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Abstract 16 

Activity-based protein profiling (ABPP) is a chemoproteomic technique that uses chemical 17 

probes to label active enzymes selectively and covalently in complex proteomes. Competitive 18 

ABPP, which involves treatment of the active proteome with an analyte of interest, is especially 19 

powerful for profiling how small molecules impact specific protein activities. Advances in higher 20 

throughput workflows have made it possible to generate extensive competitive ABPP data across 21 

various biological systems and treatments, making this approach highly appealing for 22 

characterizing shared and unique proteins affected by perturbations such as drug or chemical 23 

exposures. To use the competitive ABPP approach effectively to understand potential adverse 24 

effects of chemicals of concern, a wide range of concentrations may be needed, particularly for 25 
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chemicals that may lack toxicity data. In this work, we present an integral competitive ABPP 26 

method that enables target sensitivity differentiation across a wide range of concentrations for the 27 

model organophosphate (OP), paraoxon. Using previously developed OP-ABPs, we optimized 28 

conditions for tandem mass tag (TMT) multiplexing of ABPP samples and compared conventional 29 

competitive ABPP involving discrete samples at various paraoxon concentrations with pooling of 30 

samples across that same concentration range. The results show that small vs. large differences in 31 

integral intensities for the competitive sample can be used to distinguish low vs. high sensitivity 32 

proteins, respectively, without increasing the overall number of samples. We envision the integral 33 

ABPP method will provides a means to screen diverse chemicals more rapidly to identify both 34 

highly sensitive and less sensitive protein targets. 35 

 36 

Introduction 37 

Activity-based protein profiling (ABPP) is a powerful chemoproteomic technique that 38 

enables specific identification of functionally active proteins in mixed proteomes. ABPP uses 39 

small molecule tools called activity-based probes (ABPs) that covalently react with target enzymes 40 

in a mechanism-specific manner. While ABPs must be individually synthesized for different 41 

enzyme classes, competitive ABPP, in which a sample is pretreated with a chemical of interest to 42 

identify changes in activity (Figure 1A), enables assessment of the functional impact of chemicals 43 

in diverse biological samples. Competitive ABPP has been used widely to evaluate the interaction 44 

of protein targets with chemicals ranging from drugs,1-3 pesticides,4-6 pollutants, and more.7, 8 45 

However, the selection of competitor concentrations remains a critical consideration for 46 

determining the practical significance of proteins identified using this method, bringing to mind 47 

the toxicology adage Sola dosis facit venenum (“the dose makes the poison”).9 Unrealistically high 48 

concentrations of chemicals may not reflect biologically relevant scenarios, while both high and 49 

low doses may represent important but different types of exposures that may affect distinct cellular 50 

pathways. Metabolism in the body also complicates our ability to perform these in vitro ABPP 51 

studies for chemicals of interest in a manner that can be readily translated to understanding the in 52 

vivo molecular level effects. Thus, competitive ABPP to inform our pharmacological or 53 

toxicological understanding of protein sensitivities toward a chemical ideally would be performed 54 

over a wide, biologically relevant concentration range. 55 
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The ongoing emergence of thousands of chemicals of concern has created a great need for 56 

target identification to understand potential mechanisms of toxicity, but limitations with sample 57 

preparation and analysis throughput make investigation of many concentrations for multiple 58 

chemicals a practical challenge in terms of cost and time for competitive ABPP. For a new 59 

chemical of concern, the relevant concentration range for toxicity may be unknown, and individual 60 

proteins may display widely disparate sensitivities. Recent advancements in streamlining and 61 

automation of chemoproteomic sample preparation workflows have now made it possible to 62 

generate samples in a higher throughput manner compared to traditional manual methods.10-12 63 

Despite these significant improvements in sample preparation, chemoproteomic sample analysis 64 

by liquid chromatography tandem mass spectrometry (LC-MS/MS) remains a significant 65 

bottleneck. The availability of isobaric labeling using tandem mass tag (TMT) reagents to 66 

multiplex LC-MS/MS samples up to 18-fold13 has provided avenues to increasing throughput of 67 

ABPP data generation. TMT labeling has been demonstrated in combination with various 68 

chemoproteomic tools, including cysteine- and other reactive probes for nucleophilic residues,14, 69 

15 metabolic labeling probes,16 and ABPs17, 18 However, requirements for TMT plex design impose 70 

practical limitations on how many samples can be multiplexed at a time (Figure 1B). Performing 71 

competitive ABPP for multiple competitor concentrations across multiple chemicals of concern 72 

therefore remains costly in terms of instrument run times and resources required to process each 73 

individual sample. 74 

To increase analytical throughput without compromising on the number of concentrations 75 

that can be profiled, we explored an integral competitive ABPP method (Figure 1C), inspired by 76 

the proteome integral solubility assay (PISA) approach developed for thermal proteome profiling 77 

of protein structure.19 The integral approach enables profiling of a broad competitor concentration 78 

range, where pooling samples collapses the competitor samples into a single protein sample for 79 

enrichment. After optimizing a TMT labeling protocol for OP-ABPs in mammalian tissue lysates, 80 

we demonstrate integral competitive ABPP using the fluorophosphonate ABP FP2 to evaluate the 81 

impact of the OP pesticide paraoxon on serine hydrolase functions in rodent tissue homogenates.20 82 

This approach dramatically decreases the number of samples that must be enriched and TMT 83 

labeled, yielding significant savings in terms of sample preparation time and reagent costs. We 84 

envision that this approach will allow for higher throughput screening of chemicals of interest 85 

while also providing quantitative data that can distinguish highly sensitive protein targets from 86 
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less sensitive proteins. We anticipate that the increased depth of data that can be achieved using 87 

this method will deliver important new insights into the biological impact of specific proteins in 88 

diverse systems, from pharmaceutical research to toxicology. 89 

 90 

 91 

Figure 1. (A) Competitive activity-based protein profiling (ABPP) workflow for identifying 92 

proteins in a complex proteome that are functionally impacted by a chemical of concern (CoC). 93 

Treatment of active proteins with the chemical of concern blocks binding of the activity-based 94 
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probe (ABP), reducing detection of probe-labeled protein targets. Conventional (B) and integral 95 

competitive ABPP (C) workflows, which include ABP only and “no probe” (NP) positive and 96 

negative controls, respectively. Tandem mass tag (TMT) labeling enables sampling multiplexing 97 

for both approaches, while pooling competition samples across a range of concentrations increases 98 

throughput for the integral ABPP. 99 

 100 

Methods 101 

Materials 102 

FP2 probe was synthesized according to Wiedner et al.20 Probe was prepared in dry DMSO and 103 

stored at -80 °C as single-use 50 mM aliquots to minimize freeze-thaw cycles. Chemicals and 104 

reagents were purchased from ThermoFisher, VWR, and Vector Labs, and used without further 105 

purification. 106 

 107 

Conventional competitive ABPP 108 

Mouse lung lysate (800 µL, 2 mg/mL total protein concentration) was added to deep well 109 

plates (1 mL) and treated with ethanol (vehicle) or different concentrations of paraoxon in ethanol 110 

(0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 10 µM) separately at 37 °C for 30 min. FP2 probe (10 µM) was 111 

added to each well and incubated at 37 °C for 1 h on a thermoshaker. No probe (NP) control 112 

(DMSO; 2% v/v) and probe only control reactions were also prepared. All samples were prepared 113 

in triplicate. 114 

 115 

Integral competitive ABPP 116 

Mouse lung lysate (100 µL, 2 mg/mL total protein concentration) was added to deep well 117 

plates (1 mL) and treated with eight different concentrations of paraoxon in ethanol (0.01, 0.05, 118 

0.1, 0.2, 0.5, 1, 5, 10 µM) separately at 37 °C for 30 min. FP2 probe (10 µM) was added to the 119 

treated lysates and incubated at 37 °C for 1 h on a plate thermoshaker. Each of the eight different 120 

paraoxon concentrations treated lysate reactions (100 µL) were pooled to have integral competitive 121 

proteome (total volume 800 µL). No probe control (DMSO) and probe only control reactions also 122 
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carried out in 8 x 100 µL fractions and pooled. All integral competitive ABPP samples were 123 

prepared as technical replicates of four. No probe and probe only reactions were prepared in 124 

triplicate. 125 

 126 

Proteomics sample preparation 127 

Click chemistry. After probe incubations were complete, all probe-labeled protein lysates were 128 

subjected to copper-catalyzed click chemistry by adding biotin azide (30 μM), followed by sodium 129 

ascorbate (5 mM), THPTA (2.8 mM), and copper sulfate (4 mM). The reactions were incubated in 130 

the dark for 1 h at 37 °C on a thermal shaker. Following the incubation, excess rhodamine was 131 

removed by precipitating the protein using cold methanol (1:4 v/v, sample:methanol). Methanol 132 

added samples were placed in the -80 °C freezer for overnight followed by centrifugation at 10,500 133 

× g at 4 °C for 10 min, and the supernatant was discarded. The samples were allowed to air dry 134 

with caps open for about 15 min. Proteins were resolubilized by adding SDS in 1x PBS (1.2%, 520 135 

μL), heated at 95 °C for 2 min, and sonicated 12 sec, 1 sec on/off, with 60% amplitude. The 136 

samples were centrifuged at 10,500 × g at 4 °C for 5 min to remove insoluble material. Supernatant 137 

was carefully transferred to new centrifuge tubes leaving any pellet behind. The solubilized protein 138 

concentration was determined by BCA assay and concentration was normalized using 1.2% SDS 139 

in PBS. Samples were normalized to 1200 µg of total protein in 650 µL volume. 140 

Samples were enriched on streptavidin-agarose resin, reduced and alkylated, and trypsin digested. 141 

Detailed methods for these steps are provided in the Supporting Information. 142 

Tandem mass tag (TMT) labeling. Experiments testing TMT labeling conditions for 143 

optimization of methods is described in the Supporting Information. Peptides were removed from 144 

the -80 °C freezer and allowed to warm to room temperature. Then, the samples were reconstituted 145 

in 20 μL of 50% acetonitrile in HPLC grade water. For TMT 10-plex, the isobaric label reagents 146 

(Fisher PI90406) were reconstituted in anhydrous acetonitrile to a 17 μg/μL concentration solution 147 

per tag, and 3 μL was added to the corresponding sample. For TMT 18-plex, the isobaric label 148 

reagents (Fisher A52047) were reconstituted in anhydrous acetonitrile to 20 μg/μL per tag, and 2.5 149 

μL was added to the corresponding sample. The samples were then vortexed, briefly centrifuged, 150 

and then incubated at 25 °C for 1 hour at 400 rpm. The reactions were then quenched by adding 2 151 
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μL of 5% hydroxylamine and incubated for 15 minutes at 25 °C and 400 rpm. After quenching, 152 

equal volumes from each sample in the TMT10-plex were combined. The combined samples were 153 

completely dried in a SpeedVac concentrator. After the samples were dry, they were reconstituted 154 

in 100 μL of 8% formic acid/5% acetonitrile in HPLC grade water. 155 

 156 

LC-MS/MS 157 

ABPP samples were analyzed using a Waters nanoAcquity ultra performance liquid 158 

chromatography (UPLC) system connected to a Q Exactive Plus Orbitrap mass spectrometer 159 

(Thermo Scientific, San Jose, CA). Samples were loaded into a precolumn (150 μm i.d., 4 cm 160 

length, packed in-lab with Jupiter C18 packing material, 300 Å pore size, 5 μm particle size; 161 

Phenomenex, Torrance, CA, USA) using mobile phase A (0.1% formic acid in water). The 162 

separation was carried out in a LC column (packed in-lab into an empty self pack NanoLC column 163 

(CoAnn Technologies, Richland, WA) 75 µm i.d., 30-cm column with Waters BEH C18 packing 164 

material, 130-Å pore size, 1.7 µm particle size (Waters Corporation, USA)) at a flow rate of 200 165 

nL/min using a 60 min gradient of 1-75% mobile phase B (acetonitrile + 0.1% formic acid) for 166 

mouse lung tissue IABPP samples. To prevent carryover, the column was washed with 95-50% 167 

mobile phase B for 20 min and equilibrated with 1% mobile phase B for 30 min before the next 168 

sample injection. The mass spectrometer source was set at 2.2 kV, and the ion transfer capillary 169 

was heated to 300 °C. The data-dependent acquisition mode was employed to automatically trigger 170 

the precursor scan and the MS/MS scans. The MS1 spectra were collected at a scan range of 300-171 

1800 m/z, a resolution of 70,000, an automatic gain control (AGC) target of 3×106, and a maximum 172 

injection ion injection time of 20 ms. For MS2, top 12 most intense precursors were isolated with 173 

a window of 1.5 m/z and fragmented by higher-energy collisional dissociation (HCD) with a 174 

normalized collision energy at 30%. The Orbitrap was used to collect MS/MS spectra at a 175 

resolution of 17,500, a maximum AGC target of 1×105, and maximum ion injection time of 50 ms. 176 

Each parent ion was fragmented once before being dynamically excluded for 30 s. 177 

 178 

Data analysis 179 
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The three TMT10 datasets for conventional ABPP were searched using MSGF+24 against 180 

the mouse protein database (UniProt for Mus musculus, downloaded on 03-01-2024) with the 181 

following parameters: parent ion tolerance of 20 ppm; methionine oxidation (+15.9949 Da) as a 182 

dynamic modification; cysteine alkylation (+57.0215 Da) and TMT-labeling of lysine and N-183 

terminal peptides (+229.1629 Da) as static modifications. The same searching parameters were 184 

used for the TMT18 dataset for the IABPP experiment except the TMT mass was set to 185 

+304.207146. The MSGF+ search results were linked to the MS/MS Automated Selected Ion 186 

Chromatogram generator (MASIC)25 reporter ion quantification and aggregated to protein level 187 

using PlexedPiper (https://github.com/vladpetyuk/PlexedPiper). To identify target proteins in the 188 

conventional competitive ABPP datasets, the following criteria were used: 1) quantified in all three 189 

TMT sets; 2) the signal to noise (S/N), defined as the TMT intensity ratio between the FP2 ABP 190 

channel and the “no probe” control, was > 2 in at least one of the three replicates; and 3) the 191 

competition ratio (CR), defined as the TMT intensity ratio between the paraoxon-treated samples 192 

and the ABP channel, was < 0.8. Since paraoxon of eight concentrations were included in each 193 

TMT set, CR was determined by calculating the area under the curve (AUC) of the plot between 194 

competitor concentrations (x axis) and relative protein abundance (y axis, Figure 3). Relative 195 

protein abundance was obtained by scaling the TMT intensity of competitor channels to that of the 196 

ABP channel. For each protein, a response curve was constructed by connecting the relative 197 

abundance across nine experimental conditions (ABP and competitor concentrations 1-8). No 198 

curve fitting was performed. The response curve was then enclosed by two vertical lines (one 199 

intersecting the ABP and the other at the highest concentration) and a horizontal line at y= 0, 200 

forming a polygon (light blue shade in Figure 3). The area of this polygon was subsequently 201 

calculated using Gauss's area formula in R. For the IABPP datasets, S/N and CR were calculated 202 

using the mean of replicates within the same TMT set, and the same cutoffs were used to identity 203 

target proteins.  204 

 205 

Results 206 

To enable higher throughput analyses of ABPP samples, we optimized TMT labeling 207 

conditions for OP-ABPs using different TMT tag to peptide ratios (see Supporting Information). 208 

From the three TMT conditions tested, TMT 50:1, in which TMT tag to peptide ratio was 50:1 209 
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(w/w), produced the best results overall. While TMT 10:1 resulted in the highest number of scans 210 

searched, it was outperformed by TMT 50:1 in the number of peptide-to-spectrum matches 211 

(PSMs), as well as unique peptide and protein identifications (Figure 2A); TMT50 conditions 212 

resulted in 95% labeling efficiency (Figure 2B). Even though TMT 100:1 resulted in a modestly 213 

higher labeling efficiency than TMT 50:1, it led to inferior number of scans and PSMs, as well as 214 

fewer unique peptide and protein identifications. Overall, fewer unique peptides and proteins were 215 

identified by ABPP-TMT compared to the label-free ABPP approach, although many of the shared 216 

protein targets identified by both methods represented the “strongest” targets, i.e. those with the 217 

highest fold changes for competitive ABPP (Figure 2C-D). 218 

 219 

 220 

Figure 2. Comparison of competitive ABPP for paraoxon targets in rat liver homogenates 221 

using a label-free approach or TMT labeling. A) MS-GF+ outputs for TMT tag to peptide w/w 222 

ratios of 10:1 (TMT 10:1), 50:1 (TMT 50:1), and 100:1 (TMT 100:1). Peptide to spectrum matches 223 

(PSMs), unique peptides, and unique proteins were filtered at MS-GF+ < 1x10-10. Bars each 224 

represent calculated values for one TMT 10plex containing one pooled reference sample and three 225 
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replicates from the three ABPP groups (“Probe,” “Competition,” and “No Probe”) prior to de-226 

multiplexing. B) Calculated TMT labeling efficiency for each tested ABPP-TMT condition. C) 227 

Numbers of proteins identified in each of the three ABPP groups for label-free and TMT 50:1 228 

methods. Adjusted P values for *, ***, and **** were < 0.05, < 0.001, and < 0.0001, respectively. 229 

D) Volcano plots of proteins identified for the label-free and TMT 50:1 methods in paraoxon 230 

competition ABPP labeling of rat liver homogenates. Only proteins for which a Welch’s t-test 231 

could be performed are shown; presence/absence data are presented in Figure S4. Points above 232 

horizontal and to the right of vertical red lines represent statistically significant protein targets 233 

(horizontal line adjusted p value = 0.05; vertical line fold-change = 2). Selected known protein 234 

targets of paraoxon are labeled. 235 

 236 

Conventional competitive ABPP was performed using the optimized TMT 50:1 labeling 237 

conditions in mouse lung tissue homogenate across a nanomolar to micromolar range of paraoxon 238 

followed by labeling with FP2. Paraoxon concentrations were selected based on fluorescent gel 239 

analysis of FP2 labeling in mouse lung, which showed various protein bands that decreased in 240 

intensity over this concentration range (Figure 3B). Conventional competitive ABPP performed 241 

at these discrete paraoxon concentrations yielded individual data points that clearly showed protein 242 

sensitivity differences at higher or lower concentrations of paraoxon. To compare conventional 243 

ABPP to integral ABPP, we calculated the area under the curve (AUC) for the conventional ABPP 244 

plots (Figure 3D). We used an AUC cutoff of 0.8 to identify proteins that were competed by 245 

paraoxon at the tested concentration range. More sensitive protein targets such as 246 

butyrylcholinesterase (CHLE) had smaller AUC values, and less sensitive protein targets such as 247 

monoacylglycerol lipase (MGLL) had larger AUC. Acyl-CoA thioesterase 1 (ACOT1), which is 248 

a serine hydrolase and has been previously identified using other fluorophosphonate ABPs,26, 27 249 

had a calculated AUC of 0.89 and was therefore not identified as a significant paraoxon protein 250 

target in these experiments. 251 
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 252 

Figure 3. Conventional competitive ABPP. (A) Mechanism of enzyme inhibition by OP toxicants 253 

and structures of chemical of concern (CoC) and activity-based probe (ABP) used for comparison 254 

of competitive ABPP methods. (B) Fluorescence gel image for FP2 (10 µM) labeling of mouse 255 

lung tissue lysate treated over a nanomolar to micromolar concentration range of paraoxon. Probe 256 

only (0 µM paraoxon) positive control and no probe (NP) negative control lanes represent highest 257 

and lowest fluorescence from FP2 labeling, respectively. (C) Conventional competitive ABPP 258 

study design, where each sample is a separate channel in a TMT plex. (D) Example conventional 259 

competitive ABPP results for selected protein targets displaying differential sensitivities toward 260 

paraoxon. Plots of relative abundance for probe only (ABP, with ethanol vehicle control), and 261 

paraoxon competitor at 8 different paraoxon concentrations in ascending order (0.01, 0.05, 0.1, 262 

0.2, 0.5, 1, 5, 10 µM). Area under the curve (AUC) is quantified for each protein. 263 
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 264 

A comparison of the top protein targets from the conventional and the integral competitive 265 

ABPP approach showed overlap of 11 proteins known to be targets of organophosphates such as 266 

paraoxon (Figure 4B). In mouse lung tissue, we identified butyrylcholinesterase (CHLE) as a more 267 

sensitive protein target, along with several carboxylesterases (CES2G, EST1, EST1C, EST1D, 268 

EST1E, EST1F). Another well-known protein target of paraoxon, monoacylglycerol lipase 269 

(MGLL), was identified as a moderately sensitive protein target, while hormone-sensitive lipase 270 

(LIPS) was the weakest target identified in both ABPP methods. A comparison of conventional 271 

ABPP calculated AUC values with integral ABPP intensity differences showed good correlation 272 

(r = 0.89) between the shared 11 protein targets. 273 

 274 

 275 

Figure 4. Integral ABPP (IABPP) results in mouse lung tissue homogenate for paraoxon. (A) 276 

IABPP allows for multiplexing of multiple replicates for pooled competition samples with no 277 

probe (NP) negative control and ABP positive control samples into a single sample. (B) Venn 278 

diagram of proteins significantly competed by paraoxon treatment (0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 279 
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10 µM) for IABPP and conventional ABPP methods (C) Selected proteins identified by the IABPP 280 

approach and their integral intensity differences between ABP and pooled competition samples 281 

across paraoxon treatment. (D) Correlation plot of integral intensity differences for IABPP and 282 

area under the curve (AUC) for conventional ABPP. 283 

 284 

Of the eight proteins identified by integral ABPP but not conventional ABPP as statistically 285 

significant protein targets of paraoxon (Figure 4B-C), we found that 6 of these proteins were also 286 

observed in the conventional ABPP dataset but did not pass the criteria for paraoxon competition 287 

(AUC > 0.8) (Figure S2). Some of these proteins, such as protein phosphatase methylesterase 1 288 

(PPME1), dipeptidyl peptidase 9 (DPP9), and lysosomal phospholipase A and acyltransferase 289 

(PAG15), are members of the alpha/beta hydrolase superfamily and contain catalytic serines.27 290 

These proteins were among those identified in our previous study using OP-ABPs with higher 291 

concentrations of paraoxon (50 µM) in rat brain and liver tissues.5 Glutathione S-transferase mu 1 292 

(GSTM1) and mu 2 (GSTM2), which were also identified by IABPP but not determined to be 293 

significant targets by conventional ABPP, were previously identified using OP-ABPs.28 294 

 295 

Discussion 296 

Chemoproteomic sample throughput has greatly benefitted from recent advancements in 297 

sample preparation workflow automation and isobaric tagging that places a specific “barcode” on 298 

peptides from a single sample, enabling multiplexing of multiple samples into a single LC-MS/MS 299 

run. Optimizing TMT labeling for our traditional ABPP workflow allows us to compare three 300 

technical replicates treated at eight concentrations of paraoxon with corresponding controls in just 301 

three total LC-MS/MS samples using a TMT 10plex. Our optimization of TMT labeling conditions 302 

for post-enriched ABPP samples indicated that a relatively higher ratio of TMT reagent to peptide 303 

was required for high TMT labeling efficiency, as recommended by Zecha et al. for peptide 304 

quantities below 10 micrograms.13 Unlike global proteomics samples, post-enrichment ABPP 305 

samples are highly reduced in complexity and contain much lower quantities of peptide, making 306 

these samples more comparable to single cell or other limited protein samples than bulk global 307 

proteomics.29 In our research, peptide quantitation of ABPP samples has typically yielded low 308 
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micrograms to hundreds of nanograms of peptide, depending upon the probe and biological 309 

system. TMT kit manufacturer’s protocols describe labeling conditions for 10-25 micrograms of 310 

peptides and do not recommend using this assay for peptide mixtures that are less than 1 311 

microgram, suggesting thorough optimization of TMT labeling for low peptide ABPP samples 312 

may still be a work in progress. 313 

We performed a comprehensive evaluation of TMT labeling conditions for OP-ABPs in two 314 

types of rat tissues to ensure we could achieve high labeling efficiency and good proteome 315 

coverage while minimizing usage of these expensive reagents. Even though others have reported 316 

optimized methods for global proteomics that enable reduction of the TMT tag:peptide ratio to as 317 

low as 1:1 w/w,13 we found that 50:1 yielded the best results for enriched OP-ABP samples 318 

containing low microgram quantities of protein. In 2022, Guo et al. published a protocol for TMT 319 

labeling of top-down proteomics samples that recommended a double labeling strategy using 4:1 320 

TMT tag:peptide for limited samples30 which may provide a means to reduce TMT reagent usage 321 

in future OP-ABPP studies. Overall, using a TMT10-plex enabled a 9-fold reduction in LC-MS 322 

samples, a critical improvement in terms of savings and instrument resources. Unsurprisingly, the 323 

label-free approach produced higher protein target identifications than TMT, as has been 324 

previously reported by systematic studies comparing these methods.31 Nonetheless, the increased 325 

throughput of TMT labeling for ABPP, particularly for large numbers of samples, makes the ABPP 326 

TMT approach advantageous despite potential drawbacks with coverage and missingness. 327 

In our previous work with OP-ABPs, label free competitive ABPP frequently yielded proteins 328 

which were completely competed by OP treatment at a single, high dose concentration.5 Missing 329 

values in proteomics data are common and present a challenge for quantitative comparison across 330 

proteins, since a fold change value based on intensities cannot be calculated. While various data 331 

imputation methods have been explored for missing values in proteomics data, we still lack 332 

appropriate methods that can account for variance in peptide quantifications.32 ABPP TMT yielded 333 

few proteins that were not observed in the competitor sample, i.e. fewer missing values, which has 334 

been previously noted for TMT labeling compared to label-free approaches.33 Since the integral 335 

approach includes very low concentrations of competitor, we also anticipate that the pooled 336 

competitor sample is less likely than a single, high dose competitor sample to yield missing values 337 

for most proteins, unless the protein target is especially sensitive. In this study, no proteins had 338 
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missing values for the pooled competitor sample, and we were therefore able to calculate fold 339 

changes for all statistically significant protein targets. Thus, the integral approach is more robust 340 

than single, high dose competitor treatment for quantitative comparison of protein target sensitivity 341 

in these complex samples. 342 

 Proteins that were determined to be sensitive targets of paraoxon in mouse lung based on 343 

the integral ABPP method included many proteins known to be inhibited by paraoxon and other 344 

OPs. The reported IC50 value of paraoxon for mouse CHLE is 24 ± 2.8 nM,34 while the paraoxon 345 

IC50 of mouse MGLL is about 100-fold higher, at 2 ± 1.1 µM.35 Rodent carboxylesterases, which 346 

are known to be inhibited by various OPs,36 may have a protective effect under certain exposure 347 

scenarios due to differences in reactivity between carboxylesterases and the primary target 348 

affecting OP toxicity, acetylcholinesterase.37 Rodents also possess twenty carboxylesterases, due 349 

to tandem gene duplication, compared to the six human carboxylesterase genes.38 Rodents can 350 

survive much higher OP doses compared to humans, and efforts to engineer carboxylesterase 351 

knockout mouse models have therefore been pursued for better animal to human translation.38 Our 352 

integral ABPP work is consistent with these observations that carboxylesterases are both abundant 353 

and sensitive toward OPs in rodent tissues and highlights the potential utility of integral ABPP for 354 

characterizing protein target sensitivities across different protein targets, animal models, and 355 

chemicals of concern to assess mechanisms of toxicity in greater detail than previous possible. 356 

 There were several proteins known to have serine hydrolase functions that were labeled by 357 

the FP2 ABP but were not determined to be statistically significant protein targets of paraoxon at 358 

the concentration range tested through either integral or conventional competitive ABPP. We did 359 

not investigate concentrations of paraoxon > 10 µM due to our interest in identifying particularly 360 

sensitive protein targets for this initial study; expanding the range of competitor in the future may 361 

help differentiate proteins that are more truly non-targets from very weak targets. Furthermore, 362 

our filtering criteria that required observations in all 3 technical replicates may have removed some 363 

proteins of interest. Future experiments including more replicates may improve target 364 

identification, particularly for lower abundance proteins. 365 

 Quantitative information about target sensitivity (e.g. IC50) cannot be derived using the 366 

integral ABPP approach, but specific biochemical assays of isolated proteins are likely better 367 

suited to such detailed validation. In this study on OPs, all proteins identified through the integral 368 
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ABPP method were inhibited by the OPs over the selected concentration range, and no proteins 369 

were observed that showed increased OP-ABP labeling after OP treatment. Notably, protein 370 

targets that have opposite responses at high vs. low concentrations of competitor, such as proteins 371 

where one occupancy of an allosteric binding site influences the binding at the active site, would 372 

not be readily discernible through the integral ABPP method. In such situations, SDS-PAGE 373 

remains a low cost, rapid means to assess samples qualitatively for proteins that may display such 374 

responses, but further investigation is required to understand how those less predictable protein 375 

targets should be addressed. 376 

 In this work, we have demonstrated integral ABPP as a higher throughput chemoproteomic 377 

profiling approach that provides more information about target sensitivity than standard 378 

competitive ABPP without increasing sample numbers. The ability to profile wider concentration 379 

ranges in a higher throughput manner will advance our ability to identify potential key protein 380 

targets of diverse chemicals more rapidly and prioritize proteins of interest based on their overall 381 

sensitivity. Although not tested here, we anticipate this integral ABPP method will be applicable 382 

to other types of in vitro treatment samples, including live cells and fractionated samples such as 383 

microsomes or synaptosomes, which may enhance sensitivity for specific proteins that are more 384 

abundant in those subcellular fractions. 385 
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