results indicated significant advancements in the accuracy of MLFFs, particularly with novel equivariant neural
network architectures such as MACE and SO3krates. These models showed marked improvements in MAE and RMSE
for energy and force predictions compared to kernel-based models like sGDML, SOAP/GAP, and FCHL19∗ in the
framework of the TEA Challenges with force prediction accuracy in the range of 0.2 – 0.5 kcal/(mol·Å).

However, maximum errors remain a critical challenge, highlighting the necessity for further refinement to reduce rare
but substantial prediction discrepancies. Additionally, all ML models demonstrated significant heterogeneity in force
error across the different atoms in a given system, with a worst-to-best atomistic MAE ratio of 5 – 6. Interestingly,
the heterogeneity patterns were consistent across all MLFF architectures, the reason for this is unclear at present.

We also observed a trend of reduced prediction accuracy for non-covalent forces in favor of minimizing errors
for strong covalent interatomic bonding. Atomistic MAE did not always correlate with the strength of the forces
experienced by the atoms.

For Challenge IV, the MAPbI3 application, only a minor force accuracy difference of 0.03 kcal/(mol·Å) was observed
between the MACE and SO3krates models, whereas the energy accurate of MACE was 30% higher. We note that to
fully understand these differences, accuracy as a function of model size needs to be characterised. Making this tradeoff
is a significant choice facing modelers, and exploring this aspect of MLFF construction is an important avenue of
research for the future. Advancing the field could also be done by incorporating more physical principles into ML
models, particularly for the description of long-range non-covalent interactions and strong short-range repulsive forces,
which are often poorly represented in typical training sets or obscured by dominant covalent bonding effects.

Stability assessments revealed that the MACE and SO3krates models generally exhibited better stability in molecu-
lar dynamics simulations, completing most trajectories under varying conditions. Conversely, kernel-based models like
SOAP/GAP and FCHL19∗ showed substantial instability, particularly at higher temperatures, though they performed
adequately in well-sampled, near-equilibrium potential energy surface regions.

We already noted in the Introduction that participants were left to make their own choices regarding model sizes.
Given these individual choices, in terms of computational speed, the SO3krates model outperformed its competitors by
a significant margin (6 times or more), demonstrating the potential for highly efficient molecular dynamics simulations.
Overall, MLFF performances may vary by two orders of magnitude for the same task and even within the same class
of ML models, e.g. MACE and SO3krates, prediction speed can differ by a factor of 25. In addition to potential code
optimisation, for each architecture speed is related to model size, and to properly compare different architectures, the
above mentioned tradeoff between model size, corresponding speed, and prediction accuracy needs to be explored.

We also identified several technical pitfalls encountered during the TEA Challenge 2023. While direct communi-
cation with MLFF architecture developers allowed us to resolve most issues, this may not be available for ordinary
users to such an extent.

Overall, the TEA Challenge 2023 demonstrated notable progress in MLFFs over the past decade, achieving new
standards for accuracy and stability. However, continued innovation and optimization are essential to fully realize
the potential of MLFFs in practical applications, ensuring reliable and efficient simulations across a broad spectrum
of chemical systems. An in-depth analysis and discussion of the MD simulation results is available in the follow-up
paper “Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces: Molecular Dynamics
in the TEA Challenge 2023”.
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