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Abstract

The logarithm of the partition coefficient (logP) between water and a nonpolar
solvent is useful for characterizing a small molecule’s hydrophobicity. For example,
the water-octanol logP is often used as a predictor of a drug’s lipophilicity and/or
membrane permeability, good indicators of its bioavailability. Existing computational
predictors of water-octanol logP are generally very accurate due to the wealth of exper-
imental measurements, but may be less so for other non-polar solvents such as toluene.
In this work, we participate in a Statistical Assessment of the Modeling of Proteins and
Ligands (SAMPL) logP challenge to examine the accuracy of a molecular simulation-
based absolute free energy approach to predict water-toluene logP in a blind test for
sixteen drug-like compounds with acid-base properties. Our simulation workflow used
the OpenFF 2.0.0 force field, and an expanded ensemble (EE) method for free energy
estimation, which enables efficient parallelization over multiple distributed computing
clients for enhanced sampling. The EE method uses Wang-Landau flat-histogram sam-
pling to estimate the free energy of decoupling in each solvent, and can be performed

in a single simulation. Our protocol also includes a step to optimize the schedule
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of alchemical intermediates in each decoupling. The results show that our EE work-
flow is able to accurately predict free energies of transfer, achieving an RMSD of 2.26
kcal/mol, and R? of 0.80. An examination of outliers suggests that improved force field
parameters could achieve better accuracy. Overall, our results suggest that expanded

ensemble free energy calculations provide accurate first-principles logP prediction.

The logarithm of the partition coefficient (logP) between water and a nonpolar solvent
is a highly useful molecular property in medicinal chemistry and pharmacology. LogP mea-
surements for water/octanol partitioning are commonly used to characterize the lipophilicity
of drug-like molecules, which can strongly influence their bioavailability and affinity for their
targets. Therefore, there is great interest in developing accurate computational methods to
predict logP, either by empirical or physics-based methods.t

The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) series of chal-
lenges provides an opportunity for research groups to objectively evaluate various methods,
through blind prediction of unpublished logP measurements.’™® SAMPL has also hosted

10 and distribution

blind prediction challenges for host—guest affinities,*® pK, prediction,®
coefficients (logD).™! In each case, blind prediction offers the opportunity to examine the
accuracy of state-of-the-art methods and to assess where current methods can be improved.

In the previous SAMPL7 logP assessment, challenge participants predicted the water-
octanol partition coefficients of 22 molecules, all of which contained sulfonamide groups.*
The 33 blind predictions of logP submitted for SAMPLT were classified as empirical, physical
QM (quantum mechanics) or physical MM (molecular mechanics). Although methods that
achieved a root-mean-squared error (RMSE) of less than 1.0 logP units were mostly empirical,
wide interest remains in testing and improving physics-based methods, as these methods
should ideally be able to predict logP values from first principles, even in the absence of
empirical training data.

Toward this end, we evaluated the accuracy of a molecular simulation approach using

expanded ensemble free energy methods to predict logP values.
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An expanded ensemble free energy approach to logP prediction

In our expanded ensemble (EE) free energy method, a double-decoupling approach is used
to compute the free energy of transfer from vacuum to solvent, through an alchemical trans-
formation in which the nonbonded interactions (electrostatics and van der Waals) are turned
off. Given estimated values of AGy, and AG,,, the solvation free energies in toluene and

water, respectively, the toluene partition coefficient is calculated as

AGio — AGy

0810 Frotyw = = RT(In 10) (1)

Expanded Ensemble method. The EE method used here is described in previous works. 144

The key feature of EE is the ability to sample multiple thermodynamic ensembles in a sin-
gle simulation. A coupling parameter \; € [0,1] is used to define a series of : = 1,..., N
thermodynamic ensembles where A\; = 0 defines an ensemble with fully-scaled nonbonded
interactions, and Ay = 1 defines an ensemble where the nonbonded interactions are scaled
to zero. Soft-core potentials are used to avoid numerical singularities.

Throughout an EE simulation, a Markov Chain Monte Carlo (MCMC) procedure is used
to accept or reject moves between thermodynamic ensembles defined by A\; and A;. The
Wang-Landau flat-histogram method"?19 is used to adaptively learn the values of constant
biases — f; which, when applied to each thermodynamic ensemble i, results in equal prob-
abilities for ¢ — 7 and j — ¢ transitions. When this is achieved, the free energy of the
A = 0 — 1 transformation is estimated as fy — fi. The EE algorithm is available in the
GROMACS simulation package."” Recent extensions of the EE method have been proposed
that combine replica exchange with expanded ensemble sampling,**1? but we do not utilize
those approaches here.

Because the EE method estimates free energies using a single simulation replica, it is
ideally suited for distributed computing applications with an asynchronous client-server

model. Our group has recently leveraged Folding@home“” to perform massively parallel
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virtual screening using EE methods."## Through this work, several methodological issues
with have been identified, which are ongoing challenges to be actively addressed. One issue
is that the Wang-Landau flat-histogram method results in “saturation of the error” that can
lead to premature convergence for fast learning rates.*® This issue can be compounded by
slow convergence due to high-energy barrier conformational transitions in the molecules being
decoupled. To deal with these issues, we have found that convergence times and uncertainties
of free energies can be estimated by simulating multiple independent EE trajectories. 243
The other major issue with the EE approach is its sensitivity to the chosen schedule of
A; values. Poor selection of these values can lead to poor MCMC acceptance rates, which in
turn causes the simulation to need more time to converge (and potentially error-saturate).
To choose optimal schedules for \;, we have devised the pylambdaopt algorithm,*® which uses

a preliminary round of sampling to infer \; values that maximize transition rates between

all neighboring thermodynamic ensembles.

Methods

We performed blind predictions of log, Pio1/w for the sixteen molecules shown in Figure
as part of the SAMPL9 logP challenge. A three-part workflow was implemented to (1)
prepare systems, (2) perform expanded ensemble simulations on Folding@home and Temple
University high-performance computing (HPC) cluster, and (3) analyze the results. All
simulations were preformed using GROMACS 2020.3 or GROMACS 2020.4.1°

System preparation

Molecular topologies. SMILES strings provided by SAMPL9 were converted to three-
dimensional chemical structures using the Openeye toolkit.* From these, molecule topologies
using the OpenFF 2.0.0 force field?® were constructed using the Open Force Field Toolkit.*4

Partial charges were assigned using AM1-BCC.*? For simulations in aqueous solvent, the
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Figure 1: Molecular structures of the molecules in the SAMPL9 logP blind challenge:
(1) Albendazole, (2) Alprenolol, (3) Amitriptyline, (4) Bifonazole, (5) Chlorpheniramine,
(6) Epinephrine, (7) Fluphenazine, (8) Glyburide, (9) Imipramine, (10) Ketoprofen, (11)
Nalidixic acid, (12) Paracetamol, (13) Pindolol, (14) Quinine, (15) Sulfamethazine and (16)
Trazodone .t
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TIP3P water model was used.“® For simulations in toluene, OpenFF 2.0.0 was used to

parameterize the toluene molecule.

Simulation Preparation. An initial solvent box volume of (6 nm)? was filled with 7029
water molecules, and an initial solvent box volume of (3.38 nm)? was filled with 216 toluene
molecules. Solute molecules were inserted into each system and restrained in the center of
the box using a harmonic restraint of 1000 kJ nm~2. Systems were energy-minimized using
steepest descent before undergoing 200 ps of NVT simulation followed by 200 ps of NPT
simulation. All simulations were performed at a temperature of 298.15 K, using velocity
Verlet integration with a 2.0-fs time step and with a velocity-rescaling thermostat. The sole
exception was for quinine solutes, which used a 1.0-fs time step to avoid instabilities. NPT
simulations used Berendsen pressure coupling. These steps were facilitated through in-house

scripts utilizing the GromacsWrapper package.”

Optimization of lambda values. After NPT equilibration, a short EE simulation was
run using a Metropolized-Gibbs MCMC criterion, with attempted moves restricted to nearest-
neighbors (i — i+1). The starting bias was 10 kg7 where kg is the Boltzmann constant and
T = 298.15 K is the temperature. Twenty lambda values were used, according to an initial
schedule found to work satisfactorily in previous work.® Simulation snapshots were saved
every 2 ps, with moves to neighboring ensembles attempted every 0.5 ps. Samples of energy
differences of snapshots between current and neighboring ensembles (Awu; ;1 and Au; i1,
stored in the dhdl.xvg output file of GROMACS) were used as input to the pylambdaopt

algorithm to obtain an optimized schedule of lambda values.

Production simulation

Production simulations were performed in GROMACS on the Folding@Home platform, with
100 independent EE replicas (with different randomized initial velocities) per calculation.

All production runs used a velocity Verlet integrator with a 2 fs time step, with the ex-
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ception of simulations for quinine, which used a time step of 1 fs , and for which 5 EE
replicas were simulated each for 200 ns on the Owlsnest HPC cluster. A velocity-rescaling
thermostat was used at a temperature of 298.15 K, and a Berendsen barostat with 2 ps
time constant was used at a pressure of 1 bar. Particle-Mesh Ewald electrostatics were used
(pme-order = 4, fourierspacing = 0.10) with nonbonded cutoffs of 0.9 nm and a long-range
dispersion correction. Hydrogen bonds were constrained using the LINCS algorithm, and
soft-core Lennard-Jones interactions were used (sc-alpha = 0.5, sc-power = 1, sc-sigma =
0.3). Coordinates and energies were saved every 50 ps.

The EE protocol used Wang-Landau flat-histogram sampling™ with an initial bias in-
crement of 6 = 10 kgT. When the histogram counts h; for thermodynamic states ¢ satisfied
n < hi/h <n~! (wheren = 0.7 and h = (1/N) Zf\il h;), the bias increment was scaled by 0.8
and all histogram counts were reset to zero. Scaling of the bias increment was discontinued

when § < 107°.

Analysis of EE simulations

EE simulations were considered to have converged when the bias increment reached a value
of 0.02 kgT. Free energies for each EE replica were estimated as the sample mean of es-
timates collected after this convergence point. Final estimates of AGy, and A, and their
uncertainties were calculated as the sample means and standard deviations across the EE
replicas. Convergence was typically reached within 50-100 ns of simulation, and trajectory

lengths typically reached 100-200 ns (Figure [2)).

Quantum Mechanical Calculations

To better understand the force field accuracy for fluphenazine, quinine and trazodone, density
functional theory (DFT) geometry optimization was performed on simulation snapshots,
using the B3LYP functional and cc-DZVP level of theory. Calculations were performed

using WebMO2® with the Gaussian 16 Revision A.03 engine.??
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Figure 2: Traces of (a) the Wang-Landau (WL) bias increment over time and (b) the de-
coupling free energy estimate over time for fifty independent EE trajectories of trazodone in
water. Panels (c¢) and (d) show the corresponding traces for trazodone in toluene.

Results and Discussion

EE accurately predicts toluene—water partition coefficients

Predicted transfer free energies from water to toluene, AG = AG;, — AG,,, show accurate
agreement with experimental measurements made by Zamora et al.?? (Figure . Our sub-
mitted predictions had a root-mean-squared deviation (RMSD) of 2.26 kcal/mol, a mean
signed error (MSE) of 1.09 kcal/mol, a mean unsigned error (MUE) of 1.75 kcal/mol, and a
correlation coefficient of R? = 0.80.

Compared to the other blind predictions submitted by the participants in the SAMPL9
logP challenge, our EE predictions ranked eighth out of 18 total entries by RMSD (Fig-
ure 4h). As in the SAMPL7 logP challenge, ™ empirical methods and physics-based QM
methods generally outperformed physics-based MM methods, although the top-ranked pre-
diction (RMSD of 1.52 kcal/mol) was from a MM-PBSA method.®¥ Of the nine submitted
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Figure 3: Predicted free energies of transfer from water to toluene, AGp,eq, versus experi-
mental values, AG.y,, measured by Zamora et al.""

predictions from physics-based MM methods, our EE predictions ranked third.

Besides absolute prediction of partition coefficients, we also consider the ability of predic-
tions to correctly rank-order the collection of logP values relative to each other. To quantify
this, we used as a statistic the Spearman’s rank correlation coefficient, rs, which is defined

as
6 n
8:1_—§ d? 2
T n(n2_1) p i) ()

where n = 16 is the number of ranked items (here, the number of molecules in the SAMPL9
logP challenge) and d; is the integer difference between the predicted and actual rank.

For all the Physical MM entries submitted, we calculated the value of r, and compared
it with the null distribution, which was computed using 10° random permutations of rank
orders (Figuredb). The results show that MM methods with more accurate predictions tend

to have more accurate rankings, although interestingly, none of the methods yielded rankings
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statistically significant enough to reject the null hypothesis (the smallest p-value calculated

was 0.06, for the “MD (OPLS-AA/TIP4P)” submission).
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Figure 4: Comparisons of the results of SAMPLO logP submissions. (a) Prediction accuracies
ranked by root-mean-squared deviations from experimental values. Colors denote the kind of
method used in each prediction: (black) physical MM, (blue) physical QM, (red) empirical,
and (green) mixed QM/MM methods. (b) Spearman’s rank correlation coefficients r for
Physical (MM) methods (vertical lines), plotted in relation to the computed null distribution
(blue steps).

An inspection of outliers reveals moderate force field inaccuracy
for tertiary amines

An inspection of Figure [3| reveals that the three largest discrepancies between predicted and
experimentally measured transfer free energies are for fluphenazine (7), quinine (14), and tra-
zodone (16), with unsigned errors of 5.36, 6.31, and 4.35 kcal /mol, respectively. In all cases,

EE predictions underestimate these transfer energies, which means that these molecules are

predicted to more favorably partition into toluene than experimentally measurements show.
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A commonality shared by these outliers is the presence of non-aromatic nitrogen hetero-
cycles. In contrast, bifonazole (4) and nalidixic acid (11) both contain aromatic nitrogen
heterocyclics, and have predicted transfer free energies that are closer to experiment (0.48
and 1.93 kcal/mol unsigned error, respectively).

To examine the extent to which slow conformational sampling could be the cause of large
discrepancies for these outliers, we examined the simulated trajectories for these molecules
(data not shown). In all cases, dihedral angles incorporating non-aromatic nitrogens show
chair-to-chair conversions on the 10-100 ns timescale. This observation, and the similar
convergence across all EE simulations (see Figure , suggests that the discrepancies are not
due to poorly converged sampling from slow conformational dynamics.

Next, we examined the possibility that the outliers might arise from inaccuracies in
our chosen force field for tertiary amines. In their article describing the development
and performance of the OpenFF Sage 2.0.0 force field, Boothroyd et al. (2023) mention
large differences in improper torsion angles between MM- and QM-optimized minima.
The largest of these is for the nitrogen-centered improper i4, defined by SMIRKS string

([*:1]~ [#7X3] (*~ [#6X3]) : 2] (" [*:3]1) " [*:4]1") , although several others (il, i3, i5)
also show deviations. The i4 torsion parameter is difficult to generalize since it covers in-
stances of both planar and pyramidal nitrogens. Of the three outliers, the i4 improper torsion
is assigned for one of the nitrogens in fluphenazine, and two of the nitrogens in trazodone;
it is not used for either of the quinine nitrogens.

To quantify the extent of nitrogen pyramidalization observed in the simulations of fluphenazine
(7), quinine (14), and trazodone (16), we used the Dunitz xy parameter, defined as yy =
w1 —wa + 180°, where w; and wy are two dihedral angles incorporating the (1,2)- and (1,3)-N-
substituents, respectively (Figure bp). For planar nitrogens, values of yy will be near zero,
while for a perfectly tetrahedral nitrogen, xn values will be near £60°.

For fluphenazine (Figure ), we found good agreement between the MM minima seen

in EE simulations using OpenFF 2.0 and QM minima. The sampled distribution of yy for

11
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piperazine nitrogens in the EE simulations were peaked near £45°, agreeing well with DFT
geometry-optimized snapshots from these minima (Figure ) The sampled distribution of
xn for the phenothiazine nitrogen showed planarity; the distribution was centered around
zero with a standard deviation around 20°. DFT-optimized snapshots from these simulations
indicate QM minima with xy &~ £12° (Figure p{d).

a b

H
0, Fluphenazine

N

¥
@
5

a0t

-20 0 20 - - - -20 0 20
Dunitzx (degrees) ~ Dunitz X (degrees)

Figure 5: (a) The Dunitz yy quantifies the extent of nitrogen pyramidalization using the
difference of dihedral angle w; (blue) from dihedral angle w, (magenta). (b) The molec-
ular structure of trazodone. (c) Distributions of Dunitz xy parameters x; and yo, for
the nitrogens in the piperazine group, sampled in expanded ensemble molecular dynamics
(MD) simulations of fluphenazine in water. Vertical lines denote the xy values of two QM
geometry-optimized conformations taken from the simulation. (d) Simulated Dunitz xx
distributions for the phenothiazine nitrogen, with vertical lines showing values for two QM
geometry-optimized conformations.

For the nitrogen in the quinuclidine group of quinine, we found reasonably good agree-
ment between MM and QM minima, which both showing a pyramidal nitrogen (Figure @a)
The distribution of yy is narrow (£10°) and peaked around 55°, whereas DFT geometry-
optimized snapshots have yny =~ 64°.

The greatest disagreement in nitrogen pyramidalization between MM and QM minima
was found for piperazine nitrogens in trazodone (Figure[6p). For the nitrogen with fully sp3-

hybridized substituents, the sampled distribution of y was peaked near +45°, agreeing well

12
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with DFT geometry-optimized snapshots with yy near +30° and —38°. For the nitrogen
with the aromatic substituent, simulated yy distributions are broadly centered on zero,
indicating a planar nitrogen. QM minima, however, suggest xn values near +53°, suggesting

a pyramidal nitrogen.

a b 0
Quinine @:«N Trazodone
SN _\ﬁ
N
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Dunitz x (degrees) Dunitz x (degrees)

Figure 6: (a) Distributions of Dunitz x parameters x; and ya, for the nitrogen in the quin-
uclidine group of quinine, sampled in expanded ensemble molecular dynamics (MD) simula-
tions of quinine in water. Vertical line denotes the yy value of a QM geometry-optimized
conformation taken from the simulations. (b) Distributions of Dunitz y y parameters y; and
X2, for piperazine nitrogens of trazodone, sampled in expanded ensemble molecular dynam-
ics (MD) simulations in water. Vertical line denote values of two QM geometry-optimized
conformations taken from the simulations.

While these observations are anecdotal, they suggest that improved MM approaches to
predicting partition coefficients and other properties may come from improvements in the
bonded terms of force fields, specifically torsions. Boothroyd et al. (2023) note that incorrect
puckering of small fused heterocycles is of particular concern, as it could lead to “erroneous
intramolecular and intermolecular nonbonded interactions, especially in hydrogen bonding
interactions and m-stacked configurations”.”¥ These are exactly the nonbonded interactions
that dictate the extent to which molecules partition into nonpolar versus aqueous solvent.

In future work, it would be interesting to use our EE approach to compare logP predictions
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using general-purpose force fields like OpenFF and GAFF9? against custom-fit potentials

constructed using packages such as OpenFF BespokeFit®? and AFFDO.5

Conclusion

In this work, we have presented the results of an expanded ensemble (EE) free energy method
to predict toluene—water partition coefficients in the SAMPL9 logP blind challenge. Our EE
method achieved predictions within an RMSD of 2.26 kcal /mol, ranking third out of the nine
submissions using physics-based molecular mechanics (MM) methods. Although the most
accurate methods for logP prediction continue to be empirical or quantum-mechanical, our
inspection of simulated MM versus QM geometries for nitrogen pyramidalization suggests
force field improvements may continue to increase the accuracy of physics-based MM meth-
ods. The EE method is particularly well-suited for distributed computing platforms, and
in the future we expect it to be used more widely for large-scale simulation-based virtual

screening.
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Data Availability

SAMPLY logP challenge instructions, experimental data, submissions and analysis are avail-
able at https://github.com/samplchallenges/SAMPLY. The expanded ensemble (EE) al-
gorithm is implement and freely available in the open-source software package GROMACS
(https://gromacs.org) Scripts for preparation of EE simulations and data analysis are

available at https://vvoelz.github.io/sampl9-voelzlab.
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